直觉模糊软集的新结果(IJIEEB-V6-N2-6)

直觉模糊软集的新结果(IJIEEB-V6-N2-6)
直觉模糊软集的新结果(IJIEEB-V6-N2-6)

I.J. Information Engineering and Electronic Business, 2014, 2, 47-52

Published Online April 2014 in MECS (https://www.360docs.net/doc/6d528732.html,/)

DOI: 10.5815/ijieeb.2014.02.06

New Results of Intuitionistic Fuzzy Soft Set

Said Broumi

Faculty of Arts and Humanities, Hay El Baraka Ben M'sik Casablanca B.P. 7951,

Hassan II University Mohammedia-Casablanca, Morocco

broumisaid78@https://www.360docs.net/doc/6d528732.html,

Florentin Smarandache

Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM 87301, USA

fsmarandache@https://www.360docs.net/doc/6d528732.html,

Mamoni Dhar

Department of Mathematics, Science College, Kokrajhar-783370, Assam, India

mamonidhar@https://www.360docs.net/doc/6d528732.html,

Pinaki Majumdar

Departement of Mathematics,M.U.C Women's College, Burdwan, West-Bengal, India PIN-713104

pmajumdar2@https://www.360docs.net/doc/6d528732.html,

Abstract—In this paper, three new operations are introduced on intuitionistic fuzzy soft sets .They are based on concentration, dilatation and normalization of intuitionistic fuzzy sets. Some examples of these operations were given and a few important properties were also studied.

Index Terms—Soft Set, Intuitionistic Fuzzy Soft Set, Concentration, Dilatation, Normalization.

I.I NTRODUCTION

The concept of the intuitionistic fuzzy (IFS, for short) was introduced in 1983 by K. Aanassov [1] as an extension of Zadeh‘s fuzzy set. All operations, defined over fuzzy sets were transformed for the case the IFS case .This concept is capable of capturing the information that includes some degree of hesitation and applicable in various fields of research. For example, in decision making problems, particularly in the case of medical diagnosis, sales analysis, new product marketing, financial services, etc. Atanassov et.al [2,3] have widely applied theory of intuitionistic sets in logic programming, Szmidt and Kacprzyk [4] in group decision making , De et al [5] in medical diagnosis etc. Therefore in various engineering application, intuitionistic fuzzy sets techniques have been more popular than fuzzy sets techniques in recent years. Another important concept that addresses uncertain information is the soft set theory originated by Molodtsov [6]. T his concept is free from the parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability theory. Molodtsov has successfully applied the soft set theory in many different fields such as smoothness of functions, game integration, and probability. In recent years, soft set theory has been received much attention since its appearance. There are many papers devoted to fuzzify the concept of soft set theory which leads to a series of mathematical models such as fuzzy soft set [7,8,9,10,11], generalized fuzzy soft set [12,13], possibility fuzzy soft set [14] and so on. Thereafter, P.K.Maji and his coauthor [15] introduced the notion of intuitionistic fuzzy soft set which is based on a combination of the intuitionistic fuzzy sets and soft set models and they studied the properties of intuitionistic fuzzy soft set. Then, a lot of extensions of intuitionistic fuzzy soft have appeared such as generalized intuitionistic fuzzy soft set [16], possibility intuitionistic fuzzy soft set [17] etc.

In this paper our aim is to extend the two operations defined by Wang et al. [18] on intuitionistic fuzzy set to the case of intuitionistic fuzzy soft sets, then we define the concept of normalization of intuitionistic fuzzy soft sets and we study some of their basic properties.

This paper is arranged in the following manner .In section 2, some definitions and notions about soft set, fuzzy soft set, intuitionistic fuzzy soft set and several properties of them are presented. In section 3, we discuss the normalization intuitionistic fuzzy soft sets. In section 4, we conclude the paper.

II.P RELIMINARIES

In this section, some definitions and notions about soft sets and intutionistic fuzzy soft set are given. These will be useful in later sections.

Let U be an initial universe, and E be the set of all possible parameters under consideration with respect to U. The set of all subsets of U, i.e. the power set of U is denoted by P(U) and the set of all intuitionistic fuzzy

2.1 Definition

A pair (F, A) is called a soft set over U, where F is a mapping given by F: A P (U).

In other words, a soft set over U is a parameterized family of subsets of the universe U. For A, F () may be considered as the set of -approximate elements of the soft set (F, A).

2.2 Definition

Let U be an initial universe set and E be the set of parameters. Let IF U denote the collection of all intuitionistic fuzzy subsets of U. Let. A E pair (F, A) is called an intuitionistic fuzzy soft set over U where F is

a mapping given by F: A→ IF U.

2.3 Defintion

Let F: A→ IF U then F is a function defined as F () ={ x, ()() ,()(): + where , denote the degree of membership and degree of non-membership respectively.

2.4 Definition

For two intuitionistic fuzzy soft sets (F , A) and (G, B) over a common universe U , we say that (F , A) is an intuitionistic fuzzy soft subset of (G, B) if

(1) A B and

(2) F () G() for all A. i.e ()()

()

() ,()()()()for all E and

We write (F, A) (G, B).

2.5 Definition

Two intuitionistic fuzzy soft sets (F, A) and (G, B) over a common universe U are said to be soft equal if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset of (F, A).

2.6 Definition

Let U be an initial universe, E be the set of parameters, and A E.

(a) (F, A) is called a null intuitionistic fuzzy soft set (with respect to the parameter set A), denoted by , if F (a) = for all a A.

(b) (G, A) is called an absolute intuitionistic fuzzy soft set (with respect to the parameter set A), denoted by , if G(e) = U for all e A.

2.7Definition

Let (F, A) and (G, B) be two IFSSs over the same universe U. Then the union of (F, A) and (G, B) is denoted by ?(F, A) (G, B)‘ and is defined by (F, A) (G, B) = (H, C), where C=A B and the truth-membership, falsity-membership of (H, C) are as follows: ( )

=

{

*( ()()()() +

*( ()()()() } –

{ ( ()()()())( ()()()()) } Where ()() = (()( )()( )) and ()

() = (()( )()( ))

2.8 Definition

Let (F, A) and (G, B) be two IFSSs over the same universe U such that A B≠0. Then the intersection of (F, A) and ( G, B) is denoted by ?( F, A) (G, B)‘ and is defined by ( F, A ) ( G, B ) = ( K, C),where C =A B and the truth-membership, falsity-membership of ( K, C ) are related to those of (F, A) and (G, B) by:

( )

=

{

*( ()()()() +

*( ()()()() } –

{ ( ()()()())( ()()()()) }

III.C ONCENTRATION OF INTUITIONISTIC FUZZY SOFT SET 3.1 Definition

The concentration of an intuitionistic fuzzy soft set (F, A) of universe U, denoted by CON (F, A), and is defined as a unary operation on IF U:

Con: IF U IF U

Con (F, A) =

{Con {F() } = { |∈ U and ∈ A}. where

From 0 ()( ), ()( ) 1

and ()( ) +()( ) 1,

we obtain 0 ()( )()( )

1- ( ( ())())()( )

Con(F, A) IF U, i.e Con(F, A) (F, A ) this means that concentration of a intuitionistic fuzzy soft set leads to a reduction of the degrees of membership.

In the following theorem, The operator ―Con―reveals nice distributive properties with respect to intuitionistic union and intersection.

3.2 Therorem

i.Con ( F, A ) ( F, A )

ii.Con (( F, A ) ( G,B )) = Con ( F, A ) Con ( G, B )

iii.Con (( F, A ) ( G,B )) = Con ( F, A ) Con ( G, B )

iv.Con (( F, A ) ( G,B ))= Con ( F, A ) Con ( G,B )

v.Con ( F, A ) Con ( G, B ) Con (( F, A ) ( G,B ))

vi.( F, A ) ( G, B ) Con ( F, A ) Con( G, B )

Proof , we prove only (v) ,i.e

()

( ) + ()( ) - ()( )()( )( ()()

()

()()()()()),

(1- ( () ( ))). (1- ( ()( )) ) 1-

( ()( ) ()( )) or, putting

a=()(), b= ()(), c = ()( ),d = ()( )

+ - ( ),

(1-()) . (1-()) 1- ()

The last inequality follows from 0 a, b, c, d 1.

Example

Let U={a, b, c} and E ={ , , ,} , A ={ , ,} E, B={ , ,} E

(F, A)={ F()={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 0.5)}, F()={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, F() ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}}

(G, B)={ G()={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)}, G() ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, G() ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}}

Con ( F, A )={ con(F())={ ( a, 0.25, 0.19), (b, 0.01, 0.96), (c, 0.04, 0.75)}, con(F())={ ( a, 0.49, 0.19), (b, 0, 0.96), (c, 0.09, 0.75) }, con(F())={ ( a, 0.36, 0.51), (b, 0.01, 0.91), (c, 0.81, 0.19) }

Con ( G, B )={ con(G())={ ( a, 0.04, 0.84), (b, 0.49,

0.19), (c, 0.64, 0.75)},

con(G())={ ( a, 0.16, 0.19), (b, 0.25, 0.51), (c, 0.16,

0.51) }, con(G())={ ( a, 0, 0.84), (b, 0, 0.96), (c, 0.01, 0.75) }

(F, A) (G, B) = (H, C) = {H () ={( a, 0.2, 0.6), (b, 0.1, 0.8), (c, 0.2, 0. 5)}, H () ={( a, 0.4, 0.1), (b, 0, 0.8), (c, 0.3, 0. 5)}}

Con (( F, A ) ( G,B ))= {con H() ={( a, 0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, con H() ={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}}

Con ( F, A ) Con (G, B ) =(K,C) ={con K()={( a, 0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, conK() ={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}}.

Then

Con (( F, A ) ( G,B )) = Con ( F, A ) Con ( G, B )

IV.D ILATATION OF INTUITIONISTIC FUZZY SOFT SET 4.1 Definition

The dilatation of an intuitionistic fuzzy soft set (F, A) of universe U, denoted by DIL (F, A ), and is defined as a unary operation on IF U:

DIL: IF U IF U

(F, A)= { | U and A}.

DIL( F, A ) ={ DIL {F() } =

{

()

( ), 1- ( ( ())())> | U and A}.

where

From 0 ()( ), ()( ) 1,

and ()( ) +()( ) 1,

we obtain 0 ()( )()( )

0 ( ( ())())()( )

DIL( F, A ) IF U, i.e ( F, A ) DIL( F, A ) this means that dilatation of an intuitionistic fuzzy soft set leads to an increase of the degrees of membership.

4.2 Theorem

i.( F, A ) DIL( F, A )

ii.DIL (( F, A ) ( G, B )) = DIL ( F, A ) DIL ( G, B ) iii.DIL (( F, A ) ( G, B )) = DIL( F, A ) DIL ( G, B ) iv.DIL(( F, A ) ( G, B ))= DIL ( F, A ) DIL ( G,B )

v.DIL ( F, A ) DIL ( G, B ) DIL (( F, A ) ( G,B )) vi.CON ( DIL (F, A) ) = (F,A)

vii.DIL ( CON (F, A) = (F,A)

viii.( F, A ) ( G, B ) DIL ( F, A ) DIL( G, B )

Proof .we prove only (v), i.e

()( ) +

()

( ) -

()

( )

()

( )( ()()

()

()()()()()),

(1- ( ()( ))). (1- ( ()( )) ) 1-

( ()( ) ()( )) or, putting

a=()(), b= ()(), c = ()( ), d = ()( )

+ - ( ),

(1-()). (1-()) 1- (), or equivalently : a+ b – a b 1 ,√ 1.

The last inequality follows from 0 a, b,c,d 1.

Example

Let U={a, b, c} and E ={ , , ,}, A ={ , ,} E, B={ , ,} E

(F, A) ={ F()={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 0.5)}, F()={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, F() ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} and (G, B) ={G()={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)}, G() ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, G() ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}}

DIL( F, A )={ DIL(F())={ ( a, 0.70, 0.05), (b, 0.31, 0.55), (c, 0.44, 0.29)}, DIL (F())={ ( a, 0.83, 0.05), (b, 0, 0.55), (c, 0.54, 0.29) }, DIL(F())={ ( a, 0.77, 0.05), (b, 0.31, 0.45), (c, 0.94, 0.05) } and

DIL (G, B) = {DIL (G ()) = {(a, 0.44, 0.36), (b, 0.83, 0.05), (c, 0.89, 0.05)},

DIL(G()) ={ ( a, 0.63, 0.05), (b, 0.70, 0.05), (c, 0.63, 0.29) }, DIL(G())={ ( a, 0, 0.36), (b, 0, 0.55), (c, 0.31, 0.29) }

(F, A) (G, B) = (H, C) = {H () = {(a, 0.2, 0.6), (b, 0.1, 0.8), (c, 0.2, 0. 5)}, H () = {(a, 0.4, 0.1), (b, 0, 0.8), (c, 0.3, 0. 5)}}

DIL (( F, A ) ( G,B ))= {DILH() ={( a, 0.44, 0.36), (b, 0.31, 0.55), (c, 0.44, 0. 29)}, DILH() ={( a, 0.63, 0.05), (b, 0, 0.55), (c, 0.54, 0. 29)}}

DIL ( F, A ) DIL ( G, B ) =( K,C) ={ DIL K() ={( a, 0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, DIL K() ={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}}

Then

DIL (( F, A ) ( G,B )) = DIL( F, A ) DIL ( G, B )

V.N ORMALIZATION OF INTUITIONISTIC FUZZY SOFT SET In this section, we shall introduce the normalization operation on intuitionistic fuzzy soft set.

5.1 Definition:

The normalization of an intuitionistic fuzzy soft set ( F, A ) of universe U ,denoted by

NORM (F, A) is defined as:

NORM (F, A) ={ Norm {F()} = {

( ), > | U and A}. where

( ())

( ) = ( )( )

( ( )( ))

and ( ())( ) =

()() ( ()())

( ( )( ))

and

Inf (()()) 0.

Example. Let there are five objects as the universal set where U = {x1, x2, x3, x4, x5} and the set of parameters as E = {beautiful, moderate, wooden, muddy, cheap, costly} and Let A = {beautiful, moderate, wooden}. Let the attractiveness of the objects represented by the intuitionistic fuzzy soft sets (F, A) is given as

F(beautiful)={x1/(.6,.4), x2/(.7, .3), x3/(.5, .5), x4/(.8, .2),

x5/(.9, .1)},

F(moderate)={x1/(.3, .7), x2/(6, .4), x3/(.8, .2), x4/(.3, .7),

x5/(1, .9)} and

F(wooden) ={ x1/(.4, .6), x2/(.6, .4), x3/(.5, .5), x4/(.2, .8),

x5/(.3, .7,)}.

Then,

( ( )( )) = 0.9, ( ( )( )= 0.1. We have

( ())

( ) = = 0.66,

( ())

( ) = = 0.77,

( ())

( ) = = 0.55,

( ())

( ) = =0.88,

( ())

( ) = = 1 and

( ())

( ) = = 0.33,

( ())

( ) = = 0.22,

( ())

( ) = = 0.44

( ())

( ) = = 0.11,

( ())

( ) = = 0.

Norm(F()) ={ x1/(.66,.33), x2/(.77, .22), x3/(.55, .44),

x4/(.88, .11), x5/(1, 0) }.

( ( )( )) = 0.8, ( ( )( )= 0.2. We have

( ())

( ) = = 0.375,

( ())

( ) = = 0.75,

( ())

( ) = = 1,

( ())

( ) = =0.375,

( ())

( ) = = 0.125 And

( ())

( ) = = 0.625,

( ())

( ) = = 0.25,

( ())

( ) = = 0,

( ())

( ) = = 0.625,

( ())

( ) = = 0.875.

Norm(F()) ={ x1/(.375,.625), x2/(.75, .25), x3/(1, 0),

x4/(.375, .625), x5/(0.125, 0.875) }.

( ( )( )) = 0.6, ( ( )( )= 0.4. We have

( ())

( ) = = 0.66,

( ())

( ) = = 1,

( ())

( ) = = 0.83,

( ())

( ) = = 0.34,

( ())

( ) = = 0.5 and

( ())( ) = = 0.34,

( ())

( ) = = 0,

( ())

( ) = = 0.17,

( ())

( ) = = 0.66,

( ())

( ) = = 0.5.

Norm(F()) ={ x1/(.66,.34), x2/(1, .0), x3/(0.83, 0.17),

x4/(.34, .66), x5/(0.5, 0. 5) }.

Then, Norm (F, A) = {Norm F (), Norm

F(), Norm F()}

Norm (F,A)={ F() ={ x1/(.66,.33), x2/(.77, .22),

x3/(.55, .44), x4/(.88, .11), x5/(1, 0) }, F()={ x1/(.375,.625),

x2/(.75, .25), x3/(1, 0), x4/(.375, .625), x5/(0.125, 0.875) }, F()

={ x1/(.66,.34), x2/(1, .0), x3/(0.83, 0.17), x4/(.34, .66), x5/(0.5, 0. 5) }}

Clearly, ( ())( ) + ( ())( ) = 1, for i = 1, 2,

3, 4, 5 which satisfies the property of intuitionistic fuzzy

soft set. Therefore, Norm (F,A) is an intuitionistic fuzzy

soft set.

VI.C ONCLUSION

In this paper, we have extended the two operations of

intuitionistic fuzzy set introduced by Wang et al.[ 18] to

the case of intuitionistic fuzzy soft sets. Then we have

introduced the concept of normalization of intuitionistic

fuzzy soft sets and studied several properties of these

operations.

A CKNOWLEDGMENTS

The authors are highly grateful to the referees for their

valuable comments and suggestions for improving the

paper and finally to God who made all the things possible.

R EFERENCES

[1]K.T. Atanassov,‖ Intuitionistic Fuzzy S et‖. Fuzzy Sets

and Systems, vol. 20(1), pp.87-86, 1986.

[2]K.T. Atanassov and G. Gargov ,‖ intuitionistic fuzzy logic

―,C.R Acad emy of Bulgarian Society , Vol. 53, pp .9-12,

1990.

[3]K.T. Atanassov and G.Gargov, ‖intuitionistic fuzzy

prolog ―,Fuzzy Sets and sSystems , Vol. 4, No 3, 1993

pp .121-128.

[4] E.Szmidt and J.Kacprzyk, ‖Intuitionistic Fuzzy Sets in

Group Decision M aking‖, Notes on IFS 2, ,1996, pp.11-

14.

[5]S.K.De, R. Biswas and A.Roy, ‖An Application of

Intuitionstic Fuzzy Set in Medical D iagnosis ―,Fuzzy

Sets and Systems, vol .117,2001, pp .209-213.

[6] D. A. Molodtsov, ―Soft Set Theory - First Result‖,

Computers and Mathematics with Applications, Vol. 37,

1999, pp. 19-31.

[7] P. K. Maji, R. Biswas and A.R. Roy, ―Fuzzy Soft Sets‖,

Journal of Fuzzy Mathematics, Vol 9 , No.3, 2001, pp. 589-602.

[8] B. Ahmad and A. Kharal, ―On Fuzzy Soft Sets ‖, Hindawi

Publishing Corporation, Advances in Fuzzy Systems, volume Article ID 586507, (2009), 6 pages doi: 10.1155/2009/586507.

[9] P. K. Maji, A. R. Roy and R. Biswas, ―Fuzzy Soft S ets‖,

Journal of Fuzzy Mathematics. Vol 9, No 3, 2001, pp.589-602.

[10] T. J. Neog and D. K. Sut, ―On Fuzzy Soft Complement

and Related Properties‖, Accepted for publication in International, Journal of Energy, Information and communications (IJEIC).

[11] M. Borah, T. J. Neog and D. K. Su t,‖ A study on some

operations of fuzzy soft sets‖, International Journal of Modern Engineering Research (IJMER), Vol.2, No. 2, 2012, pp. 157-168.

[12] H. L. Yang, ―Notes On Generalized Fuzzy Soft Sets‖,

Journal of Mathematical Research and Exposition, Vol 31, No. 3, (2011), pp.567-570.

[13] P. Majumdar, S. K. Samanta, ―Generalized Fuzzy Soft

Sets‖, Computers and Mathematics with Applications, Vol 59, 2010, pp.1425-1432.

[14] S. Alkhazaleh, A. R. Salleh, and N. Hassan,‖ Possibility

Fuzzy Soft Set‖, Advances in Decis ion Sciences, Vol 2011, Article ID 479756,doi:10.1155/2011/479756, 18 pages.

[15] P. K. Maji, R. Biswas, A. R. Roy, ―Intuitionistic fuzzy

soft sets‖, The journal of fuzzy mathematics Vol 9, NO3, 2001, pp.677-692.

[16] K.V .Babitha and J. J. Sunil,‖ Generalized Intuitionistic

Fuzzy Soft Sets and Its Applications ―Gen. Math. Notes, ISSN 2219-7184; ICSRS Publication, (2011), Vol. 7, No. 2, 2011, pp.1-14.

[17] M.Bashir, A.R. Salleh, and S. Alkhazaleh,‖ Possibility

Intuitionistic Fuzzy Soft Set‖, Advances in Decision Sciences Volume 2012, 2012, Article ID 404325, 24 pages, doi:10.1155/2012/404325.

[18] W.Yang-Ping, Z.Jun,‖ Modifying Operations on

Intuitionistic Fuzzy sets.

Dr. Florentin Smarandache is a Professor of Mathematics at the University of New Mexico in USA. He published over 75 books and 250 articles and notes in mathematics, physics, philosophy, psychology, rebus, literature. In mathematics his research is in number

theory, non-Euclidean geometry, synthetic geometry, algebraic structures, statistics, neutrosophic logic and set (generalizations of fuzzy logic and set respectively), neutrosophic probability (generalization of classical and imprecise probability).Also, small contributions to nuclear and particle physics, information fusion, neutrosophy (a generalization of dialectics), law of sensations and stimuli, etc. He got the 2010 Telesio-Galilei Academy of Science Gold Medal, Adjunct Professor (equivalent to Doctor Honoris Causa) of Beijing Jiaotong University in 2011, and 2011 Romanian Academy Award for Technical Science (the highest in the country). Dr. W. B. Vasantha Kandasamy and Dr.Florentin Smarandache got the 2012 and 2011 New Mexico-Arizona Book Award for Algebraic Structures.

Said Broumi is an administrator in Hassan II University Mohammedia- Casablanca. He worked in University for five years. He received his M. Sc in Industrial Automatic from Hassan II University Ain chok- Casablanca. His research concentrates on soft set theory, fuzzy theory, intuitionistic

fuzzy theory, neutrosophic theory, control systems.

Mamoni Dhar is an Assistant Professor in the department of Mathematics, Science College, Kokrajhar, Assam, India. She received M.Sc degree from Gauhati University, M.Phil degree from Madurai Kamraj University, B.Ed from Gauhati University and PGDIM from India Gandhi National Open University. Her research

interest is in Fuzzy Mathematics. She has published eighteen articles in different national and international journals.

Dr. Pinaki Majumdar is an assistant professor and head of the department of Mathematics of M.U.C Women‘s College under University of Burdwan in INDIA. He is also a guest faculty in the department of Integrated Science Education and Research of Visva-Bharati University, INDIA. His

research interest includes Soft set theory and its application, Fuzzy set theory, Fuzzy and Soft topology and Fuzzy functional analysis. He has published many research papers in reputed international journals and acted reviewer of more than a dozen of international journals. He has also completed a few projects sponsored by University Grants Commission of INDIA.

How to cite this paper: Said Broumi, Florentin Smarandache, Mamoni Dhar, Pinaki Majumdar,"New Results of Intuitionistic Fuzzy Soft Set", IJIEEB, vol.6, no.2, pp.47-52, 2014. DOI: 10.5815/ijieeb.2014.02.06

一种结合主客观偏好的区间直觉模糊多属性决策方法

第23卷第11期重庆工学院学报(自然科学)2009年11月 ofChongqingInstituteofTechnology(NaturalScience)Nov.2009V01.23No.11 .Journal 一种结合主客观偏好的 区间直觉模糊多属性决策方法 施丽娟,黄天民,成亚丽 (西南交通大学数学学院,成都610031) 摘要:针对决策者的偏好信息和决策矩阵元素均为区间直觉模糊数的多属性决策问题,提 出了一种新的决策方法.该方法通过求解主观偏好与客观偏好的总绝对偏差最小,同时各方案综合属性值差距最大的双目标规划模型,得到属性的最优权重向量.并基于IIFWA算子对区间直觉模糊信息进行集结,进而根据得分函数和精确函数对方案进行排序.最后,通过实例证明了该方法的有效性和实用性. 关键词:区间直觉模糊数;多属性决策;偏好 中图分类号:023文献标示码:A文章编号:1671—0924(2009)11—0158—05 AMethodofInterval?-?ValuedIntuitionisticFuzzyMulti-AttributeDecisionMakingCombinedwiththeSubjectiveand ObjectivePreference SHILi—juan,HHANGTian—min,CHENGYa—li (DepartmentofMathematic,SouthwestJiaotongUniversity,Chengdu610031,China)Abstract:Thispaperstudiesakindofmulti—-attributedecision—-makingprobleminwhichthepref-erenceinformationonalternativesandtheattributevaluesaredescribedbyinterval—-valuedintuition-? isticfuzzynumbers,andproposesanewmethod.After solvingthetwoobjectsprogrammingofmini-mizingthetotalabsolutedeviationbetweenthesubjectiveandobjectivepreferenceandmaximizingtherangesofthecomprehensiveattributevaluesofalternative,theweightsoftheattributesaleobtainedobjectively.Thentheoperatorisusedtoaggregatetheinterval—?valuedintuitionisticfu=yinformafioncorrespondingtoeachalternative.Accordingtothescorefunctionandaccuracyfunction,theahema- fivesare ranked.Finally,anexampleisusedtoillustratethevalidityandpracticabfli"哆ofthepro—posedapproach. Keywords:intuitionisticfuzzyset;multi——attributedecision—-making;preference 1986年AtanassovK…提出了直觉模糊集的概念.直觉模糊集是模糊集的推广,模糊集是直觉 ?收稿日期:2009—04一12 作者简介:施丽娟(1985一),女,甘肃兰州人,硕士研究生,主要从事优化与决策研究. 万方数据

梯形模糊数直觉模糊集熵的构造与性质

Abstract Zadeh put forward the concept of fuzzy set in 1965, a few years later he put forward another concept which was called fuzzy entropy to describe the fuzziness of fuzzy sets. These theories are widely used in graphic recognition, data mining, information fusion and uncertainty reasoning. Since then, many scholars have studied the fuzzy sets and then put forward more concepts about fuzzy sets, such as intuitionistic fuzzy sets, hesitant fuzzy sets and so on. The corresponding entropy is defined. Because of adding the attribute of hesitation, intuitionistic fuzzy has wider application in the theory of multiple attribute decision making. With the development of fuzzy analysis, the study of fuzzy numbers is becoming more and more mature. As we all know, trapezoidal fuzzy numbers are extension of triangular fuzzy numbers and interval fuzzy numbers. Compared with triangular fuzzy numbers and interval fuzzy numbers, trapezoidal fuzzy numbers have a wider range of applications. Therefore, the study of trapezoidal fuzzy number entropy has an important theoretical significance and practical value. This paper mainly studies the entropy of trapezoidal fuzzy number intuitionistic fuzzy sets. The details are as follows: Firstly, the concepts of fuzzy sets, intuitionistic fuzzy sets, the definitions of their corresponding entropy and their calculation formulas are introduced and there are some related contents of the trapezoid fuzzy numbers. Secondly, the definition of trapezoidal fuzzy number intuitionistic fuzzy set entropy is given, it is pointed out that this definition can be degenerated to the definition of entropy of intuitionistic fuzzy sets. Thirdly, the construction and calculation formula of the entropy of trapezoidal fuzzy number intuitionistic fuzzy sets are given. Finally, some properties of the entropy of the trapezoid fuzzy number intuitionistic fuzzy set are given. And some decision problems in real life are solved by using the intuitionistic fuzzy set entropy of the trapezoid fuzzy number. Key words: fuzzy sets, intuitionistic fuzzy sets, trapezoidal fuzzy number, trapezoidal fuzzy number intuitionistic fuzzy set, entropy II

多属性决策基本理论与方法

多属性决策基本理论与方法 主讲人:张云丰

多属性决策基本理论与方法 1. 多属性决策基本理论 1.1 多属性决策思想 根据决策空间的不同,经典的多准则决策(Multiple Criteria Decision Making —MCDM )可以划分为两个重要的领域:决策空间是离散的(备选方案的个数是有限的)称为多属性决策(Multiple Attribute Decision Making —MADM ),决策空间是连续的(备选方案的个数是无限的)称为多目标决策(Multiple Objective Decision Making —MODM )。一般认为前者是研究已知方案的评价选择问题,后者是研究未知方案的规划设计问题。 经典的多属性决策(Multiple Attribute Decision Making —MADM )问题可以描述为:给定一组可能的备选方案,对于每个方案,都需要从若干个属性(每个属性有不同的评价标准)去对其进行综合评价。决策的目的就是要从这一组备选方案中找到一个使决策者感到最满意的方案,或者对这一组方案进行综合评价排序,且排序结果能够反映决策者的意图。多属性决策是现代决策科学的一个重要组成部分,它的理论和方法广泛应用于社会、经济、管理和军事等诸多领域,如投资决策、项目评估、工厂选址、投标招标、人员考评、武器系统性能评定、经济效益综合排序等。 1.2 多属性问题描述 设在一个多属性决策问题中,备选方案集合为}g ,,g ,{g m 21 =G ,考虑的评价属性集合为},,,{21n u u u U =,则初始多属性决策问题的决策矩阵为: ?????? ????????=mn x m x m x n x x x n x x x X 2 1 22212 112 11 其中,ij x 表示第i 个方案的第j 个属性的初始决策指标值,其值可以是确定值,也可以是模糊值,既可以是定量的也可以是定性的。 多属性决策问题主要包括三个部分:建立属性评价体系、确定属性权重及运用具体评价方法对备选方案进行综合评价。 2. 属性值规范化方法 2.1 属性值规范化概述 常见的属性有效益型、成本性、区间型三种。效益型属性也称正属性,是指属性值越大

层次分析法及其应用

层次分析法及其应用 摘要 在日常生活中我们会遇到许多决策问题,处理决策问题时,要考虑的因素很多。此文把层次分析法及其应用分为四个部分进行介绍,首先对层次分析的背景、现状、目的,其次对层次分析的原理进行分析,在运用层次分析和评价或决策时,按四个步骤进行描述:建立层次结构模型;构造成对比较矩阵;计算权向量并做一致性检验;计算组合权向量并做组合一致性检验,再次对层次分析的举例分析并行应用,最后进行总结。 关键词:层次分析法基本原理举例分析应用

1、绪论 层次分析法(The Analytic Hierarchy Pricess,以下简称AHP)是由美国运筹学家、匹兹堡大学萨第(T.L.Saaty)教授于本世纪70年代提出的,他首先于1971年在为美国国防部研究“应急计划”时运用了AHP,又于1977年在国际数学建模会议上发表了“无结构决策问题的建模—层次分析法”一文,此后AHP在决策问题的许多领域得到应用,同时AHP的理论也得到不断深入和发展。目前每年都有不少AHP的相关论文发表,以AHP为基本方法的决策分析系统—“专家选择系统”软件也已早推向市场,并日益成熟。 AHP于1982年传入我国。在当年召开的中美能源、资源、环境会议上萨第教授的学生高兰尼柴(H.Gholamnezhad)向中国学者介绍了这一新的决策方法。随后,许树柏等发表了发表了国内第一篇介绍AHP的文章“层次分析法—决策的一种实用方法”(1982年)。此后,AHP在我国得到迅速发展,1987年9月我国召开了第一届AHP 学术讨论会,1988年在我国召开了第一届国际AHP学术会议,目前AHP在应用和理论方面得到不断发展与完善。 它的主要特点是定性与定量分析相结合,将人的主观判断用数量形式表达出来并进行科学处理,因此,更能适合复杂的社会科学领域的情况,较准确地反映社会科学领域的问题。同时,这一方法虽然有深刻的理论基础,但表现形式非常简单,容易被人理解、接受,因此,这一方法得到了较为广泛的应用。

基于投影模型的多属性直觉模糊多属性决策方法应用研究

基于投影模型的多属性直觉模糊多属性决策方法应用研究 工业工程 张希梅 2009012336 摘要: 通过线性规划模型确定各个属性的权重,避免主观权重因素对结果的过多影响。定义了模糊直觉模糊理想点和一些相关的概念,包括每个方案的得分向量和直觉模糊理想点之间夹角的余玄函数,建立的投影模型度量每个方案与直觉模糊理想点之间的相似度,以相似度大小确定最佳方案。 关键词:投影模型 多属性决策 属性权重 一、引言 1965年Zade 提出的模糊集的理论已经被广泛应用于模糊决策问题之中。为了更好地处理不精确性信息,Atanasso 于1983年提出了直觉模糊集的概念,并对其运算和性质进行了研究。在一个直觉模糊集中,用一个真隶属函数A μ和一个假隶属函数A ν来描述其隶属度的边界,那么一个对象的支持度、反对度和未知度分别是A μ、, A ν和1A A μν--,这就使得直觉模糊集在处理不确定性信息时比传统的模糊集有更强的表示能力以及更具灵活性.。1993年,W. L. Gau 等人提出了Vague 集的概念。但是1996年,H. Bustince 和P. Burillo 指出Vague 集实质就是直觉模糊集。1994年, Chen 和Tan 将Vague 集应用于模糊条件下的多目标决策问题,利用记分函数与加权记分函数给出决策。2000年,Hong 和Choi[8]在Chen 的基础上提出了精确函数应用于多目标决策问题,国内学者李登峰、徐则水及林琳对该类问题进行了大量的研究工作。 文中对属性权重信息不完全知道的情况下,通过线性规划模型求出确定的权重,然后根据投影模型相关概念,求出最优方案。 二、基本概念及相关模型 定义1 直觉模糊集(Atanassov )

纯直觉模糊数算术集结算子及其在决策中的应用

纯直觉模糊数算术集结算子及其在决策中的应用 卫贵武1,2 1.西南交通大学经济管理学院,四川成都(610031) 2.川北医学院数学系,四川南充(637007) E-mail :weiguiwu@https://www.360docs.net/doc/6d528732.html, 摘 要:对直觉模糊信息的集结算子进行了进一步研究,引入了直觉模糊数的一些运算法则、直觉模糊数的得分函数和精确函数,并基于这些运算法则,提出了一些新算子:纯直觉模糊加权算术平均(PIFWAA)算子和纯直觉模糊数有序加权算术平均(PIFOWA)算子。给出了一种基于PIFWAA 算子和PIFOWA 算子的纯直觉模糊数多属性群决策方法。最后,进行了实例分析,说明了该方法的实用性和有效性。 关键词:直觉模糊数;运算法则;纯直觉模糊加权算术平均(PIFWAA)算子;纯直觉模糊数有序加权算术平均(IFOWA)算子 中图分类号: C934 文献标志码: A 1. 引言 自从1965年Zadeh 教授建立了模糊集理论[1],数学的理论与应用研究范围便从精确问题拓展到了模糊现象的领域。1986年保加利亚学者Atanassov 进一步拓展了模糊集,提出了直觉模糊集( Intuitionistic Fuzzy Sets)的概念,直觉模糊集是模糊集的推广,模糊集是直觉模糊集的特殊情形[2-3]。1993年Gau 和Buehrer 定义了Vague 集[4],Bustince 和Burillo 指出Vague 集的概念与Atanassov 的直觉模糊集是相同的[5]。 由于直觉模糊集的特点是同时考虑隶属与非隶属两方面的信息,使得它在对事物属性的描述上提供了更多的选择方式,在处理不确定信息时具有更强的表现能力。因此直觉模糊集在学术界及工程技术界引起了广泛的关注。文献[6]对直觉模糊集环境下的几何集结算子进行了研究,提出了直觉模糊加权几何(IFWGA)算子,直觉模糊有序加权几何(IFOWGA)算子和直觉模糊混合几何(IFHG)算子,并且基于IFHG 算子,给出了相应的决策方法。文献[7]对直觉模糊集环境下的算术集结算子进行了研究,提出了直觉模糊算术平均(IFAA)算子和直觉模糊加权算术平均(IFWAA)算子,并且基于IFAA 算子和IFWAA 算子,给出了相应的群决策方法。上述算子均不能对属性权重和属性值均为直觉模糊数的信息进行集结,为此本文提出了纯直觉模糊加权算术平均(PIFWAA)算子和纯直觉模糊数有序加权算术平均(PIFOWA)算子。PIFWAA 算子考虑了每个数据的自身重要性程度,PIFOWA 算子体现了数据所在位置的重要性程度。同时提出了一种基于PIFWAA 算子和PIFOWA 算子的纯直觉模糊数多属性群决策方法。最后,用实例来说明本文给出的方法。 2. 直觉模糊集基本理论 直觉模糊集( Intuitionistic Fuzzy Sets)由Atanassov 提出[2-3],是传统模糊集的一种扩充和发展。直觉模糊集增加了一个新的属性参数:非隶属度函数, 它能够更加细腻地描述和刻画客观世界的模糊性本质。 定义1[2-3] 设X 是一个非空经典集合,()12,,,n X x x x =L ,X 上形如 ()() {},,A A A x x x x X μ ν= ∈的三重组称为 X 上的一个直觉模糊集。其中 []:0,1A X μ→和[]:0,1A X ν→均为X 的隶属函数,且()()01A A x x μν≤+≤,这里

直觉模糊层次分析法matlab代码

编程 % 对第一层指标直觉偏好矩阵进行变换,计算其直觉模糊判断矩阵clc,clear r1=[0.5 0.65 0.6; 0.25 0.5 0.55; 0.2 0.3 0.5]; r2=[0.5 0.25 0.2; 0.65 0.5 0.3; 0.6 0.55 0.5]; R1=r1; R2=r2; R1(1,3)=(r1(1,2)*r1(2,3))/((r1(1,2)*r1(2,3))+(1-r1(1,2))*(1-r1(2,3))); R2(1,3)=(r2(1,2)*r2(2,3))/((r2(1,2)*r2(2,3))+(1-r2(1,2))*(1-r2(2,3))); R1(3,1)=R2(1,3); R2(3,1)=R1(1,3); R0=ones(3);r0=ones(3); C=abs(R1-r1)+abs(R2-r2)+abs((R0-R1-R2)-(r0-r1-r2)); d0=(1/(2*(3-1)*(3-2)))*sum(sum(C)) % d0=0.0942<0.1通过一致性检验 %-------------------------------------------------------------------------- % 对第二层指标直觉偏好矩阵进行变换,计算其直觉模糊判断矩阵r1=[0.5 0.25 0.2; 0.65 0.5 0.55; 0.6 0.23 0.5]; r2=[0.5 0.65 0.6; 0.25 0.5 0.3; 0.2 0.55 0.5]; R1=r1; R2=r2; R1(1,3)=(r1(1,2)*r1(2,3))/((r1(1,2)*r1(2,3))+(1-r1(1,2))*(1-r1(2,3))); R2(1,3)=(r2(1,2)*r2(2,3))/((r2(1,2)*r2(2,3))+(1-r2(1,2))*(1-r2(2,3))); R1(3,1)=R2(1,3); R2(3,1)=R1(1,3); R0=ones(3);r0=ones(3); C=abs(R1-r1)+abs(R2-r2)+abs((R0-R1-R2)-(r0-r1-r2)); d1=(1/(2*(3-1)*(3-2)))*sum(sum(C)) % d0=0.1568>0.1未通过一致性检验 %-------------------------------------------------------------------------- % 设置参数进行调整 p=0.6; R3=[];

基于直觉模糊推理的威胁评估方法

第29卷第9期电子与信息学报Vol.29No.9 2007年9月Journal of Electronics & Information Technology Sept.2007 基于直觉模糊推理的威胁评估方法 雷英杰①②王宝树①王毅② ①(西安电子科技大学计算机学院西安 710071) ②(空军工程大学导弹学院计算机系三原 713800) 摘要:该文针对威胁评估问题,提出一种基于直觉模糊推理的评估方法。首先,分析了联合防空作战中空天来袭目标影响威胁评估的主要因素、威胁评估的不确定性,以及现有威胁评估方法的特点与局限性,建立了威胁程度等级划分的量化模型。其次,设计了系统状态变量的属性函数,讨论了在模糊化策略方面对输入变量进行的量化和量程变换方法。再次,建立了系统推理规则,设计了推理算法和清晰化算法,分析了规则库中所包含规则的完备性、互作用性和相容性,给出了规则库的检验方法。最后,以20批典型目标的威胁评估实例,验证了方法的有效性。 关键词:信息融合;威胁评估;直觉模糊推理;威胁判断 中图分类号:TP391 文献标识码:A 文章编号:1009-5896(2007)09-2077-05 Techniques for Threat Assessment Based on Intuitionistic Fuzzy Reasoning Lei Ying-jie①②Wang Bao-shu①Wang Yi② ①(School of Computer Science and Engineering, Xidian University, Xi’an 710071, China) ②(Missile Institute, Air Force Engineering University, Sanyuan 713800, China) Abstract: To the questions of Threat Assessment (TA), a technique for TA based on intuitionistic fuzzy reasoning is proposed. First, the major factors of effects of attacking targets from space or air on TA in joint air defense operations, nondeterminacy to TA, and the properties and vulnerabilities of the existing TA methods are analyzed. A model for TA measurement rank of threat degree is exposed. Then, the membership and nonmembership functions for input/output state variables are devised. The methods for quantification and measurement transformation to input variables in fuzzy strategy are addressed. The inference rules of the system are constructed with algorithms for reasoning and defuzzification devised. Subsequently, completeness and interactivity and consistency of rules contained in the rulebase are checked with a verification method to the rulebase presented. Finally, the validity is checked by providing TA instances with 20 typical targets. Key words: Information fusion; Threat assessment; Intuitionistic fuzzy reasoning; Threat verdict 1 引言 按照JDL信息融合模型[1,2],威胁评估(Threat Assessment, TA)处于第三级,其功能是量化判断敌方的兵力结构部署或武器装备系统对我方构成威胁的能力和敌方可能的行动意图。这一级融合接收前一级态势评估的输出作为输入,其输出为一威胁视图,描述敌方的目标位置及威胁程度,处理过程常采用贝叶斯网络、模糊推理、黑板模型、模板匹配、计划识别、D-S证据理论、指数法、对策论、多属性决策理论、条件事件代数、统计时间推理、主动权指数、Lachester方程、集对分析、案例推理、专家系统与机器学习等诸多方法[3, 4]。这些方法各有千秋,分别适应不同的情形。其共同点是在综合考虑多因素对威胁程度的影响及推理解释等方面欠缺或不足[4–6]。有鉴于此,本文提出一种基于直觉模糊推理的威胁评估方法。 直觉模糊集[7–9]是对Zadeh模糊集的有效扩充和发展,已 2006-01-12收到,2006-07-14改回 国家部级基金(51406030104DZ0120)资助课题经在多属性决策、医疗图像处理、模式识别、战场态势评估等领域取得成功应用[10]。理论分析与实践表明,直觉模糊集理论在语义表述[11]和推理能力[12–14]等方面都优于Zadeh模糊集。 2 威胁评估问题描述 未来防空作战环境越来越复杂,大规模的空天袭击,可能来自太空、高空、中空、低空、超低空等不同空域,而且目标类型有轰炸机、直升机、空地导弹、巡航导弹等多种多样,有时伴随假目标、诱饵和干扰等等。在这种多批次、多方向、多层次、连续饱和攻击等情况下,地面指挥员很难人为做出合理的指挥决策。因此,对空天来袭目标的威胁程度做出准确的判断,成为防空作战决策的重要环节。 空中目标特征描述为目标类型、距离、速度、加速度、数量、方位、遂行任务企图、干扰能力、空袭样式、平台机载武器装备及突防能力等多个方面。其中的每一个因素都会对综合的威胁程度产生影响,而敌目标威胁程度的大小是由多种属性共同决定的。例如,当目标的航向角处于径向临近

相关文档
最新文档