2006-基于USB2_0总线的新型舵机控制器的设计与实现

2006-基于USB2_0总线的新型舵机控制器的设计与实现
2006-基于USB2_0总线的新型舵机控制器的设计与实现

(接上页)

虚拟仪器增加信号滤波等功能,从而把它扩展为一种多用途的综合测试系统。

USB总线通信接口的应用越来越多,基于USB总线的仪器通信是一种新的仪器接口通信技术。与传统的仪器接口方式相比,USB通信方式具有成本低而性能高的优点,从而使基于电子仪器与PC机的虚拟仪器系统更具竞争力并具有更好的应用前景。该技术不仅可用于仪器通信,也可以应用于其他领域,例如PC机与数码相机或其他带USB接口的电子产品的通信。因此,基于USB接口的虚拟仪器系统在自动化测试领域必将得到越来越广泛的应用。

参考文献

1伏大山,王勇.电子仪器发展趋势[J].电子质量,2004;(10):9~11

2林月芳,吉海彦.智能仪器及其发展趋势[J].仪器技术,2003;(1):37~39

3边海龙,贾少华.USB2.0设备的设计与开发[M].北京:人民邮电出版社,2004

4杨乐平,李海涛.LabVIEW高级程序设计[M].北京:清华大学出版社,2003

5NationalInstruments.LabVIEWhelp[Z],2005

6北京普源公司.DS5000用户手册[Z],2003

(收稿日期:2006-04-20)

舵机是控制飞行器运动方向的关键部件。随着航空航天事业的高速发展,提高舵机伺服系统的性能成为当前的迫切需要。为此,设计者在考虑到谐波传动的随速度波动和低阻尼特点的基础上,以提高舵机系统控制品质为目标,提出了一种新型舵机控制系统。该硬件系统以CYPRESS公司的CY7C68013处理器为核心,结合使用现场可编程门阵列(FPGA)和高性能的模/数转换器(ADC),并通过USB2.0总线接口实现了PC机与CY7C68013处理器之间的参数传送。

由于舵机系统对定位精度、频率响应特性、阶跃响应特性和震荡次数等因素有着非常高的要求,因此其测试数据、分析曲线和指示结果是分析、判定系统性能和工作状态的重要依据和手段。本文所涉及的控制器具有USB2.0总线接口,它负责与PC机通信,这使得控制器在运行中产生的各种参数和变量能够实时地传送并在CRT上显示,极大地方便了对参数变化趋势的观察和控制过程的判断分析,为加快参数的整定奠定了基础。1系统的构成与工作原理

1.1系统的构成

如图1所示,系统由主控板卡、电机驱动板卡、微型

基于USB2.0总线的新型舵机控制器的设计与实现

侯伟波1,盛英1,林晓春2

(1.西安电子科技大学机电工程学院,陕西西安710071;

2.西安电子科技大学技术物理学院,陕西西安710071)

摘要:设计了一种基于CPU+FPGA的新型舵机控制器。该控制器考虑了谐波传动的随速度波动和低阻尼特点,以提高舵机系统控制品质为目标,采用增量式分段PID算法产生PWM信号,对舵机随动系统进行实时精准控制,并通过USB2.0总线接口实现了微型计算机与CPU之间的实时变量传送,方便了程序的调试。测试结果表明,该控制系统具有抗干扰性能好、控制品质优等特点。

关键词:舵机控制器PID算法调宽斩波输出USB2.0

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

88

《电子技术应用》2006年第10期欢迎网上投稿www.aetnet.cnwww.aetnet.com.cn

计算机以及包括力矩伺服电机、谐波减速器及其位置电位计的舵机组成。其中,主控板卡为该系统的核心组成部分,运算处理器采用CYPRESS公司的CY7C68013芯片。1.2系统的工作原理

本系统由上位微机发送控制指令,经由USB2.0总线传送至主控板卡。主控板卡将采集到的舵机实时位置数据与上位机传来的位置指令数据代入到增量式分段离散PID控制算法中进行运算。处理后得到的PWM调制波形作为电机驱动板卡的输入信号,通过电机驱动板卡上的H桥电路对电机进行驱动,进而完成对电机的控制。另外,主控板卡还将舵机运行状态数据经由USB2.0总线上行传送至上位微机,由PC机测控应用程序对其进行后期分析处理。

2系统的硬件电路描述

2.1主控板卡部分

2.1.1主控板卡的构成

在整个硬件系统中,主控板是核心的部分。该板卡的原理框图如图2所示。此板卡的主控芯片为CY7C68013处理器,其内部嵌有USB2.0总线控制器,用户可通过USB串行总线与计算机进行高速实时通信。FPGA采用的是ALTERA公司的EP1C3T144C8,由Flash存储器EPCS1对其进行上电初始化配置。主控板卡的舵机位置反馈给A/D转换电路,这里采用的是ADI公司的AD9241模/数转换器及与其匹配的电压基准源REF192,对反馈的舵偏角度模拟信号进行数字转换。在舵机电位器产生的表征角度值的反馈电压信号送至ADC以前,为了排除高频干扰,加入了一个以OP77运算放大器为核心的二阶压控低通滤波环节。

2.1.2主控板卡的功能

主控板卡不但承担着执行来自上位机的控制指令并将指令执行的实时状态上行送至上位机的任务,而且还要将经过处理器运算产生的相应占空比的PWM信号送至电机驱动板卡,实现对电机的精准控制。

板卡中各部分的具体职能如下:

(a)CY7C68013接收来自计算机的控制命令,并连同实时角度反馈数据一起代入到增量式分段离散PID算法中运算,生成11位占空比数据送至FPGA以生成PWM信号;另外,CPU还要将实时反馈数据值以相应的通信协议送至计算机,以便上位机测控应用程序做进一步处理。

(b)FPGA内部的功能模块由硬件描述语言Verilog编写,如图3所示,主要有四项功能,分别是:

?接收CPU发送来的占空比数据,通过内部的PWM生成模块产生相应的脉宽调制信号,并输出到驱动电机驱动板卡,进而拖动电机。

?通过时序状态机为本系统提供主时钟,使整个控制系统以同一步调协调运行,这样就有效地避免了各部分之间的竞争与冒险。

?为ADC传送来的数字信号进行均值滤波,减小测量误差。

?指标测试模块将测试结果输出到FPGA的相应引脚,可由示波器直观检测到测试结果。

(c)二阶压控滤波模块通带截止频率为1kHz,品质因数Q值为1,可有效地滤除反馈信号的高频干扰。

(d)模/数转换器AD9241的采样率为1.25MHz,14位精度,可以满足系统指标的要求,实时给FPGA提供精准的位置反馈信息。

2.2电机驱动板卡部分

该电路采用可逆H型双极式PWM开关功率放大器作为主回路驱动电机。它主要是由大功率晶体管D1047和达林顿管TIP122组合而成的复合管,以及续流二极管1N5408组成的桥式电路。PWM信号经高速光耦隔离器件6N137将信号隔离,这样就很好地避免了电机驱动板卡对主控板卡的干扰。隔离后的脉宽调制信号由三极管3DG6构成的放大电路放大,送给末级电路,控制H桥复合管的开关。电机驱动板卡原理框图如图4所示。3软件程序设计及其算法描述

3.1CY7C68013处理器固件主程序设计

CY7C68013的主程序负责完成对CPU的初始化并对数据进行相应处理。初始化包括对I/O、寄存器、处理

89

《电子技术应用》2006年第10期本刊邮箱:eta@ncse.com.cn

器工作状态以及内部USB2.0控制模块等的初始化。在初始化过程完成后,进入数据处理的运算子程序。该子程序具体工作流程如图5所示。3.2CPU与上位机的通信CY7C68013与上位机的USB2.0串行通信采用批量传输模式,一次传输

包括令牌包、数据包和握手包三部分。令牌包与握手包为USB控制器自行生成,数据包由用户指令填充。因此,这里提出形如XXXXXXH的3字节传输通信方案作为USB2.0传送的数据包进行发送。其中,第一字节为指令标识字节,第二字节为16位指令目标值的高字节,第三字节为16位指令目标值的低字节。在该系统的硬件板卡和上位微机的上行和下行通信中,均采用上述通信方案进行控制命令的发送和舵机工作状态的监测。3.3上位机测控应用程序设计

为便于舵机的控制和系统指标的测试,编制了基于Windows操作系统环境的底层驱动函数C++应用程序,即测控应用程序软件包。该测控应用程序的用户界面分为实时显示区、目标位置控制区、指标测试区等几大模块,可以对电机的目标位置进行设定,对系统指标进行测试,并实时地将PWM占空比数据、目标值数据以及反馈值数据以趋势图的形式直观地显示出来,易于进行在线分析处理和评估。

3.4增量式分段离散PID控制算法描述

舵机控制器系统的控制算法分为两段进行:

U=

V,E>Emax

f(PID),E!Emax

"

式中,V为PWM最大输出常量,f(PID)为线性PID算法,Emax为偏差的设定阈值,U为控制算法输出值,表征PWM信号的占空比。在偏差E很大时(E>Emax),系统快速性是控制的关键指标,系统开环运行V,使得偏差能够尽快缩小;在较小偏差下(E!Emax),系统的定位精度成为关键指标,此时采样值在设定值附近,按优化的增量PID控制算法运行。

4系统测试结果分析

舵机系统在2kgm的额定负载力矩的测试条件下,联调试验结果表明:本系统可以达到250°/s的舵轴最大输出转速;系统频带宽度>20Hz(1.5°正弦信号检测,幅值下降不大于3dB,相位滞后不大于90°),如图6所示。舵机从0°转到25°含纯延时的时间不大于110ms,响应曲线如图7所示,超调量小于5%;舵面角定位精度±0.08°,舵机轴受控偏转线性度误差小于1%,系统电路工作稳定。

参考文献

1刘延杰,孙立宁.谐波驱动并联机器人的加速度反馈抑振控制.哈尔滨工业大学学报,2004;36(3):281~285

2过润秋,林晓春.基于模糊控制的自动回转系统[J].西安电子科技大学学报(自然科学版),1999

3阎力,段宝岩.非线性变结构不确定连续系统的反馈控制.西安电子科技大学学报(自然科学版),2004;31(1)

4过润秋,王小红.基于免疫反馈机理的温度自动控制研究.西安电子科技大学学报(自然科学版),2003;30(6)

5任爱峰,孙肖子.基于FPGA的嵌入式系统设计.西安:西安电子科技大学出版社,2004

6Ciletti,MD著,张亚琦等译.VerilogHDL高级数字设计.北京:电子工业出版社,2005

(收稿日期:2006-05-09)

90

《电子技术应用》2006年第10期欢迎网上投稿www.aetnet.cnwww.aetnet.com.cn

详细的舵机控制原理资料

目录 一.舵机PWM信号介绍 (1) 1.PWM信号的定义 (1) 2.PWM信号控制精度制定 (2) 二.单舵机拖动及调速算法 (3) 1.舵机为随动机构 (3) (1)HG14-M舵机的位置控制方法 (3) (2)HG14-M舵机的运动协议 (4) 2.目标规划系统的特征 (5) (1)舵机的追随特性 (5) (2)舵机ω值测定 (6) (3)舵机ω值计算 (6) (4)采用双摆试验验证 (6) 3.DA V的定义 (7) 4.DIV的定义 (7) 5.单舵机调速算法 (8) (1)舵机转动时的极限下降沿PWM脉宽 (8) 三.8舵机联动单周期PWM指令算法 (10) 1.控制要求 (10) 2.注意事项 (10) 3.8路PWM信号发生算法解析 (11) 4.N排序子程序RAM的制定 (12) 5.N差子程序解析 (13) 6.关于扫尾问题 (14) (1)提出扫尾的概念 (14) (2)扫尾值的计算 (14)

一.舵机PWM 信号介绍 1.PWM 信号的定义 PWM 信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。具体的时间宽窄协议参考下列讲述。我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。 目前,北京汉库的HG14-M 舵机可能是这个过渡时期的产物,它采用传统的PWM 协议,优缺点一目了然。优点是已经产业化,成本低,旋转角度大(目前所生产的都可达到185度);缺点是控制比较复杂,毕竟采用PWM 格式。 但是它是一款数字型的舵机,其对PWM 信号的要求较低: (1) 不用随时接收指令,减少CPU 的疲劳程度; (2) 可以位置自锁、位置跟踪,这方面超越了普通的步进电机; 其PWM 格式注意的几个要点: (1 ) 上升沿最少为0.5mS ,为0.5mS---2.5mS 之间; (2) HG14-M 数字舵机下降沿时间没要求,目前采用0.5Ms 就行;也就是说PWM 波形 可以是一个周期1mS 的标准方波; (3) HG0680为塑料齿轮模拟舵机,其要求连续供给PWM 信号;它也可以输入一个周 期为1mS 的标准方波,这时表现出来的跟随性能很好、很紧密。

无人机舵机控制系统的硬件设计与实现_杨百平

1076 计算机测量与控制.2010.18(5) Computer Measurement &Control 控制技术 收稿日期:2009-09-27; 修回日期:2009-11-09。 作者简介:杨百平(1982-),男,陕西人,在读研究生,主要从事电路系统与自动控制方向的研究。 杨金孝(1964-),男,陕西人,副教授,主要从事电子电路的研究与设计、控制理论与控制工程方向的研究。 文章编号:1671-4598(2010)05-1076-03 中图分类号:T P274 5 文献标识码:A 无人机舵机控制系统的硬件设计与实现 杨百平,杨金孝,赵 强 (西北工业大学电子信息学院,陕西西安 710129) 摘要:给出了一种基于ST M 32F103VB 微控制器的无人机全数字舵机控制系统硬件实现方案,该方案以STM 32F103VB 作为主控芯片,无刷直流电机作为该系统的伺服电机,采用三闭环的控制策略,实现了脉宽调制(PWM )控制信号的采样和输出,通过采样PW M 信号实现舵机的控制,针对无人机对数据传输实时性的要求,利用CAN 总线与上位机通讯,很好地满足了要求;该系统具有成本低廉、安全可靠且实现容易的特点,实现了舵机控制系统的数字化与小型化;经多次试验,证明是安全实用的。 关键词:S TM 32F103VB 微控制器;无人机;伺服;电动舵机 Hardware Design and Implementation for a S ervo System of UAV Rudder Yang Baiping ,Yang Jinxiao,Zhao Qiang (Colleg e of Electr onics and Infor mat ion,No rthw ester n P olytechnical U niver sity,Xi an 710129,China) Abstract:A set of fu lly-digital-signal ser vo system bas ed on S TM 32F103VB for UAV electrom echanical rudder is in tr odu ced in th is paper.It takes S TM 32F103VB as the master control unit and bru shless DC m otor as its drive.T his project uses the digital th ree clos ed-loop control strategy,sampled and gen erated puls e width modulation w ave,through sampling one of th e PW M w aves to realize control tran sfer,in view of U AV to data transmis sion tim elin es s r equest,com municated w ith upper sys tem by CAN bu s.It featu red low cos t,s afe,easy to realize,made it smaller and digital,and w as testified that the sy stem is ap plicable and safety. Key words :S TM 32F103VB M CU;UAV;servo;electr om ech anical rudder 0 引言 舵机控制系统是飞行控制计算机和舵机之间的接口,它采集接收机多路PW M 信号,与上位机进行通讯,产生控制舵机的PW M 信号,是舵机系统的核心部分。现有的舵机伺服控制线路大部分还都是模拟的,因其固有的一些缺点而限制了它的使用,相比之下,数字舵机系统具有很多模拟式舵机所没有的优点。本文给出了一种基于ST M 32F103VB 微控制器的无人飞行器舵机伺服控制系统,具有高性能、低功耗、低成本、安全可靠和实现容易的特点,可在线编程并成功应用于实践。 1 系统综述 舵机主要是由无刷电机、舵机控制器、舵机机械结构和传感器4部分组成。其中舵机控制器又包括:数据接口部分、中央控制单元、逻辑单元、隔离放大部分与功率驱动模块。一般舵机的工作过程如下:首先由上位机给出一舵偏角指令,舵机控制器接受该指令后与检测得到的实际舵面偏转角送入舵面位置调节单元从而得到参考P WM 占空比A;然后测量实际转速,当速度大于预设值时输出一给定PW M 占空比B;最后检测实际电流,当电流大于电流预设值时,输出另一给定的PWM 占空比C [1]。无刷直流电机中的H A LL 传感器检测转子位置,产生H A ,H B,H C 三相霍尔信号,H A 、HB 、H C 、和ST M 32输出的P WM 波和电机换相信号逻辑综合得到6路电机控制信号驱动电机转动 [2] 。电机输出轴连接精密减速器和 各种传感器,减速器输出驱动舵面。系统实现图如图1所示。 图1 系统组成结构图 2 舵机控制器的硬件组成 舵机控制器的硬件由图2中框线部分组成,该控制器以ST M 32F103V B 为核心。整个系统的硬件设计主要由ST M 32F103V B 工作电路、可编程逻辑电路、隔离及驱动电路、检测信号处理电路、A D 转换电路、数据接口电路及温度检测电路等部分组成。在系统中ST M 32F103V B 通过其自身的CA N 总线控制器与上位机进行数据传输,并使用自身集成的A D 转换器和内置通用定时器实时监测舵机位置、转速和电流等参数。 控制器根据内置的控制算法进行位置环、速度环和电流环计算,并产生控制数据,控制数据通过转换算法产生控制量(PW M 信号和DI R 信号),控制量进入逻辑阵列CPL D 与无刷电机位置传感器信号(H A L L 信号)进行逻辑综合后,输出6路电机控制信号。电机控制信号经隔离电路后控制电机功率驱动模块进行功率放大,驱动无刷电机运行。2 1 主控芯片STM32F 103VB [3] ST M 32F103VB 是意法半导体(ST )公司推出的基于A RM 32位CORT EX -M 3CPU ,是目前性能比较突出的微处理器之一,其增强型系列特别适合做电机控制。它的主要特点如下:

舵机的工作原理

基于AT89C2051单片机的多路舵机控制器设计 摘要舵机是机器人、机电系统和航模的重要执行机构。舵机控制器为舵机提供必要的能源和控制信号。本文提出一种以外部中断计数为基础的PWM波形实现方法。该方法具有简单方便,成本低,可实现多路独立PWM输出的优点。 关键词A T89C205l 舵机控制器外部中断PWM 舵机是一种位置伺服的驱动器。它接收一定的控制信号,输出一定的角度,适用于那些需要角度不断变化并可以保持的控制系统。在微机电系统和航模中,它是一个基本的输出执行机构。 1 舵机的工作原理 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA66881。的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送人电机驱动集成电路BA6686,以驱动电机正反转。当电机转速一定时,通过级联减速齿轮带动电位器R。,旋转,直到电压差为O,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。 2 舵机的控制方法 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。 3 舵机控制器的设计 (1)舵机控制器硬件电路设计 从上述舵机转角的控制方法可看出,舵机的控制信号实质是一个可嗣宽度的方波信号(PWM)。该方波信号可由FPGA、模拟电路或单片机来产生。采用FPGA成本较高,用模拟电路来实现则电路较复杂,不适合作多路输出。一般采用单片机作舵机的控制器。目前采用单片机做舵机控制器的方案比较多,可以利用单片机的定时器中断实现PWM。该方案将20ms的周期信号分为两次定时中断来完成:一次定时实现高电平定时Th;一次定时实现低电平定时T1。Th、T1的时间值随脉冲宽度的变换而变化,但,Th+T1=20ms。该方法的优点是,PWM信号完全由单片机内部定时器的中断来实现,不需要添加外围硬件。缺点是一个周期中的PWM信号要分两次中断来完成,两次中断的定时值计算较麻烦;为了满足20ms 的周期,单片机晶振的频率要降低;不能实现多路输出。也可以采用单片机+8253计数器的实现方案。该方案由单片机产生计数脉冲(或外部电路产生计数脉冲)提供给8253进行计数,由单片机给出8253的计数比较值来改变输出脉宽。该方案的优点是可以实现多路输出,软件设计较简单;缺点是要添加l片8253计数器,增加了硬件成本。本文在综合上述两个单片机舵机控制方案基础上,提出了一个新的设计方案,如图4所示。 该方案的舵机控制器以A T89C2051单片机为核心,555构成的振荡器作为定时基准,单片机通过对555振荡器产生的脉冲信号进行计数来产生PWM信号。该控制器中单片机可以产生8个通道的PWM信号,分别由AT89C2051的P1.0~Pl.7(12~19引脚)端口输出。输出的8路PWM信号通过光耦隔离传送到下一级电路中。因为信号通过光耦传送过程中进行了反相,因此从光耦出来的信号必须再经过反相器进行反相。方波信号经过光耦传输后,前沿和后沿会发生畸变,因此反相器采用CD40106施密特反相器对光耦传输过来的信号进行整形,产生标准的PWM方波信号。笔者在实验过程中发现,舵机在运行过程中要从电源

舵机控制

舵机控制实验 舵机是一种位置伺服的驱动器,主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。其工作原理是由接收机或者单片机发出信号给舵机,其内部有一个基准电路,产生周期为20ms,宽度为1.5ms 的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。经由电路板上的IC 判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回信号,判断是否已经到达定位。适用于那些需要角度不断变化并可以保持的控制系统。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。一般舵机旋转的角度范围是0 度到180 度。 舵机有很多规格,但所有的舵机都有外接三根线,分别用棕、红、橙三种颜色进行区分,由于舵机品牌不同,颜色也会有所差异,棕色为接地线,红色为电源正极线,橙色为信号线。

舵机的转动的角度是通过调节PWM(脉冲宽度调制)信号的占空比来实现的,标准PWM(脉冲宽度调制)信号的周期固定为20ms (50Hz),理论上脉宽分布应在1ms到2ms 之间,但是,事实上脉宽可由0.5ms 到2.5ms 之间,脉宽和舵机的转角0°~180°相对应。有一点值得注意的地方,由于舵机牌子不同,对于同一信号,不同牌子的舵机旋转的角度也会有所不同。 了解了基础知识以后我们就可以来学习控制一个舵机了,本实验所需要的元器件很少只需要舵机一个、跳线一扎就可以了。 RB—412 舵机*1 面包板跳线*1 扎 用Arduino 控制舵机的方法有两种,一种是通过Arduino 的普通数字传感器接口产生占空比不同的方波,模拟产生PWM 信号进行舵机定位,第二种是直接利用Arduino 自带的Servo 函数进行舵机的控制,

无人机用电动舵机控制系统设计

2018年第46卷第10期 D 驱动控制rive and control 李红燕等 无人机用电动舵机控制系统设计 85 收稿日期:2018-05-08 基金项目:2017年度院级课题资助项目(JATC17010101) 无人机用电动舵机控制系统设计 李红燕1,和 阳2,蔡 鹏1,姜春燕1,徐 信1 (1.江苏航空职业技术学院,镇江212134;2.清华大学,北京100084) 摘 要:介绍一种无人机用机电一体化电动舵机控制系统三舵机结构采用无刷直流电动机二谐波减速器二联轴器二旋转变压器二摇臂串联的布局,结构紧凑二体积小三控制器以DSP+CPLD 为核心架构,采用PI 控制算法二位置保护和电流保护逻辑,增强了系统的可靠性三驱动器采用智能功率模块实现,简化了电路设计三实验结果表明,该系统满足控制性能要求,具有高功率密度的特点三 关键词:电动舵机;无刷直流电动机;DSP+CPLD;控制电路 中图分类号:TM359.9 文献标志码:A 文章编号:1004-7018(2018)10-0085-04 Design of Electric Steering Engine Control System Used for Unmanned Aerial Vehicle LI Hong-yan 1,HE Yang 2,CAI Peng 1,JIANG Chun-yan 1,XU Xin 1 (1.Jiangsu Aviation Technical College,Zhenjiang 212134,China; 2.Tsinghua University,Beijing 100084,China) Abstract :A kind of mechatronics electrical actuator control system used by unmanned aerial vehicle (UAV)was in- troduced.The layout of actuator adopted with brushless DC motor,harmonic reducer,shaft coupling,rotary transformer and servo arm in tandem to make the structure compact and small.The controller was based on DSP+CPLD,PI control al-gorithm,position protection and current protection logic were used to enhance the reliability of the system.The driver based on the intelligent power module simplified the circuit design.The experimental results show that the system meets the re-quirements of control performance and has the characteristics of high power density. Key words :electric actuator;brushless DC motor;DSP+CPLD;control circuit 0引 言 无人机依靠电动舵机来控制左右副翼二方向舵二升降舵和油门的定位,从而维持飞行姿态的稳定三随着无人机的应用越来越广泛,对电动舵机的结构及性能要求也越来越高,因此研究轻量化二性能可靠的电动舵机系统具有重要意义三 国外,很多机构为了实现无人机用电动舵机的微型化二高功率密度二高可靠性,开展了大量的试验研究[1-3]三Futaba 公司研制了一系列用于无人机舵面控制的小功率舵机[4]三Parker 宇航开发出具有抗 干扰容错,可耐受高温苛刻环境的飞行机电作动器三此外,美国空军二海军和NASA 研制的电动作动器,结构紧凑,在F /A-18B 系列飞机上进行了测试三国内许多高校和研究院对电动舵机的余度控制[5]二容错设计[6]二故障诊断[7-8]等方面进行了深入研究三 本文从舵机机械结构分析二硬件结构搭建二控制 算法和逻辑设计出发,旨在设计出满足高功率密度二高可靠性要求的电动舵机控制系统三 1 整体设计方案 电动舵机系统的机械结构主要包括电机二减速器二联轴器二位置传感器以及摇臂三电机选用盘式无刷直流电动机,体积小二质量轻;减速器采用谐波减速器,可提高系统的功率密度二传动精度以及扭转刚度;位置传感器采用旋转变压器(以下简称旋变),配合旋变解调芯片完成舵机当前摇臂位置信号的测量与传递,可应对无人操作及复杂的工作环境三电动舵机机械结构如图1所示,其体积尺寸为110mm?33mm?50mm,舵机与控制器集成于一体的布局,有效地利用了空间,提高了系统的集成度 三 图1 舵机机械结构图 设计中,要实现电动舵机的额定扭矩为2.6N四m,最大扭矩5.8N四m;行程范围0~30?三阶跃 响应时间短,无超调和振荡三动态响应速度快,输入? 3?,5Hz 的正弦信号时幅值衰减小于3dB,相位滞万方数据

飞鸿16路舵机控制器使用说明书

FH24路舵机控制器使用说明书 飞鸿科技 2012-5-24 一、产品介绍 (1) 二、功能特点 (3) 三、接口说明 (4) 四、指令说明 (6) 五、16路舵机调试软件使用说明 (7) 二、连接PC上位机 (9) 三、上位机界面编辑 (10) 四、单路舵机调试 (11) 五、动作组编辑 (12) 六、注意事项及故障解决 (13) 产品介绍 一、 一、产品介绍 设计该舵机控制板是为了方便新手学习多路舵机的控制。多路舵机控制并不很复杂,但至今网上关于多路舵机控制的资源很少,当前淘宝上的舵机控制板也都不提供程序代码。由于这些原因,大批的机器人爱好者不能掌握多路舵机控制。使得很多机器人爱好者停滞不前,在这些最基本的地方浪费大量时间,不能不精力放到更高层的机器人控制方面的研究。如果每个人

都从头做起,整体的进步必将非常的缓慢。别人做好的东西我们不妨拿来学习,这样要节省很多的时间与精力。在这个基础上继续前进,做出属于自己的更高级的机器人。 由于本人在这些基础的东西上耗费的大量的精力,导致我没有时间去做高级的控制,如自平衡,语音识别等。大学接近尾声,没能让自己的机器人进一步升级感到非常遗憾。 基于方便学习的原则,本板子的设计有一下几个特点: 1、选用大家熟悉的,容易掌握的51单片机。但不是普通51单片机,是功能强大的增强型单片机STC12C5A60S2。 有人说51控制的精度肯定不如ARM。是的,这是明显的事实。但是我用ARM的芯片来写教程,只能给少数人看,而且如果那个人ARM掌握的都很好了,也不需要看此教程了。该控制板设计的目的就是给机器人初级爱好者学习,仅仅因为这一点,选择51单片机是最恰当不过了。 我最初做的32路舵机控制板就是在arm芯片上做的,那些不适合新手学习,在51上学会了舵机控制的基本方法,等你会使用更高级单片机的时候可以很容易的移植到上面,实现更多舵机,更高精度的控制。 STC12C5A60S2单片机属于增强型51。他兼容传统的51单片机,也就是说,你原来的学习的、编写的51程序不用改动就能在这个单片机上直接使用,不会出现问题,而且速度提高8~12倍。但是它与传统51相比,在速度性能与资源方面都有了很大的提升。 (1)60K的flash程序存储器。89C52只有8K。 (2)1280字节的SRAM。你课本上学的RAM只有128字节。1280足够用了,省去外部扩展的麻烦。 (3)两个串口。 (4)独立波特率发生器。做机器人定时器往往很不够用,而传统51单片机串口通信还要占用定时器,有了独立波特率发生器就可以节省出一个定时器。 (5)PCA模块。可以硬件输出快速PWM。可以扩展出两个定时器。 (6)8路A/D转换通道。A/D转换在机器人、各种比赛中都很常用,使用这款单片机就不必再做AD转换电路。 2、程序下载接口、IO口引出。该板是单片机最小系统板+16路舵机控制板。不是单纯的舵机控制板,而是一款可以用来学习、编程、二次开发的开发板。可以直接用来参加比赛,DIY,毕业设计。 5、详细的教程,丰富的资料。该板子是淘宝中唯一提供程序代码、可以学习的舵机控制板。提供原理图、接口示意图、程序代码、上位机软件。另外购买该产品赠送本人搜集的单片机开发常用工具软件,机器人资料,单片机视频教程以及丰富的例程。

航模舵机控制原理详解

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。 其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。 3. 舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms 范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度; 2.5ms-----------180度; 这只是一种参考数值,具体的参数,请参见舵机的技术参数。 小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。如果需要更快速的反应,就需要更高的转速了。 要精确的控制舵机,其实没有那么容易,很多舵机的位置等级有1024个,那么,如果舵机的有效角度范围为180度的话,其控制的角度精度是可以达到180/1024度约0.18度了,从时间上看其实要求的脉宽控制精度为2000/1024us约2us。如果你拿了个舵机,连控制精度为1度都达不到的话,而且还看到舵机在发抖。在这种情况下,只要舵机的电压没有抖动,那抖动的就是你的控制脉冲了。而这个脉冲为什么会抖动呢?当然和你选用的脉冲发生器有

基于Arduino的舵机控制系统设计_蔡睿妍

Computer Knowledge and Technology 电脑知识与技术计算机工程应用技术本栏目责任编辑:梁书第8卷第15期(2012年5月)基于Arduino 的舵机控制系统设计 蔡睿妍 (大连大学信息工程学院,辽宁大连116622) 摘要:舵机是传统的角度控制驱动器,在机器人等领域得到了广泛应用。传统的舵机主要采用单片机系统驱动控制,但单片机系统对多个舵机同时进行驱动效果并不理想,因此,采用了流行的开源Arduino 控制板,通过输出不同脉宽的信号进行舵机转动角度控制,实验证明,该系统实现了舵机角度控制,满足舵机角度控制精度要求,为舵机的驱动提供了新方式。 关键词:Arduino ;舵机;脉宽信号;角度控制 中图分类号:TM383.4 文献标识码:A 文章编号:1009-3044(2012)15-3719-03Design of Servo Control System Based on Arduino CAI Rui-yan (Information and Engineering College of Dalian University,Dalian 116622,China) Abstract:The servo is the traditional angle control driver and has been widely used in robot and other fields.In general,servo is driven by microcontroller system,but the driving effect of microcontroller system is not satisfactory for multiple servos.So,the Arduino,an open source control board,is used to output different pulse width signal to control the servo rotation angle,experiment showed that,this system realizes the angle control of servo,meets the requirement of angle control precision and provides a new way to drive servo. Key words:Arduino;servo;pulse width signal;angle control 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前,在高档遥控玩具,如飞机、潜艇模型,遥控机器人中已经得到了普遍应用。传统对舵机的控制主要采用单片机,利用定时器和中断的方式来完成控制,这样的方式控制一个舵机还是相当有效的,但是随着舵机数量的增加,控制起来就没有那么方便了,尤其对机器人等需要多个舵机同时工作的系统中,单片机驱动复杂且精度难以保证。因此,本文采用目前较为流行的开源Arduino 来实现舵机的精确控制。1Arduino 简介 Arduino 是源自意大利的一个教学用开源硬件项目,主要是为希望尝试创建交互式物理对象的实践者、喜欢创造发明的人及艺术家所构建的,它秉承开源硬件思想,程序开发接口免费下载,也可依需求自己修改。Arduino 引脚如图1所示: 图1Arduino 控制板 其硬件系统是高度模块化的,通过USB 接口与计算机连接,包括14通道数字输入/输出,其中包括6通道PWM 输出、6通道10位 ADC 模拟输入/输出通道,电源电压主要有5V 和3.3V [1]。在核心控制板的外围,有开关量输入输出模块、各种模拟量传感器输入模 块、总线类传感器的输入模块,还有网络通信模块,只要在核心控制板上增加网络控制模块,就可以容易地与互联网连接。Arduino 还提供了自己的开发语言[2,3],支持Windows 、Linux 、MacOS 等主流的操作系统。Arduino 系统是基于单片机开发的,并且大量应用通用和标准的电子元器件,包括硬件和软件在内的整个设计,代码均采用开源方式发布,因此采购的成本较低,在各种电子制作竞赛、收稿日期:2012-04-23 作者简介:蔡睿妍(1979-),黑龙江林甸县人,讲师,硕士,主要从事电子技术、通信与网络方向的研究。 E-mail:kfyj@https://www.360docs.net/doc/641702853.html, https://www.360docs.net/doc/641702853.html, Tel:+86-551-56909635690964 ISSN 1009-3044Computer Knowledge and Technology 电脑知识与技术Vol.8,No.15,May 2012.3719

舵机测试方案

舵机测试方案 1、舵机转速测量 方案一:通过测量舵机无负载的情况下转过60°角所需时间来确定舵机转速。以扇形纸板固定在舵盘上,在舵机从-45°~+45°(或-90°~+90°)位置之间的-30°~+30°角线的适当位置制作两小孔(下图A,B处为红外对管信息采集通道),以给红外射对管提供信息传递通道。这样就可以在这两个信息通道采集舵机在转过60°范围的起始位置和结束位置的信号变化,将采集到的信号经过比较器(LM393)整形后送入单片机进行处理(这里可将整形后的数字变化信号进行定时中断处理),就可以获得舵机在转过60°范围的起始位置和结束位置过程中需要的时间值,并将时间值通过数码管显示出来。从而测得舵机的转速值。

方案二:测试设备:舵机控制器速度测试架 操作方法: 1设定好舵机供电电压 2舵机控制器脉冲宽度制调节在,接上舵机,使舵机静止在舵机的中央位置 3舵机固定在角度测试架上,指针较准在90度 4使舵机控制器的脉宽输出变成2ms,记录正向60度角摆幅的时间(正向1) 5使舵机控制器的脉宽输出变回,记录反向60度角摆幅的时间(反向1) 6使舵机控制器的脉宽输出变成,记录反向60度角摆幅的时间(反向2) 7使舵机控制器的脉宽输出变回,记录正向60度角摆幅的时间(正

向2) 8更改舵机供电电压,重覆步骤2到7 2、转矩测量 方案一:通过实际的测试来验证该舵机的转矩。因为舵机扭矩的单位是Kg·cm,所以可以在舵盘上距舵机轴中心水平 距离1cm处,测试舵机能够带动物体的重量。 注意:因为较高的电压可以提高电机的速度和扭矩,所以在测试其性能参数时应根据具体情况合理选择舵机的工作 电压。

舵机工作原理要点

舵机工作原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。

3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。

有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的: 收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能

提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用图3来表示。 可变脉宽输出试验(舵机控制) 原创:xidongs 整理:armok / 2004-12-05 / https://www.360docs.net/doc/641702853.html,

舵机及转向控制原理

舵机及转向控制原理 令狐采学 1、概述 2、舵机的组成 3、舵机工作原理 4、舵机选购 5、舵机使用中应注意的事项 6、辉盛S90舵机简介 7、如何利用程序实现转向 8、51单片机舵机测试程序 1、概述 舵机也叫伺服电机,最早用于船舶上实现其转向功能,由于可以通过程序连续控制其转角,因而被广泛应用智能小车以

实现转向以及机器人各类关节运动中,如图1、图2所示。 令狐采学创作 图1舵机用于机器人 图2舵机用于智能小车中 舵机是小车转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳定性高等特点,无论是在硬件设计还是软件设计,舵机设计是小车控制部分重要的组成部分,图3为舵机的外形图。 图3舵机外形图 2、舵机的组成 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿 轮组、位置反馈电位计、直流电机、控制电路等,如图4、图5所示。 图4舵机的组成示意图 图5舵机组成

舵机的输入线共有三条,如图6所示,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有两种规格,一是4.8V, —令狐采学创作是6.0V,分别对应不同的转矩标准,即输出力矩不 同,6.0V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而不是中间,需要辨认。但记住红色为电源,黑色为地线,一般不会搞错。 图6舵机的输出线 3、舵机工作原理 控制电路板接受来自信号线的控制信号,控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机转动的方向和速度,从而达到目标停止。其工作流程为:控制信号一控制电路板―电机转动-齿轮组减速-舵盘转动?位置反馈电位计-控制电路板反馈。

舵机控制型机器人设计要点

课程设计项目说明书 舵机控制型机器人设计 学院机械工程学院 专业班级2013级机械创新班 姓名吴泽群王志波谢嘉恒袁土良指导教师王苗苗 提交日期 2016年4 月1日

华南理工大学广州学院 任务书 兹发给2013级机械创新班学生吴泽群王志波谢嘉恒袁土良 《产品设计项目》课程任务书,内容如下: 1. 题目:舵机控制型机器人设计 2.应完成的项目: 1.设计舵机机器人并实现运动 2.撰写机器人说明书 3.参考资料以及说明: [1] 孙桓.机械原理[M].北京.第六版;高等教育出版社,2001 [2] 张铁,李琳,李杞仪.创新思维与设计[M].国防工业出版社,2005 [3] 周蔼如.林伟健.C++程序设计基础[M].电子工业出版社.北京.2012.7 [4] 唐增宏.常建娥.机械设计课程设计[M].华中科技大学出版社.武汉.2006.4 [5] 李琳.李杞仪.机械原理[M].中国轻工业出版社.北京.2009.8 [6] 何庭蕙.黄小清.陆丽芳.工程力学[M].华南理工大学.广州.2007.1 4.本任务书于2016 年2 月27 日发出,应于2016 年4月2 日前完 成,然后提交给指导教师进行评定。 指导教师(导师组)签发2016年月日

评语: 总评成绩: 指导教师签字: 年月日

目录 摘要 (1) 第一章绪论 (2) 1.1机器人的定义及应用范围 (2) 1.2舵机对机器人的驱动控制 (2) 第二章舵机模块 (3) 2.1舵机 (3) 2.2舵机组成 (3) 2.3舵机工作原理 (4) 第三章总体方案设计与分析 (6) 3.1 机器人达到的目标动作 (6) 3.2 设计原则 (6) 3.3 智能机器人的体系结构 (6) 3.4 控制系统硬件设计 (6) 3.4.1中央控制模块 (7) 3.4.2舵机驱动模块 (7) 3.5机器人腿部整体结构 (8) 第四章程序设计 (9) 4.1程序流程图 (9) 4.2主要中断程序 (9) 4.3主程序 (11) 参考文献 (13) 附录 (14) 一.程序 (14) 二.硬件图 (17)

舵机原理及其使用详解

舵机的原理,以及数码舵机VS模拟舵机 一、舵机的原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。 有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的:

收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20ms(即频率为50Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

舵机及转向控制原理

舵机及转向控制原理 1、概述 2、舵机的组成 3、舵机工作原理 4、舵机选购 5、舵机使用中应注意的事项 6、辉盛S90舵机简介 7、如何利用程序实现转向 8、51单片机舵机测试程序 1、概述 舵机也叫伺服电机,最早用丁船舶上实现其转向功能,由丁可以通过程序连续控制其转角,因而被广泛应用智能小车以实现转向以及机器人各类关节运动中,如图1、图2所示。

舵机是小车转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳定性高等特点,无论是在硬件设计还是软件设计,舵机设计是小车控制部分重要的组成部分,图3为舵机的外形图。 2、舵机的组成 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计、直流电机、控制电路等,如图4、图5所示。

变速齿轮组 诃调电位器小型宜流电机 fff 图4舵机的组成示意图 图5舵机组成 舵机的输入线共有三条,如图6所示,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有 两种规格,一是4.8V, 一是6.0V,分别对应不同的转矩标准,即输出力矩不同, 6.0V 对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANW曲某些型号的舵机引线电源线在边上而不是中间,需要辨认。但记住红色为电源,黑色为地线,一般不会搞错。

输出转轴 电源线知 地线GND 控制线 图6舵机的输出线 3、舵机工作原理 控制电路板接受来自信号线的控制信号, 控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘 转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进 行反馈,然后控制电路板根据所在位置决定电机转动的方向和速度,从而达到 目标停止。其工作流程为:控制信号T控制电路板T电机转动T齿轮组减速T舵盘转动T位置反馈电位计T控制电路板反馈。流,才可发挥舵机应有的性能。 舵机的控制信号周期为20MS的脉宽调制(PWM信号,其中脉冲宽度从0.5-2.5MS,相对应的舵盘位置为0—180度,呈线性变化。也就是说,给他提供一定的脉宽,它的输出轴就会保持一定对应角度上,无论外界转矩怎么改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应位置上如图7所求。舵机内部有一个基准电路,产生周期为20MS宽度1.5MS的基准信号,有一个比出较器,将外加信号与基准信号相比较,判断出方向和大小,从而生产电机的转动信号。由此可见,舵机是一种位置伺服驱动器,转动范围不能超过180度,适用丁那些需要不断变化并可以保持的驱动器中,比如说机器人的关 节、飞机的舵面等。

关于舵机的控制

电子科技大学:(清晰明了,代码看不懂) 其实在车速不快的情况下只用车前40cm 内的黑线偏差就可以让赛车沿黑线行驶,问题是在赛车高速行驶时需要对前方 更远的赛道信息进行预判,例如控制赛车入弯前减速、使赛车走最优路径等。因此我们使用距离车前第21 行、22 行、23 行的黑线平均位置计算赛车离黑线 的偏差控制舵机拐向,用更远端的黑线来进行赛道预判。计算相邻两段黑线的 斜率还可以判断出小S 弯,让赛车在小S 弯直冲。 如图5.5.3.1 所示,Mid_Erro 为赛车当前的方向偏差,用于控制舵机当前时 刻的转向。Top_Erro 为图像最远端离中线的偏差,用于进行赛车前方赛道预判,Top_Erro 越大,减速越大 如图5.5. 3.2 所示,只要计算相隔S_Row 行的黑线的相对斜率Up_Erro 和Down_Erro ,如果Up_Erro 和Down_Erro 方向相反而且大于预设的阈值就可 以判定出小S 弯,让输出的偏移量Erro 缩小,减小舵机的转向,使小车减小 抖动。 桂林理工: D_zhongxin DJ_chu+ (D_Kp = + + xiu_D_Kp) (error dd_error)/ 10 - * error/10 D_Kd * 其中,D_zhongxin是车模前轮摆正时的参数,为1460;D_Kp是舵机PD控制的P值;xiu_D_Kp 是舵机P值的修正值;error是当前图像的黑线中心的偏差;D_Kd是舵机PD控制中的D值;dd_error是上次图像黑线中心的偏差。DJ_chu是输出给舵机的PWM值。 军械工程:斜率做赛道判断(同桂林) void Direction_Control(void) { Control_Row = Good_Road_End-1; if(Control_Row_Far == 1) //40 行控制

相关文档
最新文档