基于应力吸收层的旧水泥混凝土路面沥青加铺层结构研究

基于应力吸收层的旧水泥混凝土路面沥青加铺层结构研究
基于应力吸收层的旧水泥混凝土路面沥青加铺层结构研究

基于应力吸收层的旧水泥混凝土路面沥青加铺层结构研究

如何防治反射裂缝,使现有道路能够继续承担未来的交通荷载是旧混凝土路面加铺沥青混凝土需要解决的主要问题。目前国内外通常采取的防反裂缝措施主要有增加沥青加铺层厚度、设置土工织物夹层、破碎旧混凝土板以及铺设应力吸收膜和应力吸收层等。设计使用具有抵抗反射裂缝能力的沥青混合料和具有特定防裂功能的应力吸收层,增加沥青加铺层的疲劳寿命,同时防止水的渗透,是解决这一问题的有效方法和根本途径。

湖北早期修建的武黄高速公路(70Km)和汉宜高速公路(280Km)为混凝土路面,分别于1990年和1995年全线通车。2001年武黄高速公路开始进行路面加铺改造,并于当年完成了2Km的试验路,2003年10月完成沥青路面加铺工程;2004年3月,根据武黄高速公路的设计、科研成果和使用效果,以及跟踪观测分析结果,汉宜高速公路全线采用应力吸收层系统路面结构进行沥青罩面,2005年12月完成沥青路面加铺工程。

本文依托湖北武黄、汉宜共计350Km高速公路旧混凝土路面沥青加铺工程,进行了基于应力吸收层系统加铺结构与其它防裂措施相对比的抗温度型、荷载型反射裂缝的疲劳试验研究和其性能验证研究。期望通过对各种沥青加铺层结构抗反射裂缝能力的评价,为加铺工程优选最佳沥青加铺层结构提供理论依据。

1 沥青加铺层原材料

1.1 应力吸收层沥青及混合料性质

应力吸收层采用的沥青是美国科氏沥青材料公司提供的STRATA专用聚合物改性沥青,其主要技术指标见表1。Strata应力吸收层混合料性质见表2。

STRATA应力吸收层结合料技术指标表1

STRATA应力吸收层混合料性质数据表2

1.2 沥青及沥青混凝土

温度型、荷载型大型足尺疲劳试验研究选用的沥青均采用兰炼AH-90重交道路石油沥青,利用MTS材料试验系统模拟水泥混凝土路面沥青加铺层弯拉型和剪切型疲劳试验采用韩国SK AH-90重交道路石油沥青;全厚度车辙试验上面层采用科氏改性沥青PG76,中面层采用科氏改性沥青PG70,调平层采用重交70号沥青;汉堡车辙试验均采用科氏改性沥青PG76;重交沥青、改性沥青其各项主要技术指标均满足有关规范要求。武黄、汉宜高速公路实体工程均采用改性沥青PG70和PG76(但武黄高速公路调平层为AH-70重交沥青)。

沥青混凝土级配组成、沥青混凝土各项技术指标以及所使用的砂石料均满足有关规范要求。其中汉堡车辙试验用混合料全部由施工现场获取,与沥青加铺层使用的混合料完全一致。

1.3 土工合成材料

试验研究选用的土工合成材料、有机合成纤维等主要技术指标均满足有关规范要求。

2 沥青加铺层结构

武黄高速公路试验路加铺结构见表3,加铺层总厚度10.5 cm。根据原路面的实际状况,武黄、汉宜高速公路的工程加铺结构见表4,加铺层总厚度12.5~16.0 cm。

试验路加铺层结构表3

工程加铺层结构表4

3 沥青加铺层结构试验研究

3.1 荷载型反射裂缝大型疲劳特性研究

根据典型的旧水泥混凝土路面沥青加铺层方案,结合武黄高速公路试验路加铺结构,共设计了4种沥青加铺层结构,在西安空军工程学院柔性道面实验室进行了水泥混凝土路面沥青加铺层的荷载型大型反射裂缝疲劳足尺试验研究。在室内理想条件下采用大型反射裂缝疲劳试验台架进行不同加铺层结构的对比试验,模拟偏荷载作用下加铺层结构剪切型反射裂缝产生、发展过程。通过室内试验模拟,检验不同加铺层结构特别是应力吸收层结构的防裂效果。

3.1.1 试验结构

沥青加铺层荷载型大型疲劳试验结构见表5。

沥青加铺层荷载型大型疲劳试验结构类型表5

3.1.2 试验设备

沥青加铺层反射裂缝大型试验台架如图1~图2所示。疲劳试验中的动态加荷使用脉动疲劳试验机,最大的加载能力为500KN,加载频率为60次/min~540次/min。施加荷载大小可按需要调整,数字显示,加载次数自动显示并记录。疲劳试验机由主机、控制柜和施力锤三部分组成。附属设备有反力架、承载板等。

图1 试验台平面示意图(单位:cm)

图2 试验台立面示意图(单位:cm)

3.1.3 试验结果

4种路面结构的偏荷载足尺疲劳试验结果见表6。

随着加载次数的增加,承载板附近接缝处开始出现初始裂缝,普通沥青混凝土加铺层AC-16Ⅰ(结构类型1)在4种结构中最早出现裂缝,最终整个加铺层裂缝贯通裂缝宽度最大为3.4mm;沥青混凝土加铺层AC -16Ⅰ+玻纤格栅(结构类型2)终裂时,与结构类型1结构相比,裂缝分布较疏,裂缝最大宽度为1.6mm;而结构类型3(7cm沥青混凝土AC-16Ⅰ+土工布)裂缝分布规律与结构类型2类似,裂缝分布较结构类型1稀疏,且宽度较小,最大裂缝宽度为1.8mm,从初裂次数及终裂次数来看,土工布对防止剪切型反射裂缝的效果并不明显;应力吸收层结构(结构类型4)裂缝分布较疏且细,裂缝宽度也较小,最大为1.2mm,一般多为1mm以下,说明STRATA应力吸收层起到了吸收、减缓应力的作用。

4种路面结构的偏荷载足尺疲劳试验结果表6

3.1.4 小结

从大型疲劳试验结果来看,荷载型反射裂缝从承载板附近开始产生,然后向两侧扩展,沥青加铺层裂缝均集中在混凝土板接缝附近,说明沥青加铺层在接缝处产生应力集中而产生裂缝,并进一步发展导致加铺层断裂。各加铺层抗剪切型反射裂缝能力由高到低依次为:STRATA应力吸收层加铺层结构、玻纤格栅加铺层结构、土工布加铺层结构及普通沥青混凝土加铺层结构。应力吸收层加铺层结构在4种加铺层中抗剪切型反射裂缝的效果最佳。

3.2 温度型反射裂缝大型疲劳特性研究

为了研究基于应力吸收层结构形式的温度疲劳特性,结合武黄高速公路试验路加铺结构,设计了3种沥青加铺层结构,在西安空军工程学院柔性道面实验室进行了水泥混凝土路面沥青加铺层裂缝开展的温度型大型反射裂缝疲劳足尺试验研究。模拟温度作用下加铺层结构温度型反射裂缝产生、发展过程,通过进行对比试验,检验不同加铺层结构特别是应力吸收层结构防反射裂缝的能力。

3.2.1 试验结构

沥青加铺层温度型大型足尺疲劳试验试验结构见表7

沥青加铺层温度型大型足尺疲劳试验结构类型表7

3.2.2 试验情况及试验条件

试验在反射裂缝疲劳试验台架上进行,试验台架由动力系统和实验系统2部分组成,其构造如图3所示。图中A、B两块板是C30水泥混凝土板,其中A板为固定板,B板可沿水平方向作往复移动。两板间的缝隙μ用来模拟水泥混凝土路面的缩缝。试验时,动力系统在B板上施加水平的等幅交变荷载P,使A、B 两板间的缝隙按一定的频率和一定的相对位移张开和闭合,以模拟水泥混凝土路面由于温度变化引起伸缩产生的水平相对位移。施加的等幅交变荷载如图4。

图3 疲劳试验台架示意图(单位:cm)

图4 等幅交变荷载示意图

为模拟一定温度条件下路面结构的工作环境,疲劳试验台备有降温设备。试验时,将其罩在疲劳试验台架上,使路面结构的环境温度降到要求的低温状态,以获取低温条件下沥青混凝土加铺层疲劳特性的数据。试验条件为①疲劳开裂荷载频率:4次/min;②接缝水平位移初始值:1mm;③试验温度:(5 )℃。在铺筑好STRATA应力吸收层和玻璃纤维土工格栅防裂层后,在其上面直接加铺总厚度为7 cm的沥青混凝土,并与直接在水泥混凝土面板上加铺的沥青混合料进行比较。

3.2.3 试验结果

随着试验的进行,首先在加铺层的某些薄弱部位出现相互独立的裂缝,随疲劳次数的不断增加,最后裂缝相互连接并贯通。为研究裂缝的出现与发展及裂缝的扩展情况,在裂缝出现部位记录对应的加载次数,完全贯通时记录最终加载次数。3种路面结构的足尺疲劳试验结果见表8。

3种路面结构的温度足尺疲劳试验结果表8

3.2.4 小结

大型足尺试验研究结果表明:STRATA应力吸收层具有良好的消解水泥混凝土板块接缝处的应力集中现象,可有效地防止水泥混凝土面板由于温缩而引起的加铺层反射裂缝。其良好的弹性和抗疲劳性能可使水平位移在较宽的范围内分散,使裂缝不会很快失稳扩展,延缓裂缝反射的速度。STRATA应力吸收层+沥青混凝土结构形式在抵抗水泥混凝土面板的反射裂缝方面,优于其它2种结构形式。

3.3 弯拉型和剪切型反射裂缝MTS疲劳模拟验证试验研究

由于大型足尺疲劳试验耗费材料多、试验周期长,同时对同一种结构也不可能进行多组平行试验,这就造成试验数据的偏差和试验结果的不稳定性。作为补充和校核,在前面足尺试验的基础上,在长安大学利用MTS材料试验系统模拟水泥混凝土路面沥青加铺层弯拉型和剪切型两种受力情况进行抗反射裂缝的疲劳试验。期望通过进一步评价各种结构沥青加铺层抗反射裂缝的能力,为工程优选最佳沥青加铺层结构提供理论依据。

3.3.1 试验结构

结合武黄高速公路、汉宜高速公路实际加铺结构,以及大型足尺疲劳试验结果,试验采用5种不同加铺层结构类型(见表9),并利用MTS材料试验系统模拟旧水泥混凝土路面沥青加铺层弯拉型和剪切型两种反射裂缝疲劳开裂方式进行试验研究,并以沥青加铺层反射裂缝随荷载作用次数作为试验评价指标。

加铺层反射裂缝MTS疲劳试验结构类型表9

3.3.2 试验模型及加载模式

为模拟水泥混凝土路面沥青加铺层弯拉型和剪切型反射裂缝,试验采用两种加载方式,即中荷载加载及偏荷载加载,加载方式如图1所示。试件长度为51.5cm,宽度为10cm,水泥混凝土垫块厚度为5cm,两块混凝土垫块之间留0.5cm宽的缝隙,加载时下垫3cm厚的橡胶垫层。

加载模式为沥青混凝土加铺层顶部沿宽度方向的条形荷载,加载面积为10cm×5cm。试验时首先测定普通沥青混凝土加铺层结构(试验类型1)在中荷载(7.93KN)及偏荷载(8.20KN)作用下的极限破坏荷载,然后取0.4倍的极限荷载(最大加载值)为疲劳荷载来加载测定各加铺试件疲劳破坏次数,荷载比为0.1。试验温度为15±1℃,加载波形为半正弦波,加载频率为10HZ。在中荷载和偏荷载作用下,加铺层MTS 疲劳试验反射裂缝设置了以1cm为单位的观测刻度线,来观测记录裂缝的发展。

图5 加铺层反射裂缝MTS疲劳试验模型

3.3.3 疲劳试验结果及其结果

3.3.3.1 弯拉型(中荷载加载)疲劳试验

在垂直中荷载作用时,分别观测各加铺结构反射裂缝的初裂、扩展到1cm、2cm、3cm及终裂次数。各试验方案沥青加铺层随疲劳荷载作用反射裂缝上升的沥青加铺层顶面的作用次数见表10。

弯拉型MTS疲劳试验结果表10

由表10可以看出,尽管铺设应力吸收层的普通沥青混凝土最终的开裂次数与普通沥青混凝土+铺玻纤格栅基本相同,但由于应力吸收层具有优异的抗中荷载破坏的能力,因此在实际工程中,加铺应力吸收层的沥青混凝土抗反射裂缝的能力要优于其它方案。

3.3.3.2 剪切型(偏荷载加载)疲劳试验

在偏荷载作用下,分别观测各种加铺结构反射裂缝的初裂、扩展到1cm、2cm、3cm及终裂次数。通过室内试验,得出了各试验方案沥青加铺层随偏荷载疲劳荷载作用反射裂缝上升至沥青加铺层顶面的作用次数,试验结果见表11。

剪切型疲劳试验结果

表11

抗疲劳作用的次数,基本没有什么大的区别。但沥青混凝土下面加铺应力吸收层结构却由于应力吸收层可以吸收、扩散应力,增大应力分布范围作用使得在偏荷载作用下,沥青混凝土的抗反射裂缝的能力大大提高

3.3.3.3 小结

在抗荷载型反射裂缝方面,不管是弯拉型(中荷载加载)疲劳试验还是剪切型(偏荷载加载)疲劳试验,应力吸收层加铺结构是最好的,而玻纤格栅结构次之,最差的结构是在水泥混凝土上直接加铺普通沥青混凝土结构。

4 基于应力吸收层的沥青加铺层结构性能验证研究

4.1 全厚度车辙试验研究

4.1.1 试验结构

通过全厚度与标准层对比车辙试验可知:全厚度车辙试验与标准厚度车辙试验虽然有一定的差距,但全厚度车辙试验能够更好地模拟路面的实际情况。根据武黄、汉宜高速公路实际加铺工程结构,选用表4中结构类型2进行全厚度车辙试验研究,验证应力吸收层结构的抗车辙能力。结构类型2在STRATA应力吸收层上沥青罩面厚度为10厘米,最不利情况下的软弱层即应力吸收层和调平层共计厚6厘米,试验总厚度1 6厘米。试验结构见表12。

加铺层全厚度车辙试验结构表12

4.1.2 试验设备及试件成型特点

采用华中科技大学改进的ZCZ-7型自动车辙试验仪制作全厚度轮碾成型试件,在高温、超载条件下进行车辙试验。试件成型特点:试件总厚度与实际工程一致;模拟实际摊铺程序,分层成型试件,分成控制压实度。

4.1.3 超高温、超载条件下的全厚度试验

分别做沥青混合料在60℃、65℃、70℃时不同温度下的车辙试验,来模拟高温对车辙的影响,超高温条件下沥青混合料的动稳定度随温度变化情况见图6,从动稳定度随温度变化图可以看出:以0.9MPa为例,当温度从60℃变化到65℃时动稳定度下降了45.1%,而当温度从65℃变化到70℃时动稳定度下降了43. 3%,可见试验温度对动稳定度的影响相当大。当然,不同条件下的试验结果会有所不同,但其变化规律值得借鉴;

(a)轮压0.7MPa (b)轮压0.9MPa (c)轮压1.1MPa

图6 沥青混合料的动稳定度随温度变化图

分别做沥青混合料在0.7MPa、0.9MPa、1.1MPa时不同温度下的车辙试验,来模拟超载对车辙的影响,超载条件下沥青混合料的动稳定度随温度变化情况见图7,从动稳定度随轮压变化图可以看出:以65℃为例,当轮压从0.7MPa变化到0.9MPa时动稳定度下降了62.1%,而当轮压从0.9MPa变化到1.1MPa时动稳定度下降了40.5%。当然,不同条件下的试验结果会有所不同,但其变化规律应该具有相似性。

图7 沥青混合料的动稳定度随轮压变化图

4.1.4 小结

全厚度车辙试验证明:在60℃、0.7MPa标准条件下动稳定度(DS)平均为4786次/mm,满足规范要求,说明基于应力吸收层的加铺结构抗车辙能力良好;STRATA应力吸收层和AC-10Ⅰ调平层下面两层动稳定度(DS)虽然低于600次/mm,它们对加铺层整体抗车辙能力影响很小,调平层主要对旧水泥混凝土路面起调平作用。应力吸收层主要功能(得到充分应用)在于吸收扩散应力,防止和延缓反射裂缝产生。

4.2 汉堡车辙试验

4.2.1 试验结构和试验目的

为进一步验证基于应力吸收层Strata加铺结构系统的抗车辙能力,用汉堡车辙试验仪对整个路面结构进行抗车辙能力试验验证。该试验的目的主要是评价混合料高温稳定性和抗水损能力,以及STRATA沥青混合料对罩面层厚度的敏感程度。

考虑到汉堡车辙仪配套的成型仪最大成型厚度为10cm,所以试验加铺层结构为:二层汉堡车辙试验选取6

cmAC-20S沥青混凝土+2cmSTRATA应力吸收层(由上到下),三层汉堡车辙试验选取4cmSuperpave- 12.5 +4cmAC-20S沥青混凝土+2cmSTRATA应力吸收层(由上到下)。试验用混合料全部由施工现场获取,与沥青加铺层使用的混合料完全一致。

4.2.2 试验条件和试验组合

为了增加对比试验的可比性,将汉堡车辙试验常规温度提高了5℃;二层汉堡车辙试验温度取50℃,三层汉堡车辙试验温度取55℃水浴,轮载次数20000次,或直至车辙深度达到20mm终止;荷载0.7MPa,轮载频率60次/分钟;STRA TA混合料试件空隙率为4%;AC-20S试件空隙率为6%。Superpave-12.5试件空隙率为7%。具体试验组合见表13:

汉堡车辙试验结构组合表13

4.2.3 试验结果

汉堡车辙试验结果见表14。

汉堡车辙试验结果表14

注:①由于仪器数据自动采集和传输问题,三层组合1汉堡车辙数据只采集到车辙深度;②组合1、组合2、组合3分别采自三家施工单位的施工现场。

4.2.4 小结

由试验结果看出,六种组合的试验车辙深度全部小于10mm(美国规范),满足要求,将试件切开后观察,在Strata应力吸收层和AC-20S层(三层组合)没有出现车辙。说明荷载产生的应力由上向下传递逐渐减小,到达应力吸收层(8cm深度)时,应力吸收层的模量足以抵抗车辙的产生,罩面层结构没有因为应力吸收层而降低沥青加铺层路面的整体抗车辙能力。

5 结论

基于以上的试验研究结果,可以得出以下结论:

a.温度型、荷载型大型足尺疲劳试验以及MTS弯拉型和剪切型的疲劳试验研究结果表明,本文试验研究的几种沥青加铺层结构,基于STRATA应力吸收层的加铺层结构具有较强的抗反射裂缝的能力,抗裂效果最好。

b.全厚度车辙试验和汉堡车辙试验研究结果说明,在保证根据交通量得出的最小加铺层厚度情况下,STR ATA应力吸收层系统抗车辙性能可以得到充分保证。

c.湖北武黄、汉宜高速公路沥青加铺工程经过近4年的运营,验证了a、b结论。

参考文献

[1] 张肖宁,邹桂莲,王绍怀. 旧混凝土路面沥青加铺层的抗反射裂缝能力[J].华南理工大学学报(自然科学版),2001,29(8):82-85

[2] 廖卫东,陈拴发,刘云全. STRATA应力吸收层抗疲劳特性研究[J].武汉理工大学学报,2003,25(1 2):1-4

[3] 李申惠,廖卫东,李向东,李娜,吴瑞麟.超载、超高温条件下全厚式路面车辙试验研究[J].武汉理工大学学报,2003,25(12):13-16

[4] 廖卫东,陈拴发,刘刚. 疲劳荷载下沥青加铺层抗反射裂缝试验研究[J].武汉理工大学学报,2005,2 7(12):30-33

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度cω=1.3;因此该路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料 交通组成及各车型汽车参数表1-1

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 表1-2 ○1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN的各级轴载Pi的作用次数Ni按下式换算成标准轴载P的当量作用次数N的计算公式为: 35 .4 1 2 1 ∑= ? ? ? ? ? = k i i i P P N C C N 式中:N——标准轴载当量轴次数(次/d); Ni——被换算的车型各级轴载作用次数(次/d); P——标准轴载(kN); Pi——被换算车型的各级轴载(kN); C1——被换算车型的各级轴载系数,当其间距大于3m时,按单独的一个轴计算,轴数系数即为轴数m,当其间距小于3m时,按双轴或多 轴计算,轴数系数为C1=1+1.2(m-1);

旧混凝土路面加铺沥青的施工方案

旧混凝土路面加铺沥青的施工方案 摘要:旧水泥商品混凝土路面的修复、改造工作中,在旧水泥商品混凝土路面上铺设加铺层,是一项有效的技术措施。文章针对水泥商品混凝土路面的加铺改造施工技术进行了归纳总结。 1.水泥商品混凝土路面损坏分类及处理 1.1裂缝 横向开裂:板间缝隙在5~8mm以内可以不予处理,板间缝隙在8mm以上进行灌缝处理。纵缝开裂:板间缝隙≤12mm可以不予处理,板件>12mm进行灌缝处理,灌缝材料采用普通沥青。 1.2断板 对于断裂情况较轻的板块采用对裂缝开槽注胶的方法来处治。具体做法是①首先将裂缝切割出宽2cm深1cm的工作槽②清理工作槽内的杂物和粉尘③将补缝胶注入工作槽中从而达到粘结裂缝防止水渗入基层的目的,使之重新恢复通行能力。对于有裂缝宽度大于3mm贯穿全板的横、纵、斜向裂缝的板块,将旧板破碎,运走,清扫基层;用C25商品混凝土修复松散基层(如有松软的素淤泥块,还应挖坑切槽,直到坚硬基层),基层表面要平整,要具有一定的横坡坡度,然后重新浇筑商品混凝土板、与原板面平齐。 1.3破碎板块处理 破碎板块是在断板基础上发展的更为严重的一种破坏形式,板块裂缝无规则,破裂成很多块。破碎板块的处理要坚决采用更换板块。将旧板破碎,运走,清扫基层;用C25砼修复松散基层(如有松软的素淤泥块,还应挖坑切槽,直到坚硬基层),

基层表面要平整,要具有一定的横坡坡度,然后重新浇筑商品混凝土板、与原板面平齐。 1.4板底脱空 我们采取外观观察及弯沉测试相结合的方法进行判断。雨后上路观察是否有唧泥最直观;无雨季节采取间接方式判断:人在板的边缘感觉重型车辆通行时是否有垂直位移和翘动的板;板角相邻两条缝填缝材料严重剥落的板块;相邻板间出现错台时,位置较低的板块一般有脱空存在。对外观不易判断的板块,测定四个边角的弯沉(板角是一块板中弯沉值最大、受力最不利的位置,唧泥脱空首先出现在板角),弯沉值超过0.3mm者,一般有脱空现象。脱空板块较好的处理办法就是板底压浆。利用灰浆泵的压力将水泥浆液通过预先钻好的空洞直接压入板下,填充板下出现的空洞,使基层重新稳定。 1.5旧路检测 旧商品混凝土路面在加铺沥青面层前,要对路面进行全面检测,得出损坏的类型、程度和原因等各项情况,并针对出现的情况采取具体的加固措施。 1.6沉陷、裂缝、错台、断板等病害的处理 由于路基会出现局部沉降,砼面板在压力作用下的应变很大,受到的拉应力就超过板所能承受的弯拉强度,出现断裂现象。当原路面板断裂处平均弯沉大于0.6m m时,要将原路面板破碎成20~800cm的小块;在破除旧面板时要防止损伤基层,对板体进行更换时要把破裂的面板取除后对基层清扫检查。当发现基层上有少数裂缝,要加铺钢筋网,修复松散基层,要用C15商品混凝土填充、捣实,浇筑面层,基层表面要平整,并具有一定的横坡坡度,然后重新浇筑C30商品混凝土板。若破损只

应力吸收层施工工艺

应力吸收层(SAMI)施工工艺 SAMI应力吸收层,是一种预防沥青路面反射裂缝的技术措施。SAMI是由橡胶沥青和一定级配的碎石材料分层撒布而成的一种柔性防裂层。SAMI具有良好的抗变形性能,可以吸收水泥路面接缝处竖向或横向位移,减少裂缝处沥青面层的受力,从而减少或消除沥青路面反射裂缝。应力吸收层作为结构层的一个中间层,其厚度很薄,仅为1cm。因此,对其材料的性能有着很高的要求,其结合料必须具有高弹性、良好的高低温性能。 1、对SAMI的原材料选择及相关技术要求 (1)、基质沥青 橡胶沥青所用的基质沥青采用70号道路石油沥青 70#道路石油沥青技术要求 (2)、橡胶粉 橡胶粉的颗粒规格应符合表4-2的要求。橡胶粉筛分应采用水筛法进行试验。橡胶粉密度应为1.15±0.05g/cm3,应无铁丝或其他杂质,纤维比例应不超

过0.5%,要求含有橡胶粉重量4%的碳酸钙,以防止胶粉颗粒相互粘结。 同时应具有橡胶粉质量保证书,质保书应说明橡胶粉规格、加工方式、加工的废旧轮胎类型、橡胶粉的储存方式等。 (3)、橡胶沥青 参考我国现行改性沥青产品技术标准和美国橡胶沥青胶结料规范技术标准,并结合工程应用经验。 橡胶沥青技术要求 (4)、集料 SAMI采用了石质坚硬,清洁,不含风化颗粒的玄武岩。如有条件可以0.4~0.6%(按集料重量计)的沥青进行预裹覆(裹覆温度在120℃以上)。本次项目招标时出于资金考虑未采用。 SAMI集料规格

2、SAMI施工工艺 (1)、确定橡胶粉的掺量。一般选择至少三个不同的橡胶粉掺量(如18%、20%、22%)进行试验,将橡胶粉加入沥青的温度范围在177~204℃之间,拌和1小时后进行试验。根据实验结果选取合适的橡胶粉掺量,橡胶沥青各项指标应满足表4-3的技术要求。 (2)、施工前应进行基层的清扫、吹尘和清洗。要求基层干燥、无灰尘、石屑、杂物等。对基层裂缝应进行灌缝处理。气温低于13℃或超过 40℃潮湿的天气不宜施工。 (3)、橡胶沥青的洒布 a、橡胶沥青洒布采用专用的沥青洒布车进行,车速根据洒布量控制在15~20m/min。 b、洒布过程中应做好侧平石保护工作,防止污染已栽好的侧平石。 c、橡胶沥青洒布量采用2.0~2.6Kg/m2,采用预裹覆的集料时,沥青用量可适当减少; d、注意纵向衔接与已洒布部分重叠10cm左右,横向重叠不超过10cm.; e、撒布碎石前禁止任何车辆、行人通过橡胶沥青层。 (4)、撒布碎石 喷撒橡胶沥青后应立即撒布碎石,碎石撒布量推荐采用16±2Kg/m2,根据试铺情况确定,以满铺、不散失为度,对于局部碎石撒布车撒不到的地方,用人工补足。 (5)、碾压 采用25吨以上的胶轮压路机进行压实。碎石撒铺后应立即进行碾压作业,两台胶轮压路机应同时碾压、紧跟碎石撒铺车。碾压遍数3遍,从洒布像胶沥青到碾压完成应在10~20分钟内完成。 (6)、在铺筑上层沥青混合料之前,应对橡胶应力吸收层进行清扫,以清除没有粘结的松散碎石,避免影响SAMI层与上层沥青混凝土的粘结性能。 (7)、橡胶沥青应力吸收层施工应与上层沥青混凝土紧凑进行,中间不开放交通。若必须开放交通,须待SAMI冷却后方可开放,且通过车速不得超过25Km/h。

水泥混凝土路面加铺沥青混凝土路面方案1

混凝土路面加铺沥青 沥 青 混 凝 土 路 面 方 案

一、工程概况 1.1工程概述 重新铺设的混泥土路面与原混凝土路面产生的不均匀沉降,使得因自来水管施工铺设重新浇筑的混凝土路面与原混凝土路面产生了裂缝及沉陷。为保证路面的平整及减少水的渗透对路的损坏,设计在新浇筑的混凝土路面上加铺沥青混凝土,该工程位于黄兴镇政府到浏阳河段,全长3100米,宽0.9米,平均厚度0.04cm。 1.2工程概况 工程名称:xxxxx 建设地点:xxxx 工程容:本标段围的沥青路面工程。 1.3道路技术标准 道路等级:乡村主干道。

二、施工条件及特点: 1、施工条件 1.1天气条件要求:按规要求沥青料摊铺的施工气温不低于10℃的晴朗天气; 1.2路基要求:要求新浇筑的水泥混凝土路面清扫干净,保证路面无污染,杂物清除干净,且路面上的自来水井调整到设计铺筑的沥青混凝土标高,保证路面的平整。 1.3交通要求:因沥青路面为柔性路面,在温度较高的条件下,很容易发成形变,及拉裂,所以要求封闭施工,待温度低于50℃后,方可开放交通交通。 2、施工特点 在旧水泥路面上加铺沥青混凝土,是在水泥路面的基础上改造成沥青路面的一种比较经济的方式,这种方式无论是在公路还是在城市道路改造中都采用得比较多,尤其是在现阶段我国石油工业的发展,沥青产品质量提高,国产石油沥青满足道路规要求,且有相当多的旧水泥路面由于使用年限较长,路面状况恶化,需要进行改造。此时,水泥路面上加铺沥青面层快速、经济的优点就凸现出来。因此,越来越多的地方选择加铺沥青面层的改造方式。 三、施工工艺 1、沥青砼路面施工工艺流程

沥青路面结构及类型

沥青路面结构及类型 一、沥青路面结构组成 1.沥青路面结构层可由面层、基层、底基层、垫层组成。 2.面层是直接承受车轮荷载反复作用和自然因素影响的结构层,可由1~3层组成。表面层应根据适用要求设置抗滑耐磨、密实稳定的沥青层;中面层、下面层应根据公路等级、沥青层厚度、气候条件等选择适当的沥青结构层。 3.基层是设置在面层之下,并对面层一起将车轮荷载的反复作用传布到底基层、垫层、土基,起主要承重作用的层次。基层材料的强度指标应有较高的要求。基层视公路等级或交通量的需要可设置一层或两层。当基层较厚需分两层施工时,可分别称为上基层、下基层。 4.底基层是设置在基层之下,并与面层、基层一起承受车轮荷载反复作用,起次要承重作用的层次。底基层材料的强度指标要求可比基层材料略低。底基层视公路等级或交通量的需要可设置一层或两层。底基层较厚需分两层施工时,可分别称为上底基层、下底基层。 5.垫层是设置在底基层与土基之间的结构层,起排水、隔水、防冻、防污等作用。 二、沥青路面分类 (一)按技术品质和使用情况分类 1.沥青混凝土路面:由适当比例的各种不同大小颗粒的集料、矿粉和沥青,加热到一定温度后拌和,经摊铺压实而成的路面面层。沥青混凝土路面适用于各级公路面层。 2.沥青碎石路面:用沥青碎石作面层的路面 3.沥青贯入式:用沥青贯入碎(砾)石作面层的路面,即把沥青浇洒在铺好的主层集料上,再分层撒布嵌缝石屑和浇洒沥青,分层压实,形成一个较致密的沥青结构层。 4.沥青表面处治:用沥青和集料按层铺法或拌和法铺筑而成的厚度不超过3cm的沥青面层,表面处治按浇洒沥青和撒布集料的遍数不同,分为单层式、双层式、三层式。 (二)按组成结构分类 1、密实—悬浮结构 2、骨架—空隙结构 3、密实—骨架结构 (三)按矿料级别分类 1.密级配沥青混凝土混合料 2.半开级配沥青混合料 3.开级配沥青混合料 4.间断级配沥青混合料 (四)按矿料粒径分类 1.砂砾式沥青混合料:矿料最大粒径等于或小于4.75mm(圆孔筛5mm)的沥青混合料。也称为沥青石屑或沥青砂。 2.细粒式沥青混合料:矿料最大粒径为9.5mm或1 3.2mm(圆孔筛10mm或15mm)的沥青混合料。 3.中粒式沥青混合料:矿料最大粒径为16mm或19mm(圆孔筛20mm或25mm)的沥青混合料。 4.粗粒式沥青混合料:矿料最大粒径为26.5mm或31.5mm(圆孔筛30~40mm)的沥青混合料。 5.特粗粒式沥青混合料:矿料最大粒径等于或大于37.5mm(圆孔筛45mm)的沥青混合料。(五)按施工温度分类 1.热拌热铺沥青混合料:沥青与矿料经加热后拌和,并在一定的稳定下完成摊铺和碾压施工过程的混合料 2.常温沥青混合料:采用乳化沥青或稀释沥青在常温下(或者加热温度很低)与矿料拌和,并在常温下完成摊铺和碾压过程的混合料。

旧水泥混凝土路面加铺沥青混凝土面层施工

旧水泥混凝土路面加铺沥青混凝土面层施工 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

黄山紫京饭店改造工程 沥 青 施 工 专 项 方 案 江苏苏油建设有限公司 2013年3月1日

沥青摊铺专项方案 1对原有旧水泥混凝土路面进行处理 1.1灌缝 原有旧水泥混凝土路面的接缝都要采用新型改性沥青材料进行灌缝,以有效防止路面水从路面渗入基层,保证基层有足够的强度和稳定性。该种改性沥青在使用时必须由混凝土路面嵌缝机加热至300℃,然后通过混凝土路面嵌缝机注胶嘴把改性沥青注入接缝内。该种材料在高温下热稳定性好,低温下不易老化变脆,安全经济,又不会给环境造成污染,可以满足接缝灌缝的需要。 1.2严重破碎板的修补 对已断裂成3块以上的严重破碎板,坚决采用常规的挖补方法对板体进行更换。将旧板破碎、运走,清扫基层;用C15混凝土修复松散基层(如有松软的素淤泥块,还应挖坑切槽,直到坚硬基层),基层表面要平整,并具有一定的横坡坡度,然后重新浇筑C30混凝土板。 1.3一般断板的修补 对断裂情况较轻的板块,如果按破碎板整槽翻修的办法来做,不但成本高,而且费时。对待此类病害,采用对裂缝开槽注胶的方法来处治。 2加铺沥青混凝土面层施工 2.1玻纤格栅施工 水泥混凝土路面上加铺沥青混凝土这种路面结构普遍存在一个问题:沥青加铺层会受到反射裂缝及其产生的反射应力的影响。环境与交通量因素的负效应常常使裂缝迅速扩

散,严重影响沥青加铺层的使用寿命。如何控制反射裂缝产生的时间和扩散速度是必须解决的关键问题。 2.1.1反射裂缝产生的机理。旧水泥混凝土路面加铺层,由于接缝、裂缝的存在,其作为基层后整体的强度降低,而且在外力荷载作用下,沥青混凝土加铺层处于复杂的三维应力作用的状态下。 车辆通过不连续的板体时,沥青混凝土加铺层由于接缝、裂缝的两侧相邻板块产生了纵向的位移差而出现了较大的剪应力,它是产生反射裂缝的主要原因。 2.1.2防止反射裂缝的措施。①用人工清扫或用水清洗已处理好的旧水泥混凝土路面,保证路面无污染,杂物清除干净,同时一定要保持路面干燥。②铺筑防水材料:沿原有水泥混凝土面板纵、横向接缝处铺筑APP改性沥青防水卷材,防水卷材宽度平均0.5m.防水卷材施工采用热熔铺贴法,在纵、横向接缝处涂刷SBS改性沥青防水卷材冷底油,要求涂刷均匀,一次到位。然后将防水卷材按位摆正,用喷灯加热卷材卷材和混凝土面板,待卷材表面熔化后开始铺贴,要求压实压平,防止翘边。③铺洒沥青粘层油:在准备好的干燥旧路面上,喷洒粘层油,粘层油采用改性乳化沥青。④铺筑玻纤格栅:在水泥混凝土面满铺筑玻纤格栅,玻纤格栅应用铁钉及铁皮将玻纤格栅固定在沥青混凝土应力吸收层上,防止沥青摊铺将玻纤格栅卷起。⑤注意事项:玻纤格栅铺筑过程中,应封闭交通,除施工车辆外,其它车辆只有在紧急情况下才允许在铺好的玻纤格栅上缓慢通过。施工过程中应避免车辆在玻纤格栅上转弯或急刹车。 2.2沥青混凝土面层施工 2.2.1沥青混合料的拌和和运输。①在沥青混合料拌和过程中要从混合料级配、沥青用量、拌和温度和时间等进行全方位的控制,以提高混合料的摊铺效果。②沥青混合料在

橡胶沥青应力吸收层施工工艺

橡胶沥青应力吸收层施工工艺 一、应力吸收层的概念 应力吸收层是指铺筑于半刚性基层与沥青路面之间或者水泥混凝土路面与沥青路面之间,具有高变形能力的改性沥青层,它能够吸收裂缝部位的应力集中,防止沥青路面形成反射裂缝,加强层间黏结与防水,延长路面使用寿命的特点。 二、施工工艺 1、施工前应进行基层的清扫、吸尘和清洗。 先人工用竹扫帚将基层表面进行全面清扫,再用2~3台森林灭火鼓风机沿纵向排成斜线将浮灰吹净,若不能达到“除净”的要求,则用水冲洗,清除基层表面浮灰和泥浆,尽量使基层顶面集料颗粒能部分外露。 2、确定橡胶粉的掺量 一般选择至少三个不同的橡胶粉掺量(例如18%、20%、22%)进行试验,将橡胶粉加入沥青的温度范围在177~204℃之间,拌和1小时后进行试验。根据试验结果选取合适的橡胶粉掺量,橡胶沥青各项指标应满足表3技术要求。

3、橡胶沥青的生产 应由熟练人员操作橡胶沥青生产设备,采用间歇式方式生产。操作人员准确控制导热油温度,准确控制配料比例。对成品橡胶沥青及时进行各项检验。 4、在洒布橡胶沥青前,应注意检查 ⑴空气温度和地面温度都不得低于15℃。 ⑵下承层必须干燥,路缘石防护良好。 ⑶风速不影响橡胶沥青洒布效果。 ⑷需用的设备进入待命状态,包括橡胶沥青洒布车、碎石撒布机、胶轮 压路机。 5、橡胶沥青洒布 ⑴橡胶沥青洒布量采用~㎡,采用预裹附的集料时。 ⑵起步和终止位置应铺工程纸,以准确进行横向衔接,洒布车经过后应 及时取走工程纸。

⑶纵向衔接应与已洒布部分重叠10cm左右。 ⑷撒铺碎石前禁止任何车辆、行人通过橡胶沥青层。 6、撒铺碎石 喷洒橡胶沥青后应立即撒铺碎石,碎石撒铺量为12~18 kg/㎡,根据试铺情况确定,以满铺、不散失为度,对于局部碎石撒铺量不足的地方,用人工补足。 7、碾压 采用25T以上的胶轮压路机进行压实。碎石撒铺后应立即进行碾压作业,两台胶轮压路机应同时进行碾压,紧跟碎石撒铺车,碾压数为3遍。 8、在铺筑上层沥青混合料前,应对橡胶沥青应力吸收层进行清扫,以清除没有粘结的松散碎石,避免影响应力吸收层与上面层的粘结。 9、橡胶沥青应力吸收层施工应与上面层沥青混凝土紧凑进行,中间不开放交通,若期间必须开放交通,须待应力吸收层施工完成3小时后方可开放交通,但车速不宜超过25km/h。 三、橡胶沥青应力吸收层施工要求

混凝土路面加铺沥青层项目设计方案

混凝土路面加铺沥青层项 目设计方案 第1章绪论 1.1 水泥混凝土路面性能与特点 以水泥混凝土为主材料做面层的路面,简称水泥混凝土路面。 水泥混凝土路面是一种刚度较大、扩散荷载应力能力强、稳定性好和使用寿命长的路面结构。 它与其他路面相比,具有以下优点:(1)强度高、耐久性好:混凝土路面具有较高的抗压、抗弯拉和抗磨耗的力学强度,因而耐久性好,一般可使用30~50年,且能通过包括履带式塔克在内的各种车辆。(2)稳定性好:环境温度和湿度对混凝土路面的力学强度影响甚小,因而热稳定性、水稳定性和时间稳定性都较好,尤其是强度随时间而逐渐增高,既不会像沥青路面那样出现“老化”现象,也不会像砂石路面那样出现“表退”现象。抗油类侵蚀能力强,不会因受油类污染而损坏。抗洪能力也远比沥青路面强。(3)平整度和粗糙度好:虽设有接缝,但是它的表面很少起伏变形。路面在潮湿时仍能保持足够的粗糙度,使车辆不打滑而能保持较高的安全行车速度。(4)养护费用小、运输成本低:优于混凝土路面坚固耐久、经常性养护维修工作量小,故所需的养护费用很少。而且路面平整、行车阻力小,能提高车速,减少燃料消耗、降低运输成本。(5)色泽鲜明,反光能力强、有利于夜间行车。 当然也有以下缺点,(1)水泥和水的需要量大,修筑20cm厚,7m宽的水泥混凝土路面,每公里需要消耗水泥400~500吨和水约250吨。(2)接缝较多:由于热胀冷缩的特性,混凝土路面必须设置许多接缝,而接缝是路面的薄弱点,接缝使施工和养护增加了复杂性,如处理不当,将导致混凝土路面板边板角处破坏。接缝还容易引起行车跳动,影响行车舒适性。(3)养护修复困难:路面破坏后,挖掘和修补工作都很费事,且影响交通,修补后

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

05沥青路面应力分析讲稿

第五章 沥青路面应力分析 一.古典设计方法 1.麻省公式 图5-1 古典公式示意图 1901年,美国麻省道路委员会第八次年会上发表了世界上第一个路面设计的公式。它假定汽车是一个集中荷载P ,荷载以45?角通过碎石基层分布于边长为碎石层厚2倍的正方形面积的土基上,所以: q P h q h P 2122 = )=( (5-1) 载 荷中集 度强载承基土中:式 P q 2.Downs公式 1933年,Downs对麻省公式进行修正,认为荷载在路面层内的传布与垂直方向成某一分布角θ的圆锥上,所以传到路面的顶面时,压力分布于一个圆形的面积上而不是正方形,但他仍假定汽车荷载为集中荷载。据此: 图5-2 古典公式改进 P h tg q h tg P q ==  πθθ 220564.(5-2) 载 荷中集 度强载承基土中:式 P q 3.Gray公式

1934年、Gray认为由于汽车荷载轮胎接触路面由一个面积,所以不应当假定汽车荷载为集中荷载,而应当假定汽车荷载为圆形均布荷载,并设轮载接地圆形面积的半径为a ,即: P htg a q h tg P q a =()=() πθθ+-210564. (5-3) 载 荷中集 度强载承基土中:式 P q 4.评述 古典理论公式是假定路面只要起分布荷载的作用,采用简单的分布角的概念,这个朴素思想的路面力学理论应予解决的问题; 从各公式得知,路面厚度主要取决于土基承载力得大小,这就是土基强度得问题。但初期没有提出土基参数的测定问题; 古典公式以轮载作为交通荷载,它不能反映交通量的因素,这在当时轻交通时代可能矛盾不突出,但随着交通得发展,不考虑交通量是无法使用的解决的办法就是在土基承载力取值上应根据交通量的大小采取不同的安全系数。 二.弹性半空间体 1.解答过程 1887~1885 布辛尼斯克得到完整的解答,方法是采用半逆解法。 1925年 A.E.Love势能法得到了解答。 采用路面力学中的方法,同样可以得到解答。 2.A.E.Love解 轮隙弯沉的计算及应用采用以上公式 ()()[ ]π μμμμ2 1201200211221 222/1222E pa w z a r E pa w z r z z a z a a E p w )(= 时 =,=当) (= 时 =,=当+)+()(=2/--? ? ?? ??--++ () ????????+??? ??+??? ??+??? ??+??? ??? ?? ??- 6 422024.0047.0125.011120r a r a r a r r a F r a F E pa z a r 2=时 w==,>当μ 三.多层体系 1.解答过程 1945年,D.M.Burmister得到理论解. 1945-1955 研究层状体系的工程应用 1955,R.L.希夫曼得到非轴对称的解 2.计算方法 采用查诺模图法 采用程序计算法 四.计算程序 沥青路面通常是多层体系。自从本世纪四十年代以来无论在理论分析,还是在数值计算方面,都取得很大进展,特别是计算机科学的发展及其在工程技术中广泛应用,使层状体系理论的研究的日趋完善,其中有波米斯特(D.M.Burmister)(1945年)及英因福克斯(L.Fox)、阿堪姆(W.E.Acum)、苏联科岗(Korah)及英国琼斯(A.Jones)等所作的贡献。在荷载形式方面,包括轴对称均布荷载与非轴对称单向水平荷载,都可直接进行数值计算,在层次结构方面,由双层体系、三层体系发展到多层体系。在计算机程序方面,有壳牌公司编制的Bisar 程序,雪弗隆公司编制的Chevron 程序,美国地沥青学会所采用的DAMA 程序。

16-旧水泥混凝土路面加铺沥青路面施工工艺标准

16-旧水泥混凝土路面加铺沥青路面施工工艺标准

旧水泥混凝土路面加铺沥青路面施工工艺标准 SZJSQB15.16-2003 1、适用范围 本规范适用于各个等级的改建水泥混凝土路面的沥青混凝土加铺层施工。 2、施工准备 2.1高程复测应首先对旧路面的厚度、密实度、平整度、路拱等进行检查。若旧路面有坎坷不平、松散、坑槽等,必须在铺筑之前修整完毕。为了控制混合料的摊铺厚度,在准备好基层之后进行基层之后测量放样,沿路面中心和四分之一路面宽度出设置样桩,标出混合料的松铺厚度。采用自动调平摊铺机时,还应放出引导摊铺机运行走向和标高的控制基准线。 2.2施工前应对各种材料进行调查试验,经选择确定的材料在施工过程中应保持稳定,不得随意变更。用于水泥混凝土路面罩面修补的大多是细粒式沥青混凝土,该种材料的石子粒径较小,石子最大粒径为10mm~15mm。 沥青混凝土对石料的要求很高,用于修补的集料必须是干净的,含泥量低于1%,强度为1级的石料,集料的种类以石灰石为好,它与沥青有着良好的粘附性,集料的级配可参考普通沥青混合料的集料级配的要求确定。 施工前应对各种施工机具应作全面检查,并经调试证明处于性能良好状态,机具数量足够,施工能力配套,重要机械宜有备用设备。 用于铺筑高速公路和一级公路的沥青混合料摊铺机应符合要求: ①具有自动或半自动方式调节摊铺厚度及找平的装置。 ②具有足够容量的受料斗,在运料车换车时能连续摊铺,并有足够的功率推动运料车。 ③具有可加热的振动熨平。 ④摊铺机宽度可以调整。 热拌沥青混合料的压实机械应符合下列规定:

①双轮钢筒式压路机为6—8t; ②三轮钢筒式压路机为8~12t或12-15t; ③轮胎压路机为12—20t或20—25t。 3、操作工艺 3.1 加铺沥青路面之前,首先必须对老的水泥混凝土路面病害进行调查处理、根据水泥混凝土路而调查结果,确定水泥混凝土路面的维修方法。 3.1.1对破碎的混凝土板块进行翻修。 3.1.2对局部损坏的混凝土板块进行挖补。 3.1.3对板下脱空的板块,采取板下封堵的方法进行压浆。 3.1.4对水泥混凝土路面接缝进行清缝灌缝。 3.1.5为了保证旧路面与沥青路面能紧密连接,施工前用铣刨机对旧路面进行拉毛处理,拉毛处理拉毛深度应控制在1cm。 3.1.6用压缩空气清洗混凝土面板,必须清除水及杂物。 3.2 在道牙线附近铺塑料膜,以防止人工构造物被污染。 3.3 喷洒粘层沥青 3.3.1为做到便于施工不影响交通,在可封闭交通情况下进行施工的路段,施工路段长度控制在2000m;在半幅通车、半幅施工路段施工,其长度控制在300m。 3.3.2清除旧混凝土路面板表面杂物,冲刷清洗油污,使板面洁净无杂物。如果用水冲洗时,应使表面干燥。如果是喷洒过透层沥青,应使透层表面干燥。 3.3.3粘层沥青采用热沥青或乳化沥青。使用乳化沥青时,宜采用快裂洒布型乳化沥青PC-3,PA-3,乳液中沥青含量不少于50%,乳化沥青用量为0.6kS/m2。粘层沥青宜用与面层所使用的种类,标号相同的石油沥青经乳化稀释制成。 3.3.4粘层沥青应均匀洒布或涂刷,以不流淌为宜,沥青洒布过量处,应子刮除。 3.4 待粘层沥青破乳后,加铺土工格栅隔离层。土工格隔离层沥青混凝土面层,必须采用玻璃纤维格栅,其施工要求如下。 3.4.1在清洁干燥的路面上,按0.6kg/m2喷洒粘层油。 3.4.2目前,常用的玻璃纤维格栅,有带自粘胶和不带自粘胶两种。带自粘胶的可直接

橡胶沥青应力吸收层SAMI指南

橡胶沥青应力吸收层施工技术指南及验收标准 金邦科技发展有限公司 OO五年三月

橡胶沥青应力吸收层施工技术指南 应力吸收层(SAMI)是指铺筑于半刚性基层与沥青路面之间或者水泥混凝土路面与沥青路面之间的,具有高变形能力的改性沥青层,它能够吸收裂缝部位的应力集中,防止沥青路面形成反射裂缝。 总结相关研究成果及应用经验,对橡胶沥青应力吸收层(AR-SAM)施工提出如下施工建议。 、原材料的选择、试验及验收 1橡胶沥青 参考我国现行改性沥青产品技术标准和美国亚利桑那州橡胶沥青技术标准,并结合 工程应用经验,橡胶沥青应满足以下技术要求,抽检频率符合表 5的要求。 2、集料 应力吸收层应采用石质坚硬、清洁、不含风化、近立方体颗粒的碎石,应选用反击式破碎机轧制的碎石。碎石以?%(按照集料重量计)的沥青进行预裹附(裹附温度在120C 以上),预裹附的集料堆放时间不宜超过两周。 橡胶沥青应力吸收层集料级配范围如表2,应力吸收层上铺筑粗粒式沥青混凝土时选用B级配。 表2应力吸收层集料规格

SAMI用集料技术要求见表3,抽检频率应满足规范对面层材料的相关要求。 表3 SAMI应力吸收层用粗集料质量技术要求 二、主要施工机械及检测仪器 1主要施工机械 (1)橡胶沥青生产设备1套 (2)橡胶沥青洒布车1台 (3)碎石撒布机2台 (4)洒水车 (5)森林灭火鼓风机2台 (6)压路机:25吨轮胎压路机2台 2、主要检测仪器 (1)沥青针入度仪 (2)沥青延度仪

(3) 沥青软化点仪 (4) 布氏旋转粘度计 (5) 标准筛(方筛孔) 三、橡胶沥青应力吸收层( AR-SAM)I 施工工艺 1、施工前应进行基层的清扫、吹尘和清洗。要求基层干燥、无灰尘、石屑、杂物等。对基层裂缝应进行灌缝处理。阴雨天及雨后路面潮湿不得施工。 2、确定橡胶粉的掺量。一般选择至少三个不同的橡胶粉掺量 (例如18%、20%、22%) 进行试验,将橡胶粉加入沥青的温度范围在177?204 r之间,拌和1小时后进行试验。根据试验结果选取合适的橡胶粉掺量,橡胶沥青各项指标应满足表 3 技术要求。 3、橡胶沥青的生产。应由熟练人员操作橡胶沥青生产设备,采用间歇式方式生产。 操作人员准确控制导热油温度,准确控制配料比例。对成品橡胶沥青及时进行各项检验。 4、在洒布橡胶沥青前,应注意检查: (1) 空气温度和地面温度都不得低于15r; (2)下承层必须干燥,路缘石防护良好; (3)风速不影响橡胶沥青洒布效果; (4)需用的设备进入待命状态,包括橡胶沥青洒布车、碎石撒布机、胶轮压路机。 5、橡胶沥青洒布: (1) 推荐橡胶沥青洒布量采用 2.2kg±0.2kg /m 2,采用预裹附的集料时,沥青用量可适当减少; (2) 起步和终止位置应铺工程纸,以准确进行横向衔接,洒布车经过后应及时取走工程纸; (3)纵向衔接应与已洒布部分重叠10cm左右; (4)撒铺碎石前禁止任何车辆、行人通过橡胶沥青层。 6、撒铺碎石 喷洒橡胶沥青后应立即满铺碎石,碎石撒铺量推荐采用12~16±2kg/m2,根据试铺情况确定,以满铺、不散失为度,对于局部碎石撒铺量不足的地方,应人工补足。 7、碾压

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

旧水泥混凝土路面加铺沥青混凝土面层的施工方法

旧水泥混凝土路面加铺沥青混凝土面层的施工方法 朱士盂 (汕头市达濠市政建高有限公司,广东汕头515041) 摘要:水泥混凝土路面加铺沥青层涉及的主要问题是反射裂缝,下层裂缝或接缝的反射会引起加锗层或面层的开裂。为了 保持一个完整的行车表面,保持加铺层的整体性,必须防止和控制这种裂缝。本文结合笔者多年工作实践,对旧水泥混凝土 路面加铺沥青混凝土的方法进行分析与探讨。 关键词:混凝土路面;沥青路面 doi:10.3969/j.issn.1006-8554.2011.02.020 旧沥青路面上直接加铺水泥混凝土面层技术,是指在对旧拉应力超过沥青混凝土的抗拉强度时,即出现开裂。在温度、湿度 沥青路面的病害进行挖补维修处理后,在其上直接加铺常用板应力和车辆荷载的综合作用下,裂缝不断向上发展,反射到加铺层 块尺寸的普通水泥混凝土面层形成的路面结构。采用的板块尺表面。因此,需要对沥青混凝土面层反射裂缝进行防治。 寸为4 5m左右,板厚一般在24cm以上。该项技术充分利用了目前用于路病害防止的材料主要是无纺土工布,其作用主 水泥混凝土路面具有的使用寿命长、维修保养费用少、抗磨耗能要有两个:一是利用土工织物的撕裂强度和一定的延伸性,使基 力强等优点,取得了良好的效果。该项技术比沥青混凝土罩面更层反射裂缝产生的应力扩展至更宽范围,缓减裂缝处的应力集 经久耐用、更安全、使用寿命更长,消灭了反射裂缝、车辙和拥中,起到吸收部分拉伸能量的作用;二是土工织物浸透沥青后可 包,能更好地适应较弱的旧路面支撑条件。以形成密封防水层,防止地表水渗入基层,使基层材料不致进一 1 工程概况步恶化。因此,在旧水泥混凝土路面上加铺沥青面层前,铺设符 某路段,原路为22cm厚水泥混凝土路面,1998—2008年间,合要求的土工布,可以提高路面的平整度和强度。同时,铺设土 到现在已运营十余年,车行道和非机动车道均为水泥混凝土路工布可延缓水泥混凝土路面反射裂缝的发生。 面,板厚25cm。原路没有做软基处理,路面下沉较严重,且非机 3 加铺沥青面层的施工 动车道和机动车道下沉不均匀,路面横坡在1.O%一3.O%之间,个在进行了水泥混凝土破碎后,用水泥砂浆稳定,再铺筑15 别地段达到5.O%,原路面为每侧三块板,在车行道中间的一块板cm的二灰碎石,沥青面层厚8~10crll。在加铺层施工之前,用重 多为纵向贯通裂缝。局部板块出现裂缝、板角砼脱落、伸缩缝填锤将水泥混凝土碎成小于30em×30em的混凝土小块,以保证混 缝料剥落等病害现象。凝土块完全与其下的基层接触,防止出现翘翘板。同时增加破碎 2 对旧水泥混凝土路面的处理混凝土板的整体性,采用较稀的水泥砂浆喷洒在破损混凝土表

应力吸收层工程施工工艺

应力吸收层施工工艺 本次道路工程中铺设2.5cm厚聚合物改性沥青应力吸收层。应力吸收层设置于沥青混凝土面层与现状水泥混凝土路面板之间,应力吸收层起应力吸收、隔离、防水和封水以及防止反射裂缝等作用。 1、施工准备 1.1 铺筑应力吸收层前,应检查现状水泥混凝土的质量,现状水泥混凝土要求平整。 1.2 现状水泥混凝土必须彻底清扫干净,对有破损的情况进行修补处理 1.3 应力吸收层沥青加工及沥青混合料施工温度应根据沥青标号、粘度及气候条件确定,本次应力吸收层采用沥青为SBS聚合物改性沥青,运动粘度135℃不大于3Pa?s,加工温度不宜超过180℃。具体施工及加工按照《公路沥青路面施工技术规范》JTG F40-2004。 2、应力吸收层混合料的拌制 2.1 沥青混合料宜在沥青拌和厂(场、站)采用拌和机械拌制 2.2 拌和厂与工地现场距离应充分考虑交通堵塞的可能,确保混合料的温度下降不超过要求 2.3 各种集料必须分隔贮存,细集料应设防雨顶棚,料场及场内道路应作硬化处理,严禁泥土污染集料 2.4 沥青混合料应采用间歇式拌和机,间歇式拌和机应符合下列要求 2.4.1总拌和能力满足施工进度要求。拌和机除尘设备完好,能达到环保要求。 2.4.2冷料仓的数量满足配合比需要,通常为4-5个。 2.5 集料进场宜在料堆顶部平台卸料,经推土机推平后,铲运机从底部按顺序竖直装料,减小集料离析 2.6 沥青混合料的生产温度应符合相应的要求,烘干集料的残余含水量不得大于1%。每天开始几盘集料应提高加热温度,并干拌几锅集料废弃,再正式加沥青拌和混合料 2.7 经一级除尘部分可直接回收使用,二级除尘部分可进入回收粉仓使用(或废弃),对因除尘造成的粉料损失应补充等量的新矿粉 2.8 沥青混合料拌和时间根据具体情况经试拌确定,以沥青均匀裹覆集料为度。间歇式拌和机每盘的生产周期不宜少于45s(其中干拌时间不少于5-10s) 2.9 间隙式拌和机宜备有保温性能好的成品储料仓,贮存过程中混合料温降不得大于10℃、且不能有沥青滴漏,沥青混合料的贮存时间不得超过72h 3、混合料的运输 3.1 热拌沥青混合料宜采用运料车运输,但不得超载运输,或急刹车、急弯掉头;运料车的运力应稍有富余,施工过程中摊辅机前方应有运料车等候 3.2 运料车每次使用前后必须清扫干净,在车厢板上涂一薄层防止沥青粘结的隔离剂或防粘剂,但不得有余液积聚在车厢底部 从拌和机向运料车上装料时,应多次挪动汽车位置,平衡装料,以减少混合料离析。运料车运输混合料宜用苫布覆盖保温、防雨、防污染。 3.3 运料车进入摊铺现场时,轮胎上不得沾有泥土等可能污染路面的脏物,否则宜设水池洗净轮胎后进入工程现场;若沥青混合料不符合施工温度要求,或已经结成团块、已遭雨淋的不得铺筑

2路面结构及其层次划分

§2路面结构及其层次划分 一.路面断面 路拱平均坡度: 沥青或水泥混凝土路面:1.5% 厂拌沥青碎石等:1.5-2.5% 石砌路面:2-3% 碎石,砾石路面:2.5-3.5% 土路:3-4% 二.层次划分和作用 1.面层: 面层是直接同行车和大气接触的表面层次,它承受较大的行车荷载的垂直力、水平力和冲击力的作用,同时还受到降水的浸蚀和气温变化的影响。因此,同其它层次相比,面层应具备较高的结构强度,抗变形能力,较好的水稳定性和温度稳定性,而且应当耐磨,不透水;其表面还应有良好的抗滑性和平整度。 修筑面层所用的材料主要有:水泥混凝土、沥青很凝土、沥青碎(砾)石混合料、砂砾或碎石掺上或不掺土的混合料以及块料等。

2.基层: 基层主要承受由面层传来的车辆荷载的垂直力,并扩散到下面的垫层和土基中去,上基层是路画结构中的承重层,它应具有足够的强度和刚度,并具有良好的扩散应力的能力.基层遭受大气因素的影响虽然比面层小,但是仍然有可能经受地下水和通过面层渗入雨水,所以基层结构应具有足够的水稳定性。基层表面虽不直接供车辆行驶,但仍然要求有较好的平整度,这是保证面层平整性的基本条件。 修筑基层的材料主要有各种结合料(如石灰、水泥或沥青等)稳定土或稳定碎(砾)石、贫水泥混凝土、天然砂砾、各种碎石或砾石、片石、块石或圆石,各种工业废渣(如煤渣、粉煤灰、矿渣、石灰渣等)和土、砂、石所组成的混合料等。 3.垫层: 垫层介于路基与基层之间,它的功能是改善土基的湿度和温度状况,以保证面层和基层的强度、刚度和稳定性不受土基水温状况变化所造成的不良影响。另一方面的功能是将车辆荷载应力加以扩散,以减小土基产生的应力和变形.同时也能阻止路基土挤入基层中,影响基层结构的性能。 修筑垫层的材料,强度要求不一定高,但水稳定性利隔温性能要好。常用的垫层材料分为两类,一类是由松散粒料,如砂、砾石、炉渣等组成的透水性垫层;另一类是用水泥或石灰稳定土等修筑的稳定类垫层。

16 旧水泥混凝土路面加铺沥青路面施工工艺标准

旧水泥混凝土路面加铺沥青路面施工工艺标准 SZJSQB15.16-2003 1、适用范围 本规范适用于各个等级的改建水泥混凝土路面的沥青混凝土加铺层施工。 2、施工准备 2.1高程复测应首先对旧路面的厚度、密实度、平整度、路拱等进行检查。若旧路面有坎坷不平、松散、坑槽等,必须在铺筑之前修整完毕。为了控制混合料的摊铺厚度,在准备好基层之后进行基层之后测量放样,沿路面中心和四分之一路面宽度出设置样桩,标出混合料的松铺厚度。采用自动调平摊铺机时,还应放出引导摊铺机运行走向和标高的控制基准线。 2.2施工前应对各种材料进行调查试验,经选择确定的材料在施工过程中应保持稳定,不得随意变更。用于水泥混凝土路面罩面修补的大多是细粒式沥青混凝土,该种材料的石子粒径较小,石子最大粒径为10mm~15mm。 沥青混凝土对石料的要求很高,用于修补的集料必须是干净的,含泥量低于1%,强度为1级的石料,集料的种类以石灰石为好,它与沥青有着良好的粘附性,集料的级配可参考普通沥青混合料的集料级配的要求确定。 施工前应对各种施工机具应作全面检查,并经调试证明处于性能良好状态,机具数量足够,施工能力配套,重要机械宜有备用设备。 用于铺筑高速公路和一级公路的沥青混合料摊铺机应符合要求: ①具有自动或半自动方式调节摊铺厚度及找平的装置。 ②具有足够容量的受料斗,在运料车换车时能连续摊铺,并有足够的功率推动运料车。 ③具有可加热的振动熨平。 ④摊铺机宽度可以调整。 热拌沥青混合料的压实机械应符合下列规定: ①双轮钢筒式压路机为6—8t;

②三轮钢筒式压路机为8~12t或12-15t; ③轮胎压路机为12—20t或20—25t。 3、操作工艺 3.1 加铺沥青路面之前,首先必须对老的水泥混凝土路面病害进行调查处理、根据水泥混凝土路而调查结果,确定水泥混凝土路面的维修方法。 3.1.1对破碎的混凝土板块进行翻修。 3.1.2对局部损坏的混凝土板块进行挖补。 3.1.3对板下脱空的板块,采取板下封堵的方法进行压浆。 3.1.4对水泥混凝土路面接缝进行清缝灌缝。 3.1.5为了保证旧路面与沥青路面能紧密连接,施工前用铣刨机对旧路面进行拉毛处理,拉毛处理拉毛深度应控制在1cm。 3.1.6用压缩空气清洗混凝土面板,必须清除水及杂物。 3.2 在道牙线附近铺塑料膜,以防止人工构造物被污染。 3.3 喷洒粘层沥青 3.3.1为做到便于施工不影响交通,在可封闭交通情况下进行施工的路段,施工路段长度控制在2000m;在半幅通车、半幅施工路段施工,其长度控制在300m。 3.3.2清除旧混凝土路面板表面杂物,冲刷清洗油污,使板面洁净无杂物。如果用水冲洗时,应使表面干燥。如果是喷洒过透层沥青,应使透层表面干燥。 3.3.3粘层沥青采用热沥青或乳化沥青。使用乳化沥青时,宜采用快裂洒布型乳化沥青PC-3,PA-3,乳液中沥青含量不少于50%,乳化沥青用量为0.6kS/m2。粘层沥青宜用与面层所使用的种类,标号相同的石油沥青经乳化稀释制成。 3.3.4粘层沥青应均匀洒布或涂刷,以不流淌为宜,沥青洒布过量处,应子刮除。 3.4 待粘层沥青破乳后,加铺土工格栅隔离层。土工格隔离层沥青混凝土面层,必须采用玻璃纤维格栅,其施工要求如下。 3.4.1在清洁干燥的路面上,按0.6kg/m2喷洒粘层油。 3.4.2目前,常用的玻璃纤维格栅,有带自粘胶和不带自粘胶两种。带自粘胶的可直接在平整清洁的路面上铺设,不带自粘胶的通常采用水泥钉加垫片固定。

相关文档
最新文档