立式拱顶油罐焊接应力与变形控制措施

立式拱顶油罐焊接应力与变形控制措施
立式拱顶油罐焊接应力与变形控制措施

收稿日期:20000314

作者简介:韩阁(1966)),男,工程师,副处长。1989年毕业于西南交通大学起重运输工程机械专业

立式拱顶油罐焊接应力与变形控制措施

韩 阁

(中铁第十一工程局基建安装处 湖北襄樊 441000)

摘 要 结合立式拱顶油罐制安施工实际,介绍油罐的焊接残余应力与变形的控制,内容包括底板、壁板、顶板的焊接工艺,防止和减少焊接应力与变形的措施。

关键词 油罐 焊接 应力与变形

控制

图1 焊接顺序

注:图中数字由小到大表示焊接顺序,数字相同者表示同时施焊,箭头表示焊接方向。

我处1990年以来,先后完成了襄樊北机务段3@1000m 3、柳园机务段3@2000m 3及重庆大班油库3@3000m 3

钢制拱顶油罐制造安装任务,在实践中总结出一套防止和减少油罐焊接残余应力与变形的方法,效果良好。

1 罐底板的应力与变形控制

(1)根据来料情况绘出排板图时,应合理安排焊缝位置,避免焊缝集中在一小区域内。

(2)降低焊接电流,采用分段退焊减小焊接线能量和热影响区。

(3)罐底板应采取合理的焊接顺序,一般是先短缝,后长焊缝,由中心向两边。其原则是使每条焊缝尽量可以自由收缩,以减少钢板和焊缝中的内应力,减少底板变形。焊前不用点焊定位,用角铁卡定位。一般在第1圈壁板的立缝和壁板与底板之间的角缝焊完以后,再焊边缘板与中幅板之间的搭接焊缝。如果焊接顺序不当,则会在底板上产生鼓包。焊接顺序如图1所示。

(4)焊接时搭接应用夹具使其尽量贴紧,每条焊缝都至少焊2遍。

(5)罐壁与罐底间两侧的角缝应各焊3遍成形,以获得较高的冲击韧性。焊接顺序应为:先把内侧3遍焊完再焊外侧,或先在内侧焊1遍、外侧焊1遍,以后交替进行。如先焊外侧,由于焊缝收缩,会使底板外缘向上翘,这样不仅影响外观而且使罐底

受力状况不好。

(6)锤击焊缝,使焊缝得到延伸,降低残余应力。

2 罐壁板的应力与变形控制

(1)注意壁板的卷制,尤其是纵焊缝处的壁板弧度,防止出现焊后壁板之间形成一定角度而非圆弧。

(2)壁板由顶圈开始组焊,焊完一圈,提升一圈再组焊下一圈。在顶圈组焊时,将预制好的壁板围着胀圈和罐顶包边角钢,点焊定位后进行纵缝焊接。

(3)壁板搭接环缝的焊接顺序为:先在壁板内部焊断续缝,后在外部焊连续缝。焊接时多名焊工均

#其 它#

匀分布,分段顺同一个方向施焊。在对接焊缝处要进行坡口加工,对接缝间隙以2~3mm 为宜,点焊后再正式焊接。

(4)油罐焊接中壁板焊缝产生的残余应力危害最大,其中又以壁板立缝焊接残余应力为最大。采用合理的焊接顺序,尽量使焊缝能自由收缩,壁板焊接先焊立缝,后焊环缝;焊后锤击焊缝,使焊缝得到延伸,降低残余应力;还可以用氧气乙炔火焰对立缝加热,然后在空气中冷却,降低残余应力。

(5)为减少壁板的变形,壁板的立缝最好采用CO 2气体保护焊。

3 罐顶的控制

拱顶罐的罐顶为球面的一部分,它由4~6mm 的薄钢板和加强筋组成,可以承受较高的残余应力,但

对局部凸凹度的要求较高,否则会使其临界荷载大为降低。为此,在拼焊罐顶时,罐顶焊接采取以下措施:

(1)为保证球壳板与筋板共同受力,二者之间必须焊接牢固,可采用双面间断焊,焊脚高度等于顶板厚度,不允许长距离漏焊或只采用点焊。

(2)当罐内压力超限时,要保证球壳首先掀开,以避免罐壁破裂,油品漏出。为此罐顶板与包边角钢之间的连接仅需在外侧采用单面连续焊,焊脚高度不应大于顶板厚度的3/4,且不得大于4m m 。

(3)扇形板在胎具上拼装好后,焊工在拱顶上对称分布,并点焊定位,隔缝施焊,由中心向外分段退焊。罐顶中心圆板在罐体的收缩缝焊完之后再焊。

4 结语

钢制油罐是由钢板拼焊而成的充液容器,任何隐患都可能产生严重的后果,制安过程中发生变形后矫正起来费工费时,并可能产生一些新的问题。通过分析、预测并且采用相应措施控制焊接应力和变形,

取得了显著效果。

#其 它#

焊接应力与变形

4.2 焊接应力与变形: 4.2.1 焊接变形和残余应力的不利影响: 焊接变形 1.影响工件形状、尺寸精度 2.影响组装质量 3.增大制造成本———矫正变形费工、费时 4.降低承载能力———变形产生了附加应力 焊接应力 1.降低承载能力 2.引起焊接裂纹,甚至脆断 3.在腐蚀介质中,产生应力腐蚀裂纹 4.引起变形 4.2.2 焊接变形和应力的产生原因: 根本原因:对焊件进行的不均匀加热和冷却,如图6-2-8 焊接应力 焊接加热时,焊缝区受压力应力(因膨胀受阻,用符号“-”表示) 远离焊缝区手拉应力(用符号“+”表示) 焊后冷却时,焊缝受拉应力(因收缩受阻),远离焊缝区受压应力 焊接变形:当焊接应力超过金属σs时,焊件将产生变形 焊接应力和焊接变形总是同时存在,不会单独存在,当母材塑性较好,结构刚度较小时,焊接变形较大而应力较小;反之,则应力较大而变形较小。 4.2.3 焊接变形的控制和矫正:

4.2.3.1 焊接变形的基本形式,如图6-2-9 如图6-2-9 常见的焊接残余变形的类型 1、2---纵向收缩量3---横向收缩量4、5---角变形量f---挠度 (1)收缩变形:即焊件沿焊缝的纵向和横向尺寸减少,是由于焊缝区的纵向和横向收缩引起的。如图5-2-9 a (2)角变形:即相连接的构件间的角度发生改变,一般是由于焊缝区的横向收缩在焊件厚度上分布不均匀引起的。如图5-2-9b (3)弯曲变形:即焊件产生弯曲。通常是由焊缝区的纵向或横向收缩引起的。如图5-2-9c (4)扭曲变形:即焊件沿轴线方向发生扭转,与角焊缝引起的角度形沿焊接方向逐渐增大有关。如图5-2-9d (5)失稳变形(波浪变形):一般是由沿板面方向的压应力作用引起的。如图5-2-9e 4.2.3.2 控制焊接变形的措施 (1)设计措施(详见焊接结构设计) 尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状,合理安排焊缝位置──尽量使焊缝对称或接近于构件截面的中性轴(以减少弯曲变形)。如图6-2-10

控制焊接变形的工艺措施

控制焊接变形的工艺措施 宜按下列要求采用合理的焊接顺序控制变形: 1 对于对接接头、T 形接头和十字接头坡口焊接,在工件放置条件允许或易于翻身的情况下,宜采用双面坡口对称顺序焊接;对于有对称截面的构件,宜采用对称于构件中和轴的顺序焊接; 2 对双面非对称坡口焊接,宜采用先焊深坡口侧部分焊缝、 后焊浅坡口侧、最后焊完深坡口侧焊缝的顺序; 3 对长焊缝宜采用分段退焊法或与多人对称焊接法同时运用; 4 宜采用跳焊法,避免工件局部加热集中。 5 在节点形式、焊缝布置、焊接顺序确定的情况下,宜采用熔化极气体保护电弧焊或药芯焊丝自保护电弧焊等能量密度相对较高的焊接方法,并采用较小的热输入。 6 宜采用反变形法控制角变形。 7 对一般构件可用定位焊固定同时限制变形;对大型、厚板构件宜用刚性固定法增加结构焊接时的刚性。 8 对于大型结构宜采取分部组装焊接、分别矫正变形后再进行总装焊接或连接的施工方法。 钢材应符合以下要求: 1 清除待焊处表面的水、氧化皮、锈、油污; 2 焊接坡口边缘上钢材的夹层缺陷长度超过25mm 时,应采用无损探伤检测其深度,如深度不大于6mm,应用机械方法清除;如深度大于6mm,应用机械方法清除后焊接填满;若缺陷深度大于25mm 时,应采用超声波探伤测定其尺寸,当单个缺陷面积(a ×d)或聚集缺陷的总面积不超过被切割钢材总面积(B×L)的4%时为合格,否则该板

不宜使用; 3 钢材内部的夹层缺陷,其尺寸位置离母材坡口表面距离(b)大于或等于25mm 时不需要修理;如该距离小于25mm 则应进行修补; 4 夹层缺陷是裂纹时,如裂纹长度(a)和深度(d)均不大于50mm,其修补方法应符合第6.6 节的规定;如裂纹深度超过50mm 或累计长度超过板宽的20% 时,该钢板不宜使用。 焊接材料应符合下列规定: 1 焊条、焊丝、焊剂和熔嘴应储存在干燥、通风良好的地方,由专人保管; 2 焊条、熔嘴、焊剂和药芯焊丝在使用前,必须按产品说明书及有关工艺文件的规定进行烘干。 3 低氢型焊条烘干温度应为350~380_,保温时间应为1.5~2h,烘干后应缓冷放置于110~120_的保温箱中存放、待用;使用时应置于保温筒中;烘干后的低氢型焊条在大气中放置时间超过4h 应重新烘干;焊条重复烘干次数不宜超过2 次;受潮的焊条不应使用;

焊接变形控制方法

1、利用反变形法控制焊接变形 为了抵消和补偿焊接变形,在焊前进行装配时,先将工件向与焊接变形相反的方向进行人为的变形,这种方法称为反变形法。反变形法是生产中最常用的方法,通常适用于控制焊件的角变形和弯曲变形。 2、用刚性固定法控制焊接变形 利用夹具、支撑、专用胎具、定位焊等方法来增大结构的刚性,减小焊接变形的方法称为刚性固定法。刚性固定法简单易行,是生产中常用的一种减小焊接变形的方法。生产中常用刚性固定配合反变形来控制焊接变形。 3、选择合理的装焊顺序控制焊接变形 同一焊接结构,采用不同的装焊顺序,所引起的焊接变形量往往不同,应选择引起焊接变形最小的装焊顺序。一般采取先总装后焊接的顺序,结构焊后焊接变形较小。 4、选择合理的焊接顺序控制焊接变形 当焊接结构上有多条焊缝时,不同的焊接顺序将会引起不同的焊接变形量。合理的焊接顺序是指:当焊缝对称布置时,应采用对称焊接;当焊缝不对称布置时,应先焊焊缝小的一侧。此外,采用跳焊法、分段退焊法等控制焊接变形均有较好的效果。 5、散热法 散热法又称强迫冷却法。就是把焊接处热量散走,使焊缝附近的金属受热面大大减小,达到减小变形的目的。散热法有水浸法和散热垫法。 6、锤击法 利用锤击焊缝使焊缝延伸,就能在一定程度上克服由焊缝收缩所引起的变形。例如,薄板对接焊后会产生波浪变形,就可以用锤在焊缝长度方向上对焊缝进行锤击来克服其变形。 7、选择合理的焊接方法 选用能量比较集中的焊接方法如CO2气体保护焊、等离子弧焊来代替气焊和手工电弧焊进行薄板焊接,可减小变形量。 焊接电弧 焊接电弧是一种强烈的持久的气体放电现象。在这种气体放电过程中产生大量的热能和强烈的光辉 。通常,气体是不导电的,但是在一定的电场和温度条件下,可以使气体离解而导电。 焊接电弧就是在一定的电场作用下,将电弧空间的气体介质电离 ,使中性分子或原子离解为带正电荷的正离子和带负电荷的电子(或负离子), 这两种带电质点分别向着电场的两极方向运动,使局部气体空间导电,而形成电弧。 1、焊缝位置的影响 2.结构的刚性对焊接变形的影响3、装配和焊接顺序对结构变形的影响

控制压力容器管板焊接变形的方法

行业资料:________ 控制压力容器管板焊接变形的方法 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共8 页

控制压力容器管板焊接变形的方法 在压力容器制造中,由于在控制压力容器管板进行焊接时,没有对焊接工艺参数进行合理的选择,导致在焊接过程管板焊接变形,本文主要对控制压力容器管板焊接变形的方法进行探讨。随着科学技术的迅猛发展,压力容器被普遍应用到能源工业、石油化学工业、科研工业等工业的生产过程中。因为压力容器属于危险性比较高的一类物品,很容易出现燃烧起火、爆炸等情况,对相关人员和单位造成一定的经济损失和伤害。在压力容器在压力容器制造中,往往由于组装与施焊的顺序不当,以及焊接工艺参数选择的不合理,易引起管板焊接变形,导致密封不严,管子拉脱。因此,在压力容器制作的过程中,对密封性要求非常的高。为了有效的避免因为各种不利因素对导致压力容器的密封性降低,本文主要对控制压力容器管板焊接变形的方法进行探讨。管板焊接变形的原因及影响因素 管板焊接变形的原因主要表现在两个方面。一是主要是由于筒体与管板焊接的横向收缩变形在厚度方向上的不均匀分布引起的;管板与筒体的焊缝一般为单面单边V型坡口,焊接时焊缝的背面和正面的熔敷金属的填充量不一致,造成了构件平面的偏转,所以这种变形在客观上是绝对存在的;二是管板与筒体焊接角变形主要由两种变形组成,即筒体与管板角度变化和管板本身的角变形,前者相当于两个工件对接焊接引起的角变形,后者相当于在管板上堆焊时引起的角变形。而焊接变形的大小的主要取决于管板的刚性、焊接线能量、坡口角度、焊缝截面形状、熔敷金属填充量焊接操作等因素有关。根据管板变形的原因及影响因素,由于管板焊接不能实现双面焊,焊接时电流过大会引起烧穿伤及换 第 2 页共 8 页

控制焊接变形和焊接应力的措施

控制焊接变形和焊接应力的措施 发表时间:2018-08-20T17:16:55.787Z 来源:《电力设备》2018年第15期作者:于洪涛1 李治2 [导读] 摘要:焊接是一种特殊而又重要的加工工艺,随着焊接技术的发展,一个重要技术课题是控制焊接件的焊接变形以提高产品制造精度,使焊件焊后加工量减少或不加工即可用于精度要求高的机械产品中,因此,了解焊接应力产生机理,掌握结构件焊接变形规律,在焊接工艺中采取措施进行控制和消除,从而保证焊接质量。 (山东电力建设第三工程有限公司山东省青岛市崂山区 266100) 摘要:焊接是一种特殊而又重要的加工工艺,随着焊接技术的发展,一个重要技术课题是控制焊接件的焊接变形以提高产品制造精度,使焊件焊后加工量减少或不加工即可用于精度要求高的机械产品中,因此,了解焊接应力产生机理,掌握结构件焊接变形规律,在焊接工艺中采取措施进行控制和消除,从而保证焊接质量。本文主要探讨了焊接应力与焊接变形产生的原因及控制措施,以供参考。 关键词:控制焊接变形;焊接应力;措施 导言 在建筑工程钢结构日益发展的今天,形式各样的焊接机械、焊接方法日新月异,焊接技术和焊接质量成了一个关键的课题。但是在施工过程中,由于焊接过程产生的焊接应力和焊接变形,严重影响着工程的质量、工程的安装进度和结构承载力(即使用功能),因此,需要采用合理的焊接方法和焊接工艺加以控制。建筑工程钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。 1 焊接变形的概念 焊接变形主要是指在焊接过程中由于焊接工作而导致的焊接件变形。焊接变形的开始时间是焊接开始的一瞬间。焊接变形结束的节点是焊接结束后焊接件的温度降低到焊接初始温度。焊接变形有两种情况,第一种是焊接过程中出现的焊接变形;第二种是焊接完成后出现的焊接变形。 2 焊接应力的概念 焊接应力主要指的是焊接过程出现的焊接件内部的结构应力,同时焊接完成后焊接件内部还会产生少量的焊接应力。焊接应力的出现也是在焊接开始的时候,焊接应力会随着焊接的进行而发生变化,焊接应力的分布没有规律,会随着焊接的进行而随时发生变化。 3焊接应力与焊接变形产生的原因 由于焊接温度发生了变化使焊件热胀冷缩,从而焊件之间相互约束,故在焊缝周围就会产生互相阻碍约束的力。焊接应力当焊接应力超出弹性极限时,焊接变形不能随应力的消除而消失,就会残留在焊件里。在焊接过程中,当焊条加热融化时会引起焊缝周围局部温度过高,在熔池的高温材料会受热膨胀,在膨胀过程就会产生变形。同时,在冷却过程中,由于周围材料的限制,不能使之前发生变形的那部分材料自由收缩,这在不同程度上又会产生拉伸变形。 4焊接应力的分类 4.1接应力在焊件空间位置 一维空间应力沿着焊件—个方向作用;二维空间应力应力在—个平面内不同方向上作用;三维空间应力应力在空间所有方向上作。 4.1.2按产生应力的原因 热应力它是在焊接过程中,焊件内部温差所引起应力,随着温度的消失而消失,并且是引起热裂纹的力学原因。 相变应力焊接过程中,局部金属发生相变,相比容增大或减小而引起的应力。 塑变应力在焊接过程中,在近逢高温区的金属收到热胀冷缩受阻生产的塑性变形。 4.2焊接变形 4.2.1焊接变形特点 焊接是不均匀的加热过程,热源只集中在焊接部位,且以—定速度向前运动,局部受热膨胀金属能引起焊件在空间发生各种形态的变形,焊缝凝固和冷却发生收缩,变形是在焊接开始便产生,并随着焊接热源的移动和焊件上温度分布变化而变化。焊接变形与焊件的形状尺寸、焊缝在工件的位置、焊缝的坡口形状、材料的热物理性能以及加热条件有关。 4.2.2焊接变形的分类 焊接过程中随着时间而发生的变形称为焊接瞬间变形,工件焊完冷却后,焊件上残留的焊接变形为焊接变形,我们更注重焊接变形,它对焊件质量和使用性能产生影响。一般焊接变形分为以下几种: 4.2.2.1横向收缩变形:垂直与焊缝方向的收缩。 4.2.2.2纵向收缩变形:焊接方向的收缩。 4.2.2.3扭曲变形:焊接细长构件时,时构件绕自身轴线发生扭转。 5焊接应力、焊接变形的控制措施 5.1焊接应力的控制措施 构件焊接时产生瞬时内应力,焊接后产生应力,并同时产生变形,这是不可避免的现象。焊接变形的矫正费时费工,构件制造和安装企业首先考虑的是控制焊接变形,往往对控制焊接应力较为忽视,常用一些卡具、支撑以增加刚性来控制焊接变形,与此同时实际上是增大了焊后的应力。对于一些本身刚性较大的构件,如板厚较大,截面本身的惯性矩较大时,虽然焊接变形会较小,但却同时产生较大的焊接内应力,甚至产生焊接裂纹。因此,对于一些构件截面厚大,焊接节点复杂,拘束度大,钢材强度级别高,使用条件恶劣的重要结构要注意焊接应力的控制。控制应力的目标是降低其峰值使其均匀分布,其控制措施有以下几种:减小焊缝尺寸;减小焊接拘束度;采取合理的焊接顺序;降低焊件刚度,创造自由收缩的条件;锤击法减小焊接应力;采用抛丸机除锈。 5.2减小焊缝截面积 在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸(角度和间隙)。对屈服强度345MPa以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适当降低预热、层间温度;优先采用热输入较小的焊接方法,如CO2气体保护焊。厚板焊接时尽可能采用多层焊代替单层焊。在满足设计要求情况下,纵向加强肋和横向加强肋的焊接方法可采用间断焊接法。双面均可焊接操作时,要采用双面对称坡口,并在多

焊接变形的控制和预防

1、焊接变形的定义 在焊接过程中,焊缝金属和基材的冷热循环所引起的膨胀和收缩形成焊接变形。焊接时,沿 同一边持续焊接引起的变形比两边交叉焊接的变形大。在焊接引起的冷热循环中,很多因素 影响金属的收缩并导致变形,如金属在受热时其物理、机械性能发生变化。当热膨胀增加、 热量增大时(见图1),焊接区域温度升高,焊接区域钢板的弯曲强度、弹性、热导性能将降低。 2、产生焊接变形的原因 在金属冷热变化过程中,应了解怎样产生变形、为什么产生变形。图2 为一组钢板冷热变化 时产生的变形示例。均匀加热钢板时,向各个方向均匀膨胀,见图2a。当钢板冷却至室温时,也是均匀收缩并恢复至原始尺寸。如果钢板在加热时给予刚性约束(见图2b),两个侧边就不 会产生变形。但是,加热时钢板一定会膨胀,所以只能在无约束的垂直方向膨胀(厚度方向),从而使钢板变得更厚。同样,当钢板温度降至室温时,也将在各方向上收缩(见图2c),这样,工件就发生了永久性弯曲或扭曲变形。

在焊接受热过程中,膨胀和收缩作用于焊接金属和基材上,焊缝和基材因局部被加热而形成 很大的温度梯度。冷却时,焊接金属试图正常收缩至室温时的体积。但是,熔化的焊接金属 因基材而受到约束,焊缝金属和基材之间就会产生应力集中。焊缝附近区域因此产生应力集 中而伸展或弯曲或变薄,这些超过焊缝金属屈服应力的集中释放就形成了永久变形。当焊接 温度接近室温,整个基材受到约束而无 法变形,金属的伸缩应力接近屈服应力。如果约束(夹具固定工件或反收缩力)取消,残余应 力释放,基材将发生迁移,焊接工件将产生变形。金属内部结构因焊接不均匀的加热和冷却 产生的内应力叫焊接应力,由焊接应力造成的变形叫焊接变形。不同的焊接工艺引起的焊接 变形量不同。 3 影响焊接结构变形的主要因素和变形的种类 (1)影响焊接结构变形的主要因素。 a.焊缝在结构中的位置; b.结构刚性的大小; c.装配和焊接顺序; d.焊接规范的选择。 (2)焊接变形的种类。 a.纵向收缩和横向收缩(在焊缝长度方向上的收缩称纵向收缩,在垂直于焊缝纵向的收缩称 横向收缩); b.角变形; c.弯曲变形; d.波浪变形; e.扭曲变形。 (3)从焊接工艺上分析,影响焊接收缩量的因素。 a.采用焊条电弧焊焊接长焊缝时,一般采用焊前沿焊缝进行点固焊,有利于减小焊接变形,同时也有利于减小焊接内应力。 b.备料情况和装配质量对焊接变形也会产生影响。 c.焊接工艺中影响焊缝收缩量的因素有: ①线膨胀系数大的金属材料其焊接变形大,反之焊接变形小。 ②焊缝的纵向收缩量随着焊缝长度的增加而增加。 ③角焊缝的横向收缩比对接焊缝的横向收缩小。 ④间断焊缝比连续焊缝的收缩量小。 ⑤多层焊时,第一层引起的收缩量最大,以后各层逐渐减小。 ⑥在夹具固定条件下的焊接收缩量比没有夹具固定的焊接收缩量小,减少约40%~70%。

焊接过程中应力与变形控制

焊接过程中应力与变形控制 摘要焊接应力与变形是直接影响焊接结构性能、安全可靠性和制造工艺性的重要因素,了解其作用与影响,采取措施进行控制与消除,对于焊接结构的完整性设计和焊接工艺方法的选择以及产品在运行中的安全评定都有重大意义。 关键词焊接应力;焊接变形;规律;控制 焊接是一种特殊而又重要的加工工艺,随着焊接技术的发展,一个重要技术课题是控制焊接件的焊接变形以提高产品制造精度,使焊件焊后加工量减少或不加工即可用于精度要求高的机械产品中,因此,了解焊接应力产生机理,掌握结构件焊接变形规律,在焊接工艺中采取措施进行控制和消除,从而保证焊接质量。 1 焊接应力 1.1 焊接应力产生机理及影响因素 焊接时的局部不均匀热输入是产生焊接应力与变形的决定因素,焊接热输入引起材料不均匀局部加热,使焊缝区融化,而与熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀压缩塑性变形,在冷却过程中,已发生压缩变形的这部分材料又受到周围条件的制约,而不能自由收缩,在不同程度上又被拉伸而卸载;与此同时,熔池凝固,金属冷却收缩也产生相应的收缩应力与变形,使得焊接接头区产生不协调的应变,称为初始应变或固有应变。与此相对应,在构件中会形成自身相平衡的内应力,通常称为焊接应力;而焊后,在在室温条件下,残留于构件中的内应力场和宏观变形,称为焊接残余应力与焊接残余变形。 焊接应力与焊接材料(主要包含材料特性、热物理常数及力学性能)、焊接接头形状和尺寸、焊接工艺参数,焊接结构(结构形状、厚度及刚性)有关。 1.2 焊接应力的分类 1.2.1 接应力在焊件空间位置 一维空间应力沿着焊件—个方向作用;二维空间应力应力在—个平面内不同方向上作用;三维空间应力应力在空间所有方向上作。 1.2.2 按产生应力的原因 (1)热应力它是在焊接过程中,焊件内部温差所引起应力,随着温度的消失而消失,并且是引起热裂纹的力学原因。 (2)相变应力焊接过程中,局部金属发生相变,相比容增大或减小而引起的应力。

焊接应力和变形的产生及其消除

焊接应力和变形的产生及其消除

焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。 减少焊接应力与变形的工艺措施主要有: 一、预留收缩变形量 根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊 后工件达到所要求的形状、尺寸。 二、反变形法 根据理论计算和实践经验,预先估计结构焊焊接件变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 三、刚性固定法 焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 四、选择合理的焊接顺序 尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形合理的装配和焊接顺序。具体如下: 1)先焊收缩量大的焊缝,后焊收缩量较小的焊缝; 2)焊缝较长的焊件可以采用分中对称焊法、跳焊法,分段逐步退焊法。交替焊法; 3)焊件焊接时要先将所焊接的焊缝都点固后,再统一焊接。能够提高焊接焊件的刚度,点焊固定后在进行焊接,其将增加焊接结构的刚度的部件先焊,使结构具有抵抗变形的足够刚度; 4)具有对称焊缝的焊件最好成双的对称焊接使各焊道引起的变形相互抵消;

5)焊件焊缝不对称时要先焊接焊缝少的一侧。; 6)采用对称与中和轴的焊接和由中间向两侧焊接都有利于抵抗焊接变形。 7)在焊接结构中,当钢板拼接时,同时存在着横向的端接焊缝和纵向的边接焊缝。应该先焊接端接焊缝再焊接边接焊缝。 8)在焊接箱体时,同时存在着对接和角接焊缝时,首先尽量焊接对接焊缝,然后焊接角焊缝。 9)十字接头和丁字接头焊接时,应该正确采取焊接顺序,避免焊接应力集中,以保证焊缝获得良好的焊接质量。对称与中轴的焊缝,应由内向外进行对称焊接。 10)焊接操作时,减少焊接时的热输入,(如:降低电流、加快焊接速度、)。 10-1)焊接操作时,减少熔敷金属量(焊接时采用小坡口、减少焊缝宽度、焊接角焊时减少焊缝尺寸)。 10-2)逐步退焊法,常用于较短裂纹的焊缝。施焊前把焊缝分成适当的小段,标明次序,进行后退焊补。焊缝边缘区段的焊补,从裂纹的终端向中心方向进行,其它各区段接首尾相接的方法进行 五、锤击焊缝法在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。 六、加热“减应区”法 1)焊接前,在焊接部位附近区域(称减应区)进行加热使之伸长,焊后冷却时,与焊缝一起收缩,可有效减小焊接应力和变形。 2)焊接后,在焊接部位附近区域进行加热,同样可减少焊接应力和变形。 七、焊前预热和焊后缓冷预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。在温差相较不大的情况下可称为冷焊。 八.合理的焊接工艺方法,采用焊接热源比较集中的焊接方法进行焊接可降低焊接变形。如CO2气体保护焊,埋弧焊等

焊接应力和变形控制论文

焊接应力和变形控制论文 摘要:为有效控制因焊件的不均匀膨胀和收缩而造成的焊接变形,就焊接变形和焊接应力的各种影响因素进行分析,提出了相应的控制措施。 关键词:焊接变形,焊接应力,热过程,焊接工艺 在焊接技术发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在作业过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着焊接的质量,因而,急需采用合理的方法予以控制。 焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。 1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。

1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与

焊接应力与变形试题

第一章焊接应力和变形 一、判断题(在题末括号内,对的画√,错的画×) 1、焊接接头在焊接热循环过程中,形成拉伸应力应变,并随温度降低而降低。() 2、焊缝的纵向收缩量,随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减小。() 3、同样厚度的焊件,一次就填满焊缝时产生的纵向收缩量比多层焊大。() 4、横向收缩量随焊接热输入的提高而增加,随板厚的增加而减小。() 5、挠度f 是指焊件在焊后的中心轴偏离焊件原始中心轴的最大距离。() 6、焊缝纵向收缩量随焊缝及其两侧的压缩塑性变形区的面积和焊件长度的增加而增加。() 7、焊接对接接头的横向收缩量比较大。() 8、当焊缝不在焊件截面中性轴上时,只有纵向收缩才能引起挠曲变形。() 9、同样的板厚和坡口形式,多层焊要比单层焊角变形大,焊接层数越多,角变形越大。() 10、不同的焊接顺序焊后将产生不同的变形量,如焊缝不对称时,应先焊焊缝少的一侧,这样可以减小整个焊件的焊接变形。() 11、火焰校正角变形时,采用正面线状热源,背面跟踪水冷的效果最好。() 12、火焰校正横向收缩变形时,采用正面线状热源加热,同时再配以正面跟踪水冷的效果最好。() 13、采用火焰加热与水冷却联合校正时,要在受加热的钢材没失去红热态前浇水。() 14、角焊缝的纵向收缩量,与角焊缝横截面积有关,与焊接接头总横截面无关。() 15、铝比钢的导热率和线膨胀系数大,所以,铝的横向收缩量也较大。() 16、角焊缝与对接焊缝相比,其横向收缩量大。() 17、角变形是焊接过程中焊接区内沿板材厚度方向不均匀的纵向收缩而引起的回转变形()

18、角变形是由于坡口形状不对称,是纵向收缩在厚度方向上分布不均匀造成的。() 19、坡口角度对角变形影响很大。() 20、焊缝截面形状对角变形量的影响不大。() 21、T型接头角焊缝所引起的角变形,主要取决于焊角尺寸大小,与焊件厚度无关。() 22、偏离焊件截面中性轴的纵向焊缝,只能引起焊件的纵向收缩,不会引起弯曲变形。() 23、工字梁的弯曲变形,与焊件的长度成正比,与焊缝距中性轴的偏心距成反比。() 24、工字梁的弯曲变形,与焊件截面惯性距成正比,与材料的弹性模量成反比。() 25、为减小波浪变形,可采取措施:降低焊接压应力和降低临界应力。() 26、焊前装配不良,在焊接过程中会产生错边变形。() 27、焊接接头两侧金属受热不平衡是产生错边的主要原因。() 28、扭曲变形是由于焊件装配不良,施焊顺序或方向不当,使焊缝纵向或横向收缩变形或角变形产生不均匀、不对称而引起的。() 29、焊缝在焊件中的不对称布置,容易引起角变形。() 30、焊接接头重心与焊件截面重心不重合,容易引起角变形。() 31、焊缝在焊件中的对称布置,不仅引起收缩变形,而且还引起角变形。() 32、焊件抵抗弯曲变形的刚性主要取决焊件的截面积。() 33、非对称布置的焊缝,应先焊焊缝长的一侧,后焊焊缝短的一侧。() 34、焊接过程中采用的热输入越大,产生的热压缩塑性变形也越大,焊接变形也大。() 35、焊件坡口尺寸越大,填充金属越多,变形就越大。() 36、1m 以上的长焊缝,采用从中心向两端焊或逐段跳焊,焊后变形最小。() 37、采用间断角焊缝代替连续角焊缝,可显著的减小纵向弯曲变形。() 38、园筒体纵向焊缝横向收缩引起的直径误差,可通过预留收缩余量法加以克服。

造船焊接变形和反变形控制

造船中的焊接变形和反变形控制 1.研究背景 船舶工业是传统的劳动密集型装配制造业,焊接操作是其中主要的作业形式之一,焊接水平的高低在很大程度上决定了船体的质量和生产效率,而焊接变形又是焊接过程中最难控制的一环。焊接变形的存在不仅造成了焊接结构形状变异,尺寸精度下降和承载能力降低,而且在工作荷载作用下引起的附加弯矩和应力集中现象是船舶结构早期失效的主要原因,也是造成船舶结构疲劳强度降低的原因之一[1]。焊接变形对现代造船技术的应用产生了障碍。由于焊接变形对船舶建造质量、成本和周期都具有重要影响,工业界一直对其非常重视,对焊接变形从实验和理论上进行了大量研究,希望能够对焊接过程进行有效预测和控制。反变形可以控制焊接变形,降低残余应力,且方法简单易行,在船舶行业有广泛的应用。 2.背景内容 针对造船中的焊接变形,国内外专家进行大量的研究。焊接过程是一个非平衡的、时变的、带有随机因素影响的物理化学过程,它涉及电弧物理、传质传热和力学等方面。至今对焊接过程变形的实时检测与监控仍是困难的,不仅需要特殊的方法,而且对设备的要求也很高。随着计算机软、硬件技术的快速发展,使得焊接热加工过程的数值模拟应运而生,实践证明数值模拟对于研究焊接现象是一种非常有用的方法。 2.1国外专家的预测和研究 20世纪30年代以来,许多苏联学者就开始了焊接变形计算与控制研究。如C.A.库兹米诺夫[2]研究了典型船体结构总变形和局部变形的计算方法,提出了减少和补偿焊接变形以及矫正主船体结构的解决方案。Greene和Holzbaur[3]开展了降低焊接残余应力和变形的研究,目前降低残余应力和焊接变形技术大多数由他们制定的法则演变而来。法国的国际焊接研究所对“焊接结构中残余

焊接残余应力与变形

焊接残余应力和焊接变形 焊接残余应力(welding residual stresses)简称焊接应力,有沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。 1、纵向焊接应力 焊接过程是一个不均匀加热和冷却的过程。在施焊时,焊件上产生不均匀的温度场,焊缝及其附近温度最高,可达1600℃以上,而邻近区域温度则急剧下降。不均匀的温度场产生不均匀的膨胀。温度高的钢材膨胀大,但受到两侧温度较低、膨胀量较小的钢材所限制,产生了热塑性压缩。焊缝冷却时,被塑性压缩的焊缝区趋向于缩短,但受到两侧钢材限制而产生纵向拉应力。在低碳钢和低合金钢中,这种拉应力经常达到钢材的屈服强度。焊接应力是一种无荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力 2、横向焊接应力 横向焊接应力产生的原因有二:一是由于焊缝纵向收缩,使两块钢板趋向于形成反方向的弯曲变形,但实际上焊缝将两块钢板连成整体,不能分开,于是两块板的中间产生横向拉应力,而两端则产生压应力。二是由于先焊的焊缝已经凝固,会阻止后焊焊缝在横向自由膨胀,使其发生横向塑性压缩变形。当焊缝冷却时,后焊焊缝的

收缩受到已凝固的焊缝限制而产生横向拉应力,而先焊部分则产生横向压应力,在最后施焊的末端的焊缝中必然产生拉应力。焊缝的横向应力是上述两种应力合成的结果。 3、厚度方向的焊接应力 在厚钢板的焊接连接中,焊缝需要多层施焊。因此,除有纵向和横向焊接应力σx、σy外,还存在着沿钢板厚度方向的焊接应力σz。在最后冷却的焊缝中部,这三种应力形成同号三向拉应力,将大大降低连接的塑性。 3.4.2 焊接应力和变形对结构工作性能的影响 一、焊接应力的影响 1、对结构静力强度的影响 对在常温下工作并具有一定塑性的钢材,在静荷载作用下,焊接应力是不会影响结构强度的。设轴心受拉构件在受荷前(N=0)截面上就存在纵向焊接应力。在轴心力N作用下,截面bt部分的焊接拉应力已达屈服点fy,应力不再增加,如果钢材具有一定的塑性,拉力N就仅由受压的弹性区承担。两侧受压区应力由原来受压逐渐变为受拉,最后应力也达到屈服点fy,这时全截面应力都达到fy 2、对结构刚度的影响 构件上的焊接应力会降低结构的刚度。由于截面的bt部分的拉应力已达fy,这部分的刚度为零,则具有所示残余应力的拉杆的抗

如何控制焊接应力和变形

如何控制焊接应力和变形- - 摘要:为有效控制钢结构因焊件的不均匀膨胀和收缩而造成的焊接变形,就焊接变形和焊接应力的各种影响因素进行分析,提出了相应的控制措施。 在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),因而,急需采用合理的方法予以控制。 钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。 1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热 输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度 而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。 3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。 双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。 1.5焊接层数的影响 1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第 一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。

如何防止焊接变形

如何防止焊接变形 1、焊接变形的种类: 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2、如何利用合理的装配焊接顺序来控制焊接残余变形? 不同的构件形式应采用不同的装配焊接方法。 1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。 例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。

2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1 的位置几乎与上盖板截面中性轴重合,所以对整个结构的弯曲变形没有影响。 3、如何利用合理的焊接顺序来控制焊接残余变形? ⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。如 图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。 如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。但对称焊接不能完全消除变形, 因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向 相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。 ⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它 产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变 形。

焊接变形的影响因素与控制(一)

焊接变形的影响因素与控制(一) 摘要:在焊接过程中由于急剧的非平衡加热及冷却,结构将不可避免地产生不可忽视的焊接残余变形。焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。针对钢结构工程焊接技术的重点和难点,根据多年的工程实践经验,本文主要阐述实用焊接变形的影响因素及控制措施和方法。 关键词:焊接变形;影响因素;控制措施 Abstact:Obviousresidualweldingdeformationisproducedinstructureinevitablyunbalancedheatinga ndcoolingduringwelding.whicharekeyinfluencingfactorsofstructuraldesignintegrity,manufacturingt echnologyrationalityandstructuralreiability.Basedonemphasisanddifficultiesofstructuralwelding,in fluencingfactorsandcontrolmeasuresforweldingdeformationareintroducedaccordingtoconstructio nexperience. Keywords:weldingdeformation;influencingfactor;controlmeasure 钢材的焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加的焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开的钢材连接成整体。由于焊接加热,融合线以外的母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。这样,在焊接完成并冷却至常温后该塑性变形残留下来。 1焊接变形的影响因素 焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。 影响焊接变形的因素很多,但归纳起来主要有材料、结构和工艺3个方面。 1.1材料因素的影响 材料对于焊接变形的影响不仅和焊接材料有关,而且和母材也有关系,材料的热物理性能参数和力学性能参数都对焊接变形的产生过程有重要的影响。其中热物理性能参数的影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显著。力学性能对焊接变形的影响比较复杂,热膨胀系数的影响最为明显,随着热膨胀系数的增加焊接变形相应增加。同时材料在高温区的屈服极限和弹性模量及其随温度的变化率也起着十分重要的作用,一般情况下,随着弹性模量的增大,焊接变形随之减少而较高的屈服极限会引起较高的残余应力,焊接结构存储的变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范围不大,因而焊接变形得以减少。 1.2结构因素的影响 焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。其总体原则是随拘束度的增加,焊接残余应力增加,而焊接变形则相应减少。结构在焊接变形过程中,工件本身的拘束度是不断变化着的,因此自身为变拘束结构,同时还受到外加拘束的影响。一般情况下复杂结构自身的拘束作用在焊接过程中占据主导地位,而结构本身在焊接过程中的拘束度变化情况随结构复杂程度的增加而增加,在设计焊接结构时,常需要采用筋板或加强板来提高结构的稳定性和刚性,这样做不但增加了装配和焊接工作量,而且在某些区域,如筋板、加强板等,拘束度发生较大的变化,给焊接变形分析与控制带来了一定的难度。因此,在结构设计时针对结构板的厚度及筋板或加强筋的位置数量等进行优化,对减小焊接变形有着十分重要的作用。 1.3工艺因素的影响 焊接工艺对焊接变形的影响方面很多,例如焊接方法、焊接输入电流电压量、构件的定位或固定方法、焊接顺序、焊接胎架及夹具的应用等。在各种工艺因素中,焊接顺序对焊接变形的影响较为显著,一般情况下,改变焊接顺序可以改变残余应力的分布及应力状态,减少焊接变形。多层焊以及焊接工艺参数也对焊接变形有十分重要的影响。焊接工作者在长期研究中,总结出一些经验,利用特殊的工艺规范和措施,达到减少焊接残余应力和变形,改善残余应力

焊接应力与变形控制方法

焊接应力与变形控制方法 发表时间:2018-12-02T13:27:28.937Z 来源:《基层建设》2018年第29期作者:胡涛 [导读] 摘要:伴随着我国社会经济的快速崛起,带动着我国工业行业亦获得了高速发展,而焊接作为不可或缺的环节,在工业发展当中发挥着非常重要的地位,尤其是电力行业。 大庆油田中油电能热电一公司热机检修部黑龙江大庆市 163300 摘要:伴随着我国社会经济的快速崛起,带动着我国工业行业亦获得了高速发展,而焊接作为不可或缺的环节,在工业发展当中发挥着非常重要的地位,尤其是电力行业。各种各样的焊接工艺和焊接形式越来越多的被应用在实际的焊接工作过程中。同时焊接使用的工作机械也在不断的更新及发展。现在的焊接工相较于以前的焊接工作已经有了非常大的发展和创新。基于此,本文主要对焊接变形与焊接应力进行了简要的分析,希望可以为相关工作人员提供一定的参考。 关键词:焊接变形;焊接应力;探讨 引言 在整个焊接的过程当中,由于焊接时温度分布不同,焊接材料之间也会呈现不同的收缩率。这些因素的存在会在一定层面上导致焊接材料之间的变形。这种变形有持久的也有暂时的。目前,关于焊接变形与焊接应力相关的研究,在学术领域和实践领域并没有达成很大的共识。因此,需进一步加强焊接变形和应力的分析。 1焊接应力与焊接变形的定义 1.1焊接应力 钢材在焊接过程中,焊件部位会因为焊接时的局部高温产生不均的温度场,高温时,有一部分钢材会产生很大的膨胀和伸长,但由于受到邻近钢材的影响,会在焊件内部产生较大的收缩应力。在焊接的过程中,这种收缩应力伴随着焊接时间的变化和温度的升降变化不断的改变,而这种收缩应力就被定义为焊接应力。 1.2焊接变形 焊接构件在焊接及逐渐冷却的过程中,由于焊接构件局部受热且受热不均,焊接构件冷却也不均,因此焊接构件不仅会产生焊接应力,还会产生各种变形。这种焊件产生的变形,被称为焊接变形。 2焊接变形及焊接应力出现的主要原因 2.1焊接件受热不均匀 按照有关的实践分析可知,在焊接过程中出现焊接应力与变形的根本原因为在焊接操作时受力不均匀所导致。焊接件焊接的位置引起焊接操作的实施而发生热涨状况,但是没有焊接的位置因不存在热涨现象进而阻止了热涨变形。因此,导致焊接完成后发生严重的焊接变形。并还会出现较大的焊接应力。 2.2焊接金属出现收缩 焊接工作实际就是将要融化焊接母材然后再进行金属填充,在常态下是一种全塑状态,在焊接操作的过程中只会出现自身的变形而没有带动亦或拉动其它金属变形,从而导致金属发生收缩的现象,造成焊接变形的出现。 2.3焊接件刚性约束 捍接件本身存在的刚性约束同焊接过程中出现焊接应力及焊接变形之间存在着必要的联系。焊接件的刚性约束同焊接变形以及焊接应力发生概率呈现反比例关系。刚性约束越大,发生焊接变形与焊接应力的概率则越小。 2.4其它因素导致焊接残余应力产生 在电力焊接加工中,不仅受到热源和材料、力学性能因索的影响,而且受到其它因素的影响,也会出现不同的残余应力。例如:如果在焊接加工操作之前,使钢结构局部零件以及器材进行轧刹,也会影响电力焊接加工过程,使电力焊接加工中出现不同的残余应力。此外,在电力焊接加工中,还要重点考虑其它多方面的影响,才能避免出现较大的残余应力。 3焊接变形控制措施 首先需要严格控制焊接量,避免焊接残余应力出现。在材料焊接加工前必须做好充足的准备工作,深入了解和分析材料的基本特征,焊缝的尺寸需要进行严格管理,母材不能进行焊缝。其次,在具体焊接中需要合理调整焊接工艺次序,对于不必要的焊接次序需要进行优化调整,如果材料收缩量比较大,那么需前焊接,然而继续焊接长直缝,只有遵循先大后小的原则,才能避免残余应力,再者,焊接时需有意识的预留充分焊接缝,从而却未必焊接时自由收缩缓和槽减小应力法:厚度大的焊件刚性大,焊接时极易出现裂纹,在不影响结构强度性能基础上,通过焊缝附近开缓和槽的方法降低焊接应力,防止裂纹的发生。最后,在先进的科学技术支撑下,可以不断改善焊接技术,加强应用全新的焊接技术,例如二氧化碳保护焊以及氩弧焊,这些焊接工艺技术都能避免电力焊接变形问题产生。 4焊接变形的控制措施 4 1设计措施 (1)焊缝要对称布置,连接处要平滑。当焊接不同宽度或者是厚度的焊件时,防止截面出现突变而产生过大的应力集中现象,可以采用一定的坡度过渡的方法。(2)焊接要避免焊缝过分集中,或者是多个方向的焊缝都相交于一点,如出现前两种情况,相交处会形成多向同号应力场,这样就会使得钢材变脆;通常采用主要焊缝连续通过而次要焊缝断开的构造方法来防止多方向焊缝相交的现象发生。(3)尽量减小焊缝的数量及其尺寸,采用适宜的焊脚尺寸和长度。搭接角焊缝焊接时,要避免焊接热量集中现象,应该采用细长焊缝,而不能用粗短焊缝。(4)在搭接连接中不能只有一条正面角焊缝传力,要求搭接长度不小于薄板厚度的5倍或者是25毫米。(5)要尽量避免在母材厚度方向有收缩应力。(6)焊缝要合理布置位置,避免仰焊 4.2焊接工艺 (1)采用合理的焊接方向和顺序。结构对称时,采用对称焊法。当焊缝较多且较集中时,采用跳焊法分散受热防止集中受热。大于l米的长焊缝,采用分段退焊法。(2)先焊接膨胀大的焊缝,后焊膨胀小的焊缝。先焊短缝,后焊长缝,使得焊缝有足够大的横向收缩空间。(3)为保证受力较大的焊缝在焊接后有一定的伸缩空间,应先焊受力较大的主要焊缝,后焊受力较小的次要焊缝。(4)反变形弦。为了减小焊接变形,可以在焊接之前预留一个与焊接变形相反的预变形。5)预热。焊接之前,先将焊件整体或者是局部加热到100-300℃,并且在焊接后保

相关文档
最新文档