植物钾、钙、镁素营养的研究进展

植物钾、钙、镁素营养的研究进展
植物钾、钙、镁素营养的研究进展

植物营养研究进展

土壤酸化研究进展 资源与环境学院刘文祥 20081875 摘要:环境酸化是全球变化中的一个重要内容, 土壤酸化是环境酸化的一个重要方面。酸雨也是导致土壤酸化原因之一,同时农业措施也是一大主因综述了土壤酸化研究的进展, 主要有土壤酸化的概念、表示方法、研究方法、土壤酸化敏感性、土壤酸化与元素淋失的关系等方面。最后提出了进一步研究的方向,并给出改良措施,为土壤酸化改良方面给予指导。 关键词:土壤酸化酸雨酸性改良 一、土壤酸化概念与现状 土壤退化是指人类对土壤的不合理利用而导致的土壤质量和生产力下降的过程。主要有侵蚀化、土壤酸化、污染退化、肥力退化和生物学退化。目前,随着人口、环境资源的矛盾日益突出,土壤退化已经成为全球性的重大问题,由酸沉降导致的土壤酸化是全球变化中的一项重要内容,土壤酸化将加速土壤酸度的下降和元素的淋失,土壤贫瘠化;某些重金属元素的淋出则会毒害植物根系。土壤酸化作为土壤退化的一个重要方面, 加速了土壤酸度的提高、大量营养元素的淋失,造成土壤肥力的下降,严重影响作物的生长。由于土壤在陆地生态系统中处于物质迁移和能量转换的枢纽地位,研究土壤酸化对生态系统的影响尤为重要。 1、土壤酸度和土壤酸化的概念 根据土壤中H+的存在形态,可将土壤的酸度分为两大类型:一是活性酸,是土壤溶液中H+ 浓度的直接反映,其强度通常用pH值来表示土壤的pH值愈小,表示土壤活性酸愈强;二是潜性酸,是由呈交换态的H+、Al3+ 等离子所决定。当这些离子处于吸附态时,潜性酸不显示出来。当它们被交换入土壤溶液后,增加其H+ 的浓度,这才显示出酸性来。土壤中潜性酸的主要来源是由于交换性Al3+ 的存在,交换性Al3+ 的出现或增加, 不是土壤酸化的原因,而是土壤酸化的结果。土壤的潜性酸度和活性酸度可以相互转化,而前者要比后者大得多。然而, 只有盐基不饱和的土壤才有潜性酸。 用石灰位来表示土壤的酸性强度,由于钙是土壤中主要的盐基离子,除了某些碱化土壤外,一般占盐基离子的60%~80%,因此,土壤的酸性强度可以用氢离子和钙离子的相对比例的变化来代表,二者的关系可用数学式pH- 0.5pCa 表示,它代表与土壤固相处于平衡的溶液中氢离子的活度和钙离子的活度差,称为石灰位。强酸性土壤的pH 低至4.0~5.0,其石灰位可低至1.5;盐基饱和的土壤的pH 高至7.0~8.0,其石灰位可高达7.0,其它土壤的石灰位介于二者之间。关于土壤酸化,土壤酸化是指土壤内部产生和外部输入的氢离子引起土壤pH 值降低和盐基饱和度减小的过程,在湿润气候区,土壤形成和发育的过程本身就是一个自然酸化的过程,大气污染所引起的干、湿酸沉降则大大加快自然土壤的酸化速率。 2、土壤酸化现状 从世界范围来看,酸性土壤主要分布在两大地区,一是热带、亚热带地区,二是温带地区。北欧和北美的酸化问题主要发生在灰化土上,而我国的酸性土壤主要分布在长江以南的广大热带和亚热带地区和云贵川等地,面积约为2.04×108 hm2,主要集中在湖南、江西、福建、浙江、广东、广西、海南,大部分土壤的pH 值小于5.5,其中很大一部分小于5.0,甚至是4.5,而且面积还在扩大,土壤酸度还在

作物补钙有诀窍

近年来,果蔬作物因缺钙引起的生理性问题越来越普遍,如苹果苦痘病、痘斑病、水心病,番茄、辣椒的脐腐病,白菜、芹菜的干烧心,瓜类的顶腐病等,另外,葡萄、樱桃、西瓜等果实的裂果也与缺钙有很大的关系。对农业生产造成极大的影响。 造成作物缺钙现象越发严重的主要原因有一下几个方面,一是随着经济作物种植面积的扩大,作物对钙的需求量提高了。例如,果蔬类作物的平均需钙量一般是小麦的5倍左右,其吸收钙的数量超过了磷的需要量,部分作物甚至超过了需氮量,跃居前三位。二是长期重视氮磷钾化肥而不重视补充钙肥,土壤中有效钙的含量下降了。三是部分土壤因管理不当造成钙的有效性下降,例如土壤酸化,致使钙含量下降。 四是施肥措施等不合理,也影响了钙的吸收。 钙是作物必需的营养元素,缺乏钙营养会造成作物抗性下降、生长不良,严重者甚至出现一些特殊的生理问题,造成作物的产量与品质下降。因此,生产上必须给蔬菜尤其是瓜果类蔬菜和果树补钙。 正确的补钙方法是土壤施用钙肥与叶面(果面)喷施钙肥结合的方式。 土施类钙肥的种类很多,如过磷酸钙、石膏、钙镁磷肥、牡蛎壳粉等。酸性土壤施用的生石灰除了可调节土壤酸性,也有补钙的作用。绿原贝富泰威有机钙粉是一种采用牡蛎加工的土施类优质钙肥,可显著提高土壤有效钙的含量,并兼有改良酸性土壤和板结土壤的作用,一般可亩施40~60公斤,具有改良土壤及持久补钙的效果。 叶面补充钙肥要注意选择吸收效果好的品种,也要注意合理的施肥时期。作物结果期对钙的需求量非常大,是最关键的补钙时期。因此,喷施钙肥一定要从幼果期开始,连续喷施3~5次。由于钙在植物体内的移动性非常差,叶面喷施钙肥一定要注意喷施到果实上。生产中如果采用了套袋技术,一般的钙肥无法达到补钙的效果。这种情况下,一定要选择糖醇螯合的果蔬钙肥。它采用了目前世界上最先进的螯合技术,钙元素的吸收效率比普通钙肥高,而且以糖醇结合的方式促进其他部位中的钙向果实转运,最大程度的解决果实缺钙问题。大田3~5年的试验也显示,喷施果蔬钙肥可以提高果实的硬度,延长储藏

【农技】植物营养元素-大量元素之氮

【农技】植物营养元素-大量元素之氮 【农技】植物营养元素-大量元素之氮 2016-07-26 掌上农事 植物在生长发育过程中需要多种营养元素,而氮素尤为重要。在所有必须营养元素中,氮是限制植物生长和形成产量的首要因素。它对改善作物品质也有明显的作用。氮的营养功能显微镜下的植物细胞氮是植物体细胞原生质中的基本物质,也是植物内每个活细胞的重要组成部分。除此以外,氮还是制造叶绿素的重要物质,它能够促进植物叶片浓绿,使植物生长的更茂盛。还参与植物体内蛋白质和核酸的合成,促进植物细胞不断的分裂和增长,使植物枝叶的叶面积逐渐增大。蛋白质的主要组成元素蛋白质是构成细胞内生命物质的基础,其平均含氮量为16%~18%,在作物生长发育过程中,细胞的增长和分裂及新细胞的形成都必须有蛋白质参与。缺氮时因新细胞形成受阻而导致植物生长发育缓慢,严重时甚至出现生长停滞。所以氮素是一切有机体不可缺少的元素,它也被称为生命元素。核酸和核蛋白的重要成分核酸和核蛋白在植物生活和遗传变异过程中有特殊的作用,一方面它是蛋白质的合成的模板,另一方面决定作物遗传信息

的传递者。而氮在核酸中的含量为15%左右,当作物缺氮时,作物的生长发育和生命活动会受到严重阻碍。叶绿素的组分元素众所周知,绿色植物有耐于叶绿素进行光合作用,叶绿素的含量能直接影响光合作用的速率和光合产物的形成。当植物缺氮时,体内叶绿素含量下降,叶片黄化,光合作用强度减弱,光合产物减少,从而使作物产量明显降低。绿色植物生长和发育过程中没有氮素参与是不可想象的。植物氮的来源空气中含有近80%的氮气(N2),然而,植物无法直接利用这些分子态氮。只有某些微生物(包括与高等植物共生的固氮微生物)才能利用大气中的氮气,而植物所利用的氮源,主要来自土壤。根瘤菌土壤中的有机含氮化合物主要来源于动物、植物和微生物躯体的腐烂分解,然而这些含氮化合物的大多是不溶性的,通常不能直接为植物所利用,大部分需要经过一定的转化才能被作物吸收利用。氨化作用有机态氮经微生物作用并分解产生NH3的过程,称为氨化作用,也是氮元素的矿化过程。参与氨化作用的微生物很广泛,在不同土壤条件下这一作用都能进行。氨化作用是促进氮元素有效化的作用,氨溶于水生成NH4+易被作物吸收。当土壤持水量在60%左右,土温保持30℃~35℃,土壤呈中性至微碱性条件时,氨化作用顺利进行。如尿素是有机态氮肥,是酰胺态氮。尿素要经过土壤微生物(尿酶)的作用,转化生成碳酸铵后,才能被作物吸收利用。硝化作用氨或铵盐在土壤硝化细菌的作

植物与土壤的氨基酸营养研究进展

42 植物与土壤的氨基酸营养研究进展 张强,陈明昌,程滨,杨治平,丁玉川,刘平 (山西省农业科学院土壤肥料研究所,山西太原030031) 摘要:氨基酸是土壤有机氮的重要组成部分,土壤中的部分细菌和真菌在生理代谢过程 中可将其作为前体合成植物生长调节剂,刺激或促进植物的生长和发育。就近年来国内外在生长素前体的筛选与确定以及对植物生长发育的效果进行了综述。 关键词:植物生长调节剂;氨基酸;生物合成;前体 植物生长调节剂的应用,具有效果显著、施用方便等优点。存在的问題是,合成过程复杂、稳定性差、纯度低、价格昂贵,而且多为非水溶性物质等。因此寻找一种简便易行、价格低廉的合成前体及合成途径,成为研究和应用植物生长调节剂的重要课題,也是研制新型肥料添加剂的热点所在。土壤氨基酸是土壤微生物重要营养源,土壤微生物在代谢过程中可利用氨基酸为前体,通过生物途径合成植物生长调节剂,刺激植物的生长,调节植物的生理过程。人为施用外源氨基酸同样也可以通过土壤微生物的代谢活动合成植物生长调节刑,这样不仅可以解决上述问题,而且可以将其作为添加剂加入到肥料中,既发挥了肥料的营养功能,又发挥了植物生长调节剂的作用,因此受到了广泛的关注。 1氨基酸是植物生长调节剂生物合成的前体 氨基酸是土壤有机氮的重要组成部分,也是土壤微生物的重要营养源。研究结果表明,植物根系分泌物中的自由氨基酸含量高于根际以外区域的含量,而根际的吲哚乙酸(IAA)含量是根际外的3 ~5倍。微生物在生长代谢过程中,利用氨基酸作为其氮源,同时合成植 物生长调节剂。大量研究结果表明,L—TRP是生长素IAA的生物合成前体,而L—MET 和L—ETH是乙烯的生物合成前体。 IAA是生长素中发现最早同时作用最为强烈也最稳定的植物生长调节剂。作为IAA生 物合成的前体,L—TRP在土壤氨基酸中仅占2%,但却是土壤和植物体内IAA合成的重要物质。早在1935年,Thimann首次证明了当L—TRP与根霉属suinus一起培养时,L—TRP 是植物激素IAA的前体。在植物体内,L—TRP是由3 -磷酸莽草酸经分支酸和邻氨基苯甲 酸合成的。 1987年,Frankerberger和Poth用离子抑制高效液相色谱(HPLC)-uv光谱测定法,证明了由土壤—根界面分离出来的一种荧光假单胞菌能把L—TRP转变成为IAA,从而建立了由L—TRP合成IAA的微生物途径。 乙烯是植物体内重要的内源激素,它的存在直接影响植物的成熟。土壤内含有一定量的真菌和细菌,它们在代谢过程中利用土壤中的氧基酸合成乙烯。等研究表明,玉米根际内 含有大量的微生物区系,可以将土壤中的氧基酸合成为乙烯。乙烯的生物合成前体主要是L—MET和L—ETH,其合成数量与土壤肥力状况、有机质含量等因素有关。乙烯的作用浓度一般都很低。 L—TRP合成IAA以及L—MET和L—ETH合成乙烯都与氨基酸的浓度和纯度密切相关,另外还与土壤pH值、温度、水分状況、肥力状况、有机质含量等因素有关。 2土施氨基酸对植物生长的影响 据报道,土施IAA溶液对作物生长也有明显效果,但增产效果低于土施L—TRP。另外,IAA是非水溶性物质,而且价格昂贵,安全使用浓度范围很狭窄,不易掌握。土施L—TRP 不仅效果好于土施IAA,而且价格便宜,施用方便,同时经微生物途径合成的IAA作用平缓,能均匀稳定地刺激作物生长。 据Frankenberger等报道,在萝卜幼苗出土时,土施植物生长素前体L—TRP 3mg/kg, 使萝卜根干重比对照増加31%,同时能提髙根冠比。但当施用浓度提髙到300mg/kg后,萝卜产量不仅没有提高,反而降低了 12%;当施用浓度降低到3×10-4mg/kg后,不再有增产效果。研究结果表明L—TRP的土施浓度为0.003~30mg/kg,最佳浓度为3mg/kg,而且大棚的施用效果好于大田。另外,叶面喷施L—TRP后各个浓度均无增产效果。Frankenberger和Arshad将L—TRP于移植前2周施入土壤,能使西瓜和甜瓜产量提髙69%和42%,平均单 瓜重量分别提髙 43%和36%。陈振德等研究结果表明,土施50~5×10-4mg/kg L—TRP,能使甘蓝产量提髙7.1%~35.0%,全株重量提髙2.4%~23.2%。其中土施L—TRP 5~5×10-3mmg/kg 的产量较髙,平均増产31.6%,而且净菜率提高。

果蔬论文

果蔬成熟衰老生理研究现状及化学调控与发展趋势 摘要:植物衰老是受内外因素控制的细胞有序降解并最终导致死亡的过程,衰老期间会出现与正常生长阶段不同的生理生化变化。植物衰老引起的各种功能的下降极大地限制了作物产量潜力的发挥,种子贮存过程中的衰变、逆境条件下植株的早衰、果蔬采后贮藏衰老导致货架寿命的缩短等均会造成极大的经济损失。研究植物衰老的生理机制及其调控具有十分重要的意义。综述了有关植物衰老时生理生化变化方面的近期研究进展,以利于人们对植物衰老生理的更深入的了解。关键词:果蔬成熟衰老、生理变化、化学调控、植物激素作用 Fruit mature aging physiological and research status and development trend of chemical control Instructor: zhanghui Name: qujing Abstract:Plant senescence is a programmed cell degradation and death process ultimately controlled by internal and external factors.During senescence of plant,the changes in physiology and biochemistry are different from that of the normal growth stage.Decline in many functions triggered by senescence restrict yield potential of crops extremely.Senescence of stored seed,premature senescence of plant in stress and shorten of shelf life lead by harvest senescence of fruit and vegetable will result in enormous economic loss.It is very important to study the physiological mechanism and regulation of plant senescence.The recent advances in studies on physiological and biochemical changes during plant senescence were summarized.It will help to know more clearly the physiology of plant senescence. Key words:Fruit mature aging、Physiological changes、Chemical control、Plant hormones 前言:新鲜果蔬富含多种维生素、丰富的无机盐、膳食纤维以及其他许多有机成分,在膳食中具有重要位置,是人们日常生活中不可或缺的食品。与加工产品不同的是,新鲜果蔬采后虽然脱离了母体,但仍是活的、有生命的有机体,体内仍然在进行着一系列的生理代谢活动,导致果蔬组织体内营养物质的消耗,促进了果蔬的成熟衰老进程,加快了组织劣变;同时,新鲜水果和蔬菜含水量较高,极易遭受病原微生物的侵染,从而使得果蔬非常容易腐烂,了解果蔬成熟衰老生理研究现状及化学调控与发展趋势,就变得十分重要了。 正文: 1.果树成熟衰老生理 1.1果实成熟时的生理生化变化 1.1.1果实的生长 肉质果实(如苹果、番茄、菠萝、草莓等)的生长一般也和营养器官的生长一样,具有生长大周期,呈S形生长曲线;但也有一些核果(如桃、杏、樱桃)

果树钙

钙作为植物营养的必需元素被人们认识已有160多年的历史,但由于其在土壤中含量丰富,故不为人们充分重视。近20多年来,钙在植物营养生理研究中是最受重视的元素之一,它不仅是果树生长发育所必需的一种大量元素,更重要的是作为胞外信号和胞内生理生化反应的第二信使参与果树生长和发育的调控。钙对果实品质的影响远比氮、磷、钾、镁重要,许多果实的生理失调症状如樱桃(PrunusPseudoceasusLind1)裂果、桃(PrunusPr~ica)的软化、鸭梨(PyruspyrifoliaNakaicv.)黑心病等都与缺钙有密切关系。 大多数情况下土壤并不缺钙,其可溶态钙含量高于磷、钾、镁等元素,果树缺钙也并不意味着土壤钙不足,即使生长在富含钙的石灰性土壤上的植物,仍有苹果(Malusmila)的苦痘病、果肉内部溃败等生理病害。钙是一种不易被植物吸收且吸收后又不易移动的元素,大量的钙存在于叶中,果实中甚少。 钙只能单向(向上)转移,并受蒸腾作用的影响,常常会发生低蒸腾果实中的钙向树体倒流的现象,因而果实极易表现出缺钙症状。在果树栽培中仅由此所造成的果实腐烂等损失约占产量20%---30%,经济损失严重。 近20年来国内外果树营养和生理工作者对钙的营养机理及应用方面进行了广泛的研究,对提高果实鲜食品质和储藏品质,改善果实的商品性能,促进果园高效持续发展具有重要意义。为此,试对这方面的研究进展进行综合评述。 1、钙的吸收、运输、分配 1.1树体的吸收、运输和分配 根系对钙的吸收主要发生在尚未木栓化的幼嫩部分如根尖和侧根发生部位。土壤中Ca2通过扩散、质流和根的截获到达根系的表面,后经质外体和共质体向木质部转移。这个过程曾被认为是一被动过程,因为众多呼吸抑制剂明显抑制P、K进入细胞原生质,而对钙离子没有明显影响。 但目前普遍认为,根系吸收钙表现出两个机理系统。在外界低钙浓度时,钙的吸收符合米氏动力学曲线。是典型的主动运输。在外界高钙浓度下,还受到非

植物必须的营养元素

植物生长所需的营养元素 1.必需营养元素: 营养元素在植物体内的含量不同,所引起的作用也不同,有些元素在植物体内含量很少,但是是不可缺少的,判断必需营养元素的三个依据: (1)如缺少某种营养元素,植物就不能完成生活史; (2)必须营养元素的功能不能由其它营养元素代替; (3)必需营养元素直接参入植物代谢作用. 2.目前已发现16种必需营养元素: (1)大量营养元素: C、H、O、N、P、K; (2)中量营养元素Ca、Mg、S; (3)微量营养元素: Fe Mn Cu Zn B Mo Cl(一般占植物干重的0.1%以下)。 3.有益元素: 在16种营养元素之外,还有一类营养元素,它们对一些植物的生长发育具有良好的作用,或为某些植物在特定条件下所必需,但不是所有植物所必需,人们称之为“有益元素”,其中主要包括: Si Na Co Se Ni Al等. 4.为什么大量施肥并不能获得高产? (1)各类元素的同等重要性 大量、中量和微量营养元素具有同等重要性,必需营养元素在植物体内不论数量多少都是同等重要的,作物的产量和品质是有最缺乏的营养元素决定的,要想节约肥料的投入成本又能获得高产,必须做的平衡施肥。 (2)常见土壤营养元素的缺乏状况表 土壤类型土壤pH<6.0 土壤pH 6.0-7. 0 土壤pH>7.0 沙土、氮、磷、钾、钙、镁、铜、氮、镁、锰、硼、铜、锌氮、镁、锰、硼、铜、锌、铁 锌、钼 轻壤土氮、磷、钾、钙、镁、铜、钼氮、镁、锰、硼、铜氮、镁、锰、硼、铜、锌 壤土磷、钾、钼锰、硼锰、硼、铜、铁 粘壤土磷、钾、钼锰硼、锰 粘土磷、钼硼、锰硼、锰 髙有机质土磷、锌、铜锰、锌、铜锰、锌、铜

植物的营养液培养及缺素培养

植物生理学实验 植物的营养液培养及缺素培养 姓名 学号 系别 班级 实验日期 同组姓名

一、摘要 为探求各种主要元素对植物生长发育的作用,本次试验采用番茄幼苗为实验材料,用配制的各种缺乏某种矿质元素的培养液进行培养及一种完全培养液,根据28天的持续观察记录,进一步了解矿质元素的作用、特点及对植物生长发育的重要性。根据观察植物表现出来的性状可得1号营养液为完全营养液,2号营养液缺钾,3号营养液缺氮,4号营养液缺磷。 二、实验原理与实验目的 1、实验原理 只要满足植物正常生长发育的要求(光、温、水、气、必需元素),植物可以在水中生长。把必需矿质元素配制成培养液培养植物称溶液培养。由于培养液中元素的种类和数量可以人为控制,因此当要了解某种元素是否为植物必需时,只要有意识地配制缺乏该种元素的培养液,根据植物在该培养液中所表现出来的症状,便可了解该元素的作用以及对植物生长发育的必要性。 2、实验目的 掌握植物营养液培养的基本方法; 通过植物的缺素培养,观察并认识N、P、K等矿质元素的专一缺素症状,从而了解N、P、K对植物生长发育的重要性。每隔7天移苗,并观察番茄的生长状况。 三、材料和方法 1、植物材料:番茄幼苗 2、实验器材:烧杯、移液管、量筒、培养缸、通气设备、pH计、天平、镊子、毛笔、未脱脂棉、瓷盘 3、实验试剂: 500 ml培养液中各种贮备液用量 完全营养液缺氮缺磷缺钾 KH2PO4 25 25 Ca(NO3)2 25 25 25 MgSO4?7 H2O 25 25 25 25 CaCl2 25 NaH2PO4 25 KCl 25 微量元素0.5 0.5 0.5 0.5 Fe-EDTA 1 1 1 1 4、储备液的制备 (1)大量元素的配制 KH2PO4: 54g + 3000ml H2O Ca(NO3)2: 33g + 3000ml H2O MgSO4?7 H2O: 56g + 4000ml H2O CaCl2: 2g + 2000ml H2O NaH2PO4: 30g + 2000ml H2O KCl: 40g + 2000ml H2O

植物营养素与疾病

植物营养素与疾病 生活中,人们总被告诫要多吃新鲜的蔬菜和水果,以实现均衡的营养,维持人体健康。最近科学研究证实,新鲜的水果和蔬菜中除含有人体所不可缺少的维生素、矿物质、蛋白质和糖类等营养成分外,更重要的是内含有助于预防慢性疾病的重要物质———植物化学物质,即纽崔莱所称的植物营养素。科学家认为,植物化学物质是人类健康的新宝库,对人类的健康具有极为重要的意义。 营养素是植物中所含的非营养素类生物活性物质,学术界也称之为植物化学物质。植物营养素是最近几年科学的新发现,但对于植物营养素的探索和研究却始于上个世纪30年代。当时,纽崔莱创始人卡尔·宏邦先生受到中医药理念的影响,坚信天然植物的浓缩提取物中蕴含人类所需的营养,他称之为植物营养素。 目前科学家发现,植物营养素大约有一万二千种的不同形态,分别存在于大豆、蔬菜、水果、胡桃、大蒜、小麦胚芽及茶等植物中。如紫花苜蓿中含有类黄酮素、类胡萝卜素和酚型酸,菠菜中含有类黄酮素和芸香素。与化学合成品相比,植物营养素以其来源天然、安全并兼具某种或某些生理功能而日渐得到人们的重视与青睐,被誉为“植物给予人类的礼物”,含有植物营养素的功能性保健食品已成为当今保健食品的发展趋势与方向。有专家认为,植物营养素的重要意义可与抗生素和维生素相媲美。

科学家们认为,植物营养素是人类新的健康宝库,可能成为许多疑难病症的克星。研究证实,植物营养素如类黄酮、酚类物质、类胡萝卜素等,具有显著的防癌抑癌、预防各种慢性疾病,如冠心病、高血压、白内障等作用。 ◆增强抗氧化能力 近来科学研究证明,自由基和人类多种疾病均有着密切的关系。一些科学家认为自由基是引起衰老的主要原因。而抗氧化剂能够帮助人体清除体内多余的自由基。 植物营养素是膳食抗氧化物的重要组成部分,可直接清除自由基,或者减少自由基的生成,或者消除其前体。植物营养素中的多酚类无论在数量还是在强度上抗氧化作用都是最高的,类黄酮是其中的代表;类胡萝卜素能有效抑制单线态氧和自由基的活性,保护细胞免受损害,从而避免细胞发生突变。 ◆调节人体免疫力 免疫力是人体对抗各种外界病毒和有害细菌入侵的关键防线,如果免疫力低下,人就容易受感染并得病。植物营养素中的多糖一直被认为是一种广泛的免疫调节剂。此外,多项实验证明,类胡萝卜素对免疫功能有调节作用,能提高免疫细胞活性,增加免疫细胞数目,刺激调节免疫系统功能。 ◆预防心血管疾病 心血管疾病是威胁人类健康与生命的头号杀手。众多的研究显示,植物营养素中的类黄酮等多酚类物质具有强大的抗氧化功能,有助于预防动脉粥样硬化,从而对各种心脑血

植物营养论文

湖南农业大学课程论文 学院:资源环境学院班级:09农业资源与环境二班姓名:邵海峰学号:200940409222 课程论文题目:蔬菜硝酸盐含量的因素及其降低措施的研究及进展 课程名称:植物营养学课程论文 评阅成绩: 评阅意见: 成绩评定教师签名: 日期: 2011 年 12 月 31 日

摘要:本文综述了蔬菜硝酸盐含量过高对人体的危害,影响蔬菜硝酸盐含量的因素,降低蔬菜硝酸盐含量的措施及其效果,并对今后的研究提出了建议。 关键词:蔬菜;硝酸盐;影响因素;栽培措施 1前言 蔬菜是人们日常生活中不可或缺的食品,但蔬菜又是易于富集硝酸盐的作物,人体吸收的硝酸盐80%以上来自于蔬菜[1]。故硝酸盐含量是评价蔬菜品质的重要指标之一。虽然硝酸盐对人体没有直接的毒害作用,但进入人体后,会在微生物的作用下还原为有毒的亚硝酸盐,它可与人体血红蛋白反应,使之失去载氧功能,造成高铁血红蛋白症。长期摄入亚硝酸盐会造成智力迟钝[2]。另一方面。亚硝酸盐还可间接与人类摄取的其它食品、医药品、残留农药等成分中的次级胺反应,在胃腔中(pH=3)形成强致癌物——亚硝胺,从而诱发消化系统癌变[3]。因此,硝酸盐污染问题已引起人们的普遍关注,世界各国学者对蔬菜硝酸盐积累及其控制途径进行了日益广泛和深入的研究。近年来许多研究单位对蔬菜中的硝酸盐污染以及如何控制进行了大量的研究。影响蔬菜硝酸盐积累的因素很多,与蔬菜的种类品种有关,与水分、温度、光照有关,也与施氮量、氮肥种类、施氮方法等因素有关,但施肥是非常重要的因素之一。要减少蔬菜硝酸盐含量,一是要进行合理施肥,控制施肥种类、数量,掌握好施肥方法等。二是调节水、温、光等环境条件,从而达到控制植株根系对NO3-的吸收速率,降低其吸收量,进而加速硝酸盐在植物体内的代谢的目的。 2 影响蔬菜硝酸盐含量的因素 2.1内部因素 影响蔬菜硝酸盐含量的内部因子主要包括:蔬菜种类、品种、部位和生育期,这些因子主要受遗传因子所控制[4]。 2.2.1 蔬菜种类不同其硝酸盐含量差异明显。现在研究证实,不同蔬菜种类的硝酸盐含量从大到小的次序为根菜类> 叶菜类> 瓜类> 茄果类。 2.2.2 同一种类蔬菜不同品种硝酸盐含量也不相同,如莴苣Bellone品种叶片中硝酸盐含量为2878mg/kg,而Tornade品种硝酸盐含量仅为123mg/kg,2个品种间硝酸盐含量差异十分悬殊。 2.2.3 蔬菜不同部位的硝酸盐含量也有很大差异,一般而言,根>茎>叶>果;叶柄>叶片;外叶(下部叶)>内叶(上部叶)。 2.2.4 生育期对于菠菜而言,其体内硝酸盐含量随着生育期的延长而降低,这可能是由于随菠菜生育期推进其吸收土壤硝酸盐能力下降,或随植株增大硝酸盐相对量降低造成的。因此菠菜不宜提早收获。 2.2外部因素 蔬菜积累硝酸盐的过程也受外部其他环境因素如土壤水分、光照、温度、栽培措施等显著影响[5]。 2.2.1光光照对植物体内的硝酸盐代谢起着极为重要的作用,是决定植株硝酸盐含量的主要因素之一。光照强度、光周期和光照持续时间均影响植株硝酸盐含量。在低光照强度

植物铁营养研究进展

植物的铁营养研究进展 铁是植物必需的微量元素, 在植物的生命活动,如光合作用、呼吸作用、氮代谢中起着很重要的作用。虽然地壳中铁元素丰度很高,但由于受土壤溶液中P H值及氧分压的影响,几乎都是以难溶于水的FeT形式存在,特别在石灰性土壤(p H 7.4?8.5)中,植物常表现出缺铁症状。而在热带低洼地区或酸性土壤中,Fe2+又往往过量积累,使植物受到铁毒胁迫,严重影响产量[1]。本文在总结前人研究成果的基础上,对土壤中的铁的一些基本性质以及植物对铁胁迫的反应作一概述。 土壤中的铁 土壤中全铁含量较高,温带土壤中约为 3.8%,砖红壤中可达50%或更多[1]。土壤总铁含量一般不代表对植物的供给量。土壤中铁的形态复杂,有效铁形态还不确定,从范围来看包括水溶液态铁、代换态铁及能被螯合剂提取的螯溶态铁。土壤铁的有效性主要取决于有效铁的供应量,影响有效供应量的因素很多,主要有土壤中全铁的含量、p H 值、重碳酸盐含量、有机质丰度、氧化还原电位、土壤中其它养料(如N、P、Cu、Mn、Zn、Mo、Ni)对铁的影响等。其中土壤p H、氧化还原电位值是影响铁有效性的主要因子[2],pH 低(土壤酸性)时,沉积铁的溶解度提高;pH 高(土壤中性或碱性)时,铁的溶解度很小;土壤微生物的活动会影响根际土壤的pH和氧化还原电位,从而促进Fe3*的还 原和吸收;土壤中存在的有机酸也可通过络合作用显著地提高土壤中可溶态铁的浓度。 土壤中铁的形态大体上可分为有机态和无机态。结合在有机物中的铁量并不多,甚至少于1%,但分解后对植物的有效性高,而且有机物有强大的螫合铁的能力,在植物铁营养中具有特殊的意义。从植物营养角度来看,各种含铁物的溶解度、有效性及移动性差异很大。一般植物体内含铁量为30?250mg/kg(以干物重计)。泥炭灰分中Fe2O3l%?10%, 土壤腐殖质中含是Fe2O3约0.05%?0.5%,胡敏酸、富啡酸中分别为2700-14290, 330-9190mg/kg⑵,可见土壤腐殖质中结合了大量的铁。无机态的铁种类很多。 土壤中可溶性无机态铁包括FeT, Fe(OH)2+, Fe(OH)2+和Fe2*。在通气良好的土壤中,除了pH值高的情况下,一般可溶性FeT很少。铁的溶解度很大程度上受水合三价铁溶解度的控制,其水解过程与pH关系十分密切。FeT活性随pH值增加而下降,在较高的pH 值下,每增加 1 个pH 值单位,溶液中铁的活性减少1000倍。可溶性铁在pH6.5?8.0 时达到最低,酸性土中可溶性无机铁含量要比碱土中的高,这就是石灰性土中生长的作物常易发生缺铁失绿症(Chlorosis)的主要原因之一⑵。 二、土壤中铁元素的有效态含量及其控制因素 我国土壤中的全铁含量虽然低于地壳丰度,但仍然较高,而有效态铁的含量却很低。

蔬菜的钾素营养与钾肥施用

蔬菜的钾素营养与钾肥施用 李家康 (中国农科院土壤肥料研究所) 内容 1.前言 2.我国蔬菜施用现状与问题 3.蔬菜的钾素营养 4.科学施用钾肥 一、前言 注:引自《中国农业年鉴》,其中产量为1984年数据。 按当年的人口(128373万)计算,2003年人均年占有蔬菜量为420kg,平均每人每天能吃到蔬菜近1.2kg。 蔬菜种植面积和总产量还在进一步增加: 种植面积2003年比2000年增加271.8万公顷,年均90.6万公顷(1980年至2000年 ,年均增加60.4万公顷)。 总产量2003年比2000年增加11632.3万吨,年均3877万吨(1984年至2000年,年均增加3513万吨)。 二、我国蔬菜施肥现状与问题 (一)蔬菜营养基本特性 1.蔬菜需肥量大 一般亩产蔬菜3000~5000kg,地上部携走的氮、磷、钾养分总量为30~45kg,要比粮食

作物亩产400kg时,高出50%至1倍。 根据中国农科院土肥所调查,蔬菜实际施肥量高于粮食作物1倍以上(表2)。 表2 7省不同作物上化肥氮磷钾养分的分配(1996) 资料来源:引自刘荣乐博士学位论文《我国7省(区)农作物施肥结构及施肥效果研究》,2001.5。 蔬菜需肥大的原因: ①蔬菜各器官(包括可食和非可食部分)的氮磷钾养分含量均高于水稻、小麦; ②蔬菜的非可食部分中养分向可食部分转移量少; ③蔬菜生物产量高。 详见表3 10种蔬菜是:萝卜、莴苣、芹菜、马铃薯、白菜、甘蓝、花菜、西红柿、甜椒和黄瓜。 资料来源:奚振邦,1997。 2.蔬菜要求钾多磷少 一般氮、磷吸收比为1:0.3~0.4;氮、钾吸收比为1:1.2~1.5以上,见表4和表5。

第三节 钾素营养与钾肥

第三节钾素营养与钾肥 一、植物钾元素的作用和特点 钾是植物必需的大量营养元素,也是肥料的三要素之一。植物的需钾与氮相当,有些植物的需钾量甚至超过氮。植物体内含钾(K2O)量占植物体干重的0.3%~5%,均以无机态存在。它在植物体内的生理功能主要有以下几个方面。 1、是许多酶的活化剂,参与多种代谢,对植物的生长发育起着独特的生理功能作用。 2、能提高叶绿素的含量,提高光合作用的强度,促进碳水化合物的代谢和运输。 3、能提高植物对氮的利用率,有利蛋白质的合成,从而提高植物的品质。 4、钾能提高植物的抗旱、抗寒、抗倒伏等多种抗性。 钾能调节植物叶片呼吸气孔的开闭,增加植物的抗旱性;能提高植物碳水化合物的合成,增加植物的抗寒性;能促进茎纤维管束的发育,使茎壁增厚,增加抗倒伏性。 植物缺钾:在生长的中、后期症状明显,一般是从老叶逐渐向新叶扩展。其地下部分生长缓慢,根系发育不良,地上部分通常从老叶的尖端和边缘开始,由黄→褐→逐渐枯萎。如玉米缺钾,基部叶片的尖端和边缘变黄,中间仍为绿色,又称“金边黄”;棉花缺钾,叶片表面皱波不平,中部叶片变黄,又称“蟹壳黄”;水稻缺钾,植物矮小,根黑色,分蘖迟,多数叶片有褐色斑点,叶尖或叶边缘坏死,抽穗不齐,籽粒不饱满。 钾元素被公认为“品质元素”,它能使作物的果实大小、外型、色泽、风味及耐贮性得到进一步提高。 二、钾肥的种类和性质

钾肥主要是指氯化钾和硫酸钾。氯化钾占世界钾肥产量的90%以上,也是生产硫酸钾、硝酸钾和NPK复合肥的原料。 氯化钾:含K2O在60%以上,分子式为KCl,生理酸性肥料。氯化钾施入土壤后,遇水分解为K+和Cl- ,K+与土壤胶体上的阳离子交换,被土壤固定,Cl-残留土壤中,或随水流失,或生成氯化钙(石灰性土壤)或盐酸(酸性土壤)。氯化钾中还含有一定量的氯化钠(1%~3%),在盐碱地上施用有加重盐害的可能。氯化钾宜做基肥,不能作种肥,施用时应严格种肥隔离并深施。如氯化钾直接与种子接触,则对种子的发芽和幼苗的生长有抑制作用。 氯化钾和其它含氯的化肥一样,不宜在严重忌氯的烟草、葡萄上使用,在一般忌氯的柑橘、薯类、糖类作物上应控制用量,原则上不连续施用,以免对产品的质量产生影响。 硫酸钾,含K2O在50%左右,分子式为K2SO4,生理酸性肥料,一般是用氯化钾和硫酸反应制取,价格比氯化钾高,主要是用在忌氯的作物上,在缺硫的土壤上使用也有好的效果。 三、土壤供钾能力评价及施肥 1、我国土壤全钾含量为0.4%~1.7%,全国土壤钾素含量呈南低北高,东低西高的明显分布规律。土壤速效钾<100毫克/千克(PPm)的耕地面积占47.1%,主要集中在华南地区,约占84%,西北地区只占不到8%。目前,在我国随着氮、磷肥用量的增加和作物产量的不断提高,土壤钾的含量呈不断降低的趋势,据天津市农业科学院土壤肥料研究所的检测结果,近十几年来天津地区土壤中速效钾的含量每年递减 3.6PPm。钾肥的施用效果在南方超过磷肥,在北方使用也有明显效果,在我国钾肥的施用已引起普遍关注。

植物营养

名词解释: 1.植物营养:植物体从外界环境中吸收其生长发育所需要的养分,用以维持其 生命活动的过程。 2.营养元素:植物体用于维持正常新陈代谢完成生命周期所需的化学元素。 3.植物营养学:是研究植物对营养物质吸收、运输、转化和利用的规律及植物 与外界环境之间营养物质和能量交换的科学。 4.肥料:直接或间接供给植物所需养分,改善土壤性状,以提高作物产量和改 善产品品质的物质 5.大量元素:碳、氢、氧、氮、磷、钾 6.中量元素:钙、镁、硫 7.微量元素:铁、锰、铜、锌、硼、钼、氯 8.养分归还学说:植物从土壤中吸收养分,每次收获必从土壤中带走某些养分, 使土壤中养分减少,土壤贫化。要维持地力和作物产量,就要归还植物带走的养分 9.最小养分律:指植物的产量由含量最少的养分所支配的定律。 10.矿质营养学说:植物生长发育所需要的原始养分是矿物质(无机物)而不是 腐殖质(有机质),因为腐殖质是在地球上有了植物后才出现的。 11.腐殖质营养学说:土壤肥力取决于土壤腐殖质的含量,腐殖质是土壤中唯一 的植物营养物质,而矿物质只是起间接作用,即它是加速腐殖质的转化和溶解,使其变成易被植物吸收的物质。 12.必须营养元素:是指所有植物正常生长发育所必须的,缺乏它植物就不能完 成其生命史。 13.有益元素:对某些植物的生长发育具有良好的刺激作用,是某种植物种类, 在某些特定条件下所必需但不是所有植物所必需。 14.有害元素:这些元素进入植物体内,不仅会对植物产生毒害作用,影响植物 的生长发育,造成减产,同时由于其在植物体内的残留,通过食物链进入动物或人体内,危害他们的健康。 15.环境五毒:即五种有害元素汞(Hg) 镉(Cd) 铅(Pb) 铬(Cr) 砷(As) 16.重金属:一般泛指能够引起环境污染的金属元素 17.根际:由于植物根系的影响而使其理化及生物性质与原土体有显著不同的那 部分根区土壤。 18.根际效应:在根际中,植物根系不仅影响介质土壤中的无机养分的溶解度, 也影响土壤生物的活性,从而构成“根际效应”。 19.根分泌物:是指植物生长过程中向生长基质中释放的有机质的总称。 20.菌根:是高等植物根系与真菌形成的共生体,分布很广,分外生菌根,内生 菌根。 21.截获:是指植物根系在生长过程中直接接触养分而使养分转移至根表的过程 22.质流:是指由于水分吸收形成的水流而引起养分离子向根表迁移影响因素 23.扩散:是指由于植物根系对养分的吸收,导致根表离子浓度下降从而形成土 体——根表之间的浓度梯度,使养分离子从浓度高的土体向浓度低的根表迁移的过程。 24.拮抗作用:指在溶液中某一离子存在能抑制另一离子吸收的现象 25.协助作用:指在溶液中某一离子的存在有利于根系对另一些离子的吸收。

植物营养研究方法知识点

绪论作物研究方法概述 ★试验研究:用人工的办法使欲研究的现象发生在便于研究的条件和环境中,以检验假设能否成立。 ﹡生物试验法: 以生物体本身(以作物为主,也包括昆虫、病菌、土壤微生物、杂草等)为研究对象和材料,从生物体本身生育过程的反应作试验指标,研究有关生长发育的规律、某些因素的作用、某些技术的效果等。 ●田间试验法 ●培养试验法(模拟培养试验) ﹡理化分析法: 用物理、化学和生物化学等的方法控制试验条件(如示踪技术)及鉴别土壤、植物、气候和农业技术系统内的有关物理、化学、生理和生化现象。 ★统计分析: 用数学逻辑研究总体变量的方法。 ★调查研究: 就已有的事实进行观察与分析。 ★模型研究: 计算机模拟程序(模拟植物)。 第一章试验研究概述 第一节试验研究的种类及一般程序 一、试验研究的种类 ★根据试验因素: 试验因素:通过科学试验研究作用于事物的诸因素的效应时,必须在固定大多数因素的条件下才能研究一个或几个因素的作用,被固定的因子在全试验中保持一致,组成了相对一致的试验条件;被变动的一个或几个、有待于比较和研究其作用的因素,称为试验因素。 单因素试验复因素试验综合试验 ★根据对试验条件的控制程度: 培养试验田间试验 ★根据试验的规模: 个体试验:只在一两个点上进行的试验叫个体试验。 群体试验:在统一组织下,按照统一的题目、统一的设计、统一的方法,在许多地点同时进行的试验。 ★根据试验期限:(短期、中长期、长期定位) 一季试验:在一个地段进行的试验,其期限仅为一季者为一季试验。(须重复几年;但每年都需在新的地段上设置。)多年试验:在固定的地段上,连续几茬作物或若干个轮作周期,进行系统研究的试验称为多年定位试验或定位试验。★根据试验小区的面积: 大型小区试验:凡试验小区的大小可以采用大田农业技术措施和管理方式的试验。(0.5亩以上300;处理、重复少;示范)小区试验:小区的大小不可能完全采用大田管理方式的试验。(0.1亩左右60—100;处理、重复较多) 微型小区试验:小区面积一般为4平方米左右的试验。 二、试验研究的一般程序 ★选题 1. 当前生产中提出的实际问题; 2. 生产进一步发展需要解决的理论和技术问题; 3. 推广国内外的先进经验; 4. 科学发展上需要解决的理论问题。 ★作好试验计划 1. 设计试验方案; 2. 确定试验方法; 3. 制定管理措施; 4. 确定观察、测定项目及其方法与标准。 ★实施 1. 根据试验的目的任务、试验方案和试验方法,作好试验场所、器材、工具的准备工作; 2. 认真布置试验; 3. 做好试验的管理工作; 4. 完成计划所规定的观察记载项目和各种测定工作。 ★总结 1. 试验的目的、设计及过程; 2. 试验结果; 3. 对试验结果的分析、结论和建议。 三、试验研究的基本要求 ★目的性★代表性

植物硒素营养的研究进展_王芳

第19卷 第4期 云南农业大学学报 Vol.19 No.4 2004年 8月 Journal of Yunnan Agricultural University Aug.2004 植物硒素营养的研究进展 王 芳,林克惠 (云南农业大学资源与环境学院,云南昆明650201) 摘要:硒是环境中一种重要的生命元素,植物体内的硒主要以硒蛋白、硒核酸、硒多糖等多种生物大分子以及硒代半胱氨酸和硒代蛋氨酸等生物小分子有机化合物存在。作物施硒可提高食物链硒水平,改善作物品质,增强作物抗逆性和提高作物产量。主要阐述了元素硒的生化特性及其对植物生长发育和品质的影响,并展望了今后硒素营养的研究方向。 关键词:植物;硒;生化特性;营养作用 中图分类号:S143.79 文献标识码:A 文章编号:1004-390X(2004)04-0417-06 Research Advance in Plant Selenium Nutrition W ANG Fang,LIN Ke-hui (College of Resources and Environ ment,Y A U,Kunming650201,China) A bstract:Selenium is an important life element in envir onment.The selenium in the plants mainly exist in many kinds of biological big molecules such as Se-albumen,Se-nuclein and Se-polysaccharide as well as Se-lenocysteine and Selnomethionine.Application selenium to crop can raises selenium level in food chain,im-proves the quality of crop,enhances stress resistance of crop and increases yield.In this paper,the bio-chemical character of selenium and its effect on plant growth,development and quality was summarized.On the basis of these,The authors put for ward a ne w prospect to the research direction of selenium in the fu-ture. Key words:plant;selenium;biochemical character;nutritional function 硒是环境中一种重要的生命元素,早在1957年就被证明为动物所必需[1]。1973年又证实硒是形成抗氧化物酶和谷胱甘肽过氧化物酶的组分[2]。此外硒还可以防癌、抗肿瘤、抗爱滋病和抗衰老。在少量摄入时,硒对动物和人类都是有益的也是必需的,然而在摄入量高时,它可能对动物[3~5]和人类[6]造成毒害,从最小基本需求量到致死浓度这一浓度范围是很小的。对动物而言,所饲喂干饲料中硒的最小量在0.05~0.10mg/kg,当干饲料中超过2~5mg/kg硒就会产生毒害[5~7]。随着硒营养作用研究的不断深入,硒对植物的作用也受到越来越多的关注,其有益和毒害水平之间这一狭小的浓度范围对人类健康起着重要作用,而植物在这一方面起着枢纽作用:例如在缺硒地区可以通过植物积累硒作为一个“硒释放系统”供给人和动物或归还土壤;在富硒地区聚硒植物从土壤中吸收积累大量的硒,从而对硒毒土壤或水域进行修复[9]。另外植物对硒的修复作用就是它可以把无机硒转化为挥发形态的硒(主要是二甲硒化物DM Se)。 硒在农牧业中的应用,己得到世界的广泛重视。由于黄开勋和薛泰鳞的研究,揭示硒可能是高等植物的必需营养元素,通过对硒的生化特性以及 收稿日期:2004-03-08  作者简介:王芳(1973-),女,山西阳泉人,在读研究生,研究方向为烤烟营养与施肥。

相关文档
最新文档