光电耦合器的作用

光电耦合器的作用
光电耦合器的作用

光电耦合器的作用

光电耦合器的作用简单描述:

用来隔离高频电路与低频电路,

高频电路产生的高频信号会干扰低频电路,用光耦合器既能连接两个部分又能屏蔽高频信号。

光电耦合器的作用详解:

由于光耦种类繁多,结构独特,优点突出,因而其应用十分广泛,主要应用以下场合:(1) 在逻辑电路上的应用

光电耦合器可以构成各种逻辑电路,由于光电耦合器的抗干扰性能和隔离性能比晶体管好,因此,由它构成的逻辑电路更可靠。

(2) 作为固体开关应用

在开关电路中,往往要求控制电路和开关之间要有很好的电隔离,对于一般的电子开关来说是很难做到的,但用光电耦合器却很容易实现。

(3) 在触发电路上的应用

将光电耦合器用于双稳态输出电路,由于可以把发光二极管分别串入两管发射极回路,可有效地解决输出与负载隔离地问题。

(4) 在脉冲放大电路中的应用

光电耦合器应用于数字电路,可以将脉冲信号进行放大。

(5) 在线性电路上的应用

线性光电耦合器应用于线性电路中,具有较高地线性度以及优良地电隔离性能。

(6) 特殊场合的应用

光电耦合器还可应用于高压控制,取代变压器,代替触点继电器以及用于A/D电路等多种场合。

光电耦合器简介:

光电耦合器是一种把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。当输入电信号加到输入端发光器件LED上,LED发光,光接受器件接受光信号并转换成电信号,然后将电信号直接输出,或者将电信号放大处理成标准数字电平输出,这样就实现了“电-光-电”的转换及传输,光是传输的媒介,因而输入端与输出端在电气上是绝缘的,也称为电隔离。

光电耦合器特点

光电耦合器因为其独特的结构特点,因此在实际使用过程中,具有以下明显的优点:

(1) 能够有效抑制接地回路的噪声,消除地干扰,使信号现场与主控制端在电气上完全隔离,避免了主控制系统受到意外损坏。

(2) 可以在不同电位和不同阻抗之间传输电信号,且对信号具有放大和整形等功能,使得实际电路设计大为简化。

(3) 开关速度快,高速光电耦合器的响应速度到达ns数量级,极大的拓展了光电耦合器在数字信号处理中的应用。

(4) 体积小,器件多采用双列直插封装,具有单通道、双通道以及多达八通道等多种结构,

使用十分方便。

(5) 可替代变压器隔离,不会因触点跳动而产生尖峰噪声,且抗震动和抗冲击能力强。

(6) 高线性型光电耦合器除了用于电源监测等,还被用于医用设备,能有效地保护病人的人生安全。

对于光耦的电气隔离作用总结:

阻断信号源跟信号接收方的电气连接,这样可以有较的阻断电气干扰。

比如说PLC(工业控制器)他的所采集的外部信号要进入PLC内部就是通过光电耦合器进入的,PLC采集的信号通常是在机械处或其它强电气信号干扰严重的地方,如果不采用光电耦合器,干扰电信号进入PLC,就会影响它的正常工作,采用光电耦合器就避免了外界电气信号的干扰。

在使用时,光耦的输入电路和输出电路必须不共地,这样才能避免共模干扰,达到电气隔离的作用。

我看的光电耦合器是起隔离作用的,我的理解,电信号之间会有干扰,通过光电耦合器,电-变成光--又变成电,就不会受干扰了?不知道对不对

你理解没错,光电耦合器作用就是:阻断信号源跟信号接收方的电气连接,这样可以有较的阻断电气干扰。

比如说PLC(工业控制器)他的所采集的外部信号要进入PLC内部就是通过光电耦合器进入的,PLC采集的信号通常是在机械处或其它强电气信号干扰严重的地方,如果不采用光电耦合器,干扰电信号进入PLC,就会影响它的正常工作,

采用光电耦合器就避免了外界电气信号的干扰

干扰,通常是共模的,就是两根在一起的线上感应的干扰电平相位相同幅度相同。这个时候如果两根线的对地阻抗不同,就会在这两根线上面产生干扰电压差,就会产生干扰现象。但是如果两个电路完全不共地,就可以在另一个线路里面做出平衡度高于前端,干扰电平就不会传导到后端电路了。光耦的作用就是基于这个原理,也证明另一个道理,仅仅只有光耦,抗干扰还是不够的。

原创文章:"https://www.360docs.net/doc/6f1713671.html,/public/tool/kbview/kid/1003/cid/1"

【请保留版权,谢谢!】文章出自电子元件技术网。

常见的光电耦合电路及其应用分析

常见的光电耦合电路及其应用分析 光电耦合电路是设计中常用的将信号进行隔离和转换并再次利用的一种应用,它主要是将输入的电信号通过介质转换成光信号,再根据介质和电路的特性转换成电信号输出,实现“电-光-电”之间的转换。同时将由于电路之间由于电容/电感等元器件或电磁感应等造成的干扰基本上排除。可见光电耦合电路在各位的设计应用中发挥着重要的作用。 光电耦合器是将光电耦合电路进行了集成和封装后得到的ic产品,它把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。最常用的发光器件就是LED发光二极管了,当输入电信号加到输入端会导致LED发光,光接受器件接受LED的发光的光信号后将其转换成电信号并输出。 光电耦合电路结构独特,可有效抑噪声消除干扰、开关速度快、体积小、可替代变压器隔离等,并可以组成和应用到开光电路、逻辑电路、隔离耦合电路、高压稳压电路、继电器替代电路等,故小编整理和总结了几种常见的光电耦合电路图,并对他们的应用需要和范围进行分析,希望能给大家的学习、掌握和应用这种电路有一定的指导作用。 (1)组成的多谐振荡器电路图 工作流程为接通电源后: A、电容C两端电压不能突变,电阻R数值大于Rl,电源电压Ec主要加在R上,F点电位很低,LED处于截止状态; B、电容充电电压增加导致F点电位逐渐增高,到达一定程度使LED导通发光,光敏三极管导通饱和,输出电压发生跃变使之接近电源电压;(即U0约=Ec) C、电容上存留电荷通过三极管、LED通路快速放电,并对其反向充电到达一定程度后导致LED截止及三极管截止???; D、电容再次通过电阻R和RL放电进行反向充电,LED发光光敏三极管再次饱和,如此循环形成振荡。 作用:多谐振荡器也叫自激多谐振荡器,它的作用是产生交流信号。将直流电变为交流

PC817A光电耦合器

PC817A/B/C--- 电光耦合器 光耦特性与应用 1.概述 光耦合器亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。 近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别介绍光耦合器的工作原理及检测方法。 2. 光耦的性能及类型 用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气性能。 事实上,光耦合器是一种由光电流控制的电流转移器件,其输出特性与普通双极型晶体管的输出特性相似,因而可以将其作为普通放大器直接构成模拟放大电路,并且输入与输出间可实现电隔离。然而,这类放大电路的工作稳定性较差,

光耦的作用及 工作原理

光耦的作用及工作原理 光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来的新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。隔离能起到保护的作用,如一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。当两个不同型号的光耦只有负载电流不同时,可以用大负载电流的光耦代替小负载电流的光耦。 以六脚光耦TLP641J为例,说明其原理。 一个光控晶闸管(photo-thyristor)耦合(couple to)一个砷化镓(gallium arsenide)红外发光二极管(diode)组成。左边1和2脚是发光二极管,当外加电压后,驱动发光二极管(LED),使之发出一定波长的光,以此来触发光控晶闸管。光控晶闸管的特点是门极区集成了一个光电二极管,触发信号源与主回路绝缘,它的关键是触发灵敏度要高。光控晶闸管控制极的触发电流由器件中光生载流子提。光控晶闸管阳极和阴极间加正压,门极区若用一定波长的光照射,

光电耦合器工作原理

光电耦合器工作原理 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装 图二光电耦合器之内部结构图三极管接收型 6脚封装

图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在

光电耦合器及其应用

光电耦合器及其应用 [作者:佚名转贴自:未知点击数:933 更新时间:2006-3-31 【字体:A 】 光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、 寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等 特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电 器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、 过流保护、长线传输、高压控制及电平匹配等。 为使读者了解与应用光电耦合器,今介绍几种光电耦合器件及应用电路,供大 家参考与开拓。 1.器件选择 (1)三极管输出型光电耦合器 三极管输出型光电耦合器电路如图46—1中(a)所示,它是由两部分组成的。其中,1、2端为输入端,通常由发光器件构成; 4、5、6端接一只光敏三极管构成输出端,当接收到发射端发出的红外光后,在三极管集电极中便有电流输出。 图46-1 三极管输出型光电耦合器的特点,是具有很高的输入输出绝缘性能,频率响应可达300kHz,开关时间数微秒。 (2)可控硅输出型光耦合器 可控硅输出型光耦合器的电路如图46?中(b)所示。该器件为六脚双列式封装。当1、2端加入输入信号后,发射管发出的红

外光被接在4、5、6脚的光敏可控硅接收,使其导通。它可应用在低电压电子电路控制高压交流回路的开启。 (3)光耦合的可控硅开关驱动器 图46—2中(a)为光敏双向开关器件;图46?中(b)为过零控制电路及光敏双向开关器件组合体。它们的工作原理是:利用输入端红外光控制输出端的光敏双向开关导通,进而触发外接双向可控硅导通,达到控制负载接入交流220V回路的目的。图中(a)为非过零控制,图中(b)为过零控制。本驱动器有非常好的输入与输出绝缘性,可构成固态继电器的控制电路,其输 出的控制功率由可控允许功率决定。 图46-2 (4)达林顿管输出的光检测器 达林顿管输出的光检测器如图46?中(a)所示。它是由两只管子组成复合管,具有很高的电流放大能力,形成下一级或负载的 驱动电流,有较强的光检测灵敏度。 (5)数字电路光耦合器 数字电路光耦合器电路如图46?中(b)所示。光耦合器输出为施密特触发电路形式,其特点是响应速度快、数字逻辑可靠,应 用于计算机接口、数控电源及电动机控制中。 (6)双向开关触发器输出的光检测器 图46—3中的(c)为双向开关触发器输出的光检测器电路。该图为三端器件,内部是光敏双向开关器件,收到红外光线后,双向开关器件导通,触发外接可控硅导通,使负载接入220V回路中。

光电耦合器件简介

光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之部结构图三极管接收型 4脚封装

图二光电耦合器之部结构图三极管接收型 6脚封装 图三光电耦合器之部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之部结构图可控硅接收型 6脚封装 图五光电耦合器之部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:

(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号与类比电路的介面处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将类比电路和数位电路相互隔离,起到抑制交叉串扰的作用。 图六光电耦合器接线原理 对于线性类比电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/F变换后再用数位光耦进行隔离。 功率驱动电路中的光电隔离 在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动介面电路,为避免微机受到干扰,须采取隔离措施。如可控硅所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与可控硅触发电路进行隔离。电路实例如图7所示。

光电耦合器的发展及应用(精)

光电耦合器的发展及应用 摘要:半导体光电耦合器现已发展成为一类特殊的半导体隔离器件。它体积小、寿命长、无触点、抗干扰、能隔离,并具有单向信号传输和容量连接等功能。文中介绍了光电耦合器的典型结构和特点以及国内外的发展现状,最后给出了半导体电隔离耦合器件的多种应用电路实例。 关键词:发光器件光接收器件输入输出光电耦合器 随着半导体技术和光 电子学的发展,一种 能有效地隔离噪音和 抑制干扰的新型半导 体器件——光电耦合 器于1966年问世了。 光电耦合器的优点是 体积小、寿命长、无 触点、抗干扰能力 强、能隔离噪音、工 作温度宽,输入输出之间电绝缘,单向传输信号及逻辑电路易连接等。光电耦合器按光接收器件可分为有硅光敏器件(光敏二极管、雪崩型光敏二极管、PIN 光敏二极管、光敏三极管等)、光敏可控硅和光敏集成电路。把不同的发光器件和各种光接收器组合起来,就可构成几百个品种系列的光电耦合器,因而,该器件已成为一类独特的半导体器件。其中光敏二极管加放大器类的光电耦合器随着近年来信息处理的数字化、高速化以及仪器的系统化和网络化的发展,其需求量不断增加。 1 光电耦合器的结构特点 光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内,然后利用发光器件的管脚作输入端,而把光接收器的管脚作为输出端。当在输入端加电信号时,发光器件发光。这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。从而实现了以“光”为媒介的电信号传输,而器件的输入和输出两端在电气上是绝缘的。这样就构成了一种中间通过光传输信号的新型半导体电子器件。光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。图1是三种系列的光电耦合器电路图。 光电耦合的主要特点如下: ●输入和输出端之间绝缘,其绝缘电阻一般都大于10 10Ω,耐压一般可超过1kV,有的甚至可以达到10kV以上。

光耦的工作原理

光耦的工作原理 耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的优点 光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 光耦的种类 光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。常用的4N2 5 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 光耦的作用

(完整word版)光耦原理介绍

光电耦合器 TLP521是可控制的光电藕合器件,光电耦合器广泛作用在电脑终端机,可控硅系统设备, 测量仪器,影印机,自动售票,家用电器,如风扇,加热器等 电路之间的信号传输,使之前端与负载完全隔离,目的在于增加安全性,减小电路干扰,减 化电路设计。 东芝TLP521-1,-2和-4组成的砷化镓红外发光二极管耦合到光三极管。 该TLP521-2提供了两个孤立的光耦8引脚塑料封装,而TLP521-4提供了4个孤立的光 耦中16引脚塑料DIP封装 集电极-发射极电压: 55V(最小值)经常转移的比例: 50 %(最小)隔离电压: 2500 Vrms (最小) 图1 TLP521 TLP521-2 TLP521-4 光藕内部结构图及引脚图 图2 TLP521-2 光电耦合器引脚排列图 Characteristic 参数 Symbol 符号 Rating 数值Unit 单位 TLP521?1 TLP521?2 TLP521?4 LED Forward current 正向电流IF 70 50 mA Forward current derating 正向电流减率ΔIF/℃?0.93(Ta≥50℃)?0.5(Ta≥25℃)mA/℃Pulse forward current 瞬间正向脉冲电流IFP 1 (100μ pulse, 100pps) A Reverse voltage 反向电压VR 5 V Junction temperature 结温Tj 125 ℃ 接 收 侧 Collector?emitter voltage 集电极发射 极电压 VCEO 55 V Emitter?collector voltage 发射极集电VECO 7 V

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,

光耦反馈常见几种连接方式及其工作原理

光耦反馈常见几种连接方式及其工作原理 来源:互联网?作者:佚名? 2017-11-07 14:12 ? 23793次阅读 在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。但对于光 耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。而且在很 多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致 电路不能正常工作。本研究将详细分析光耦工作原理,并针对光耦反馈的几 种典型接法加以对比研究。 1、常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。这里以TLP521为例,介绍这类光耦的特性。TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic 越大。副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大 系数,该系数随温度变化而变化,且受温度影响较大。作反馈用的光耦正是 利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变 化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。 此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。 通常选择TL431结合TLP521进行反馈。这时,TL431的工作原理相当于 一个内部基准为2.5V的电压误差放大器,所以在其1脚与3脚之间,要接 补偿网络。常见的光耦反馈第1种接法,如图1所示。图中,Vo为输出电压,Vd为芯片的供电电压。com信号接芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com 信号则接到其对应的同相端引脚。注意左边的地为输出电压地,右边的地为 芯片供电电压地,两者之间用光耦隔离。图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压 上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原 边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,

各种光电耦合器参数

常用参数 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。 反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。结电容CJ:在规定偏压下,被测管两端的电容值。 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持 IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。 脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP 的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。 传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。 入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。 入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。 入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。 最大额定值 参数名称 符号 最大额定值 单位 V 反向电压 5 V R I 正向电流 50 mA

光电耦合器moc3083

光电耦合器 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。 中文名 光电耦合器 外文名 optical coupler 英文缩写 OC 目录 .1基本资料 .?简介 .2工作原理 .?基本原理 .?基本工作特性(光敏三极管) .3结构特点 .4仪器测试 .5应用

.?开关电路 .6具体应用 .?组成开关电路 .?组成逻辑电路 .?隔离耦合电路 .?高压稳压电路 .?门厅照明灯自动控制电路 .7分类 .?按光路径分 .?按输出形式分 .?按封装形式分 .?按传输信号分 .?按速度分 .?按通道分 .?按隔离特性分 .?按工作电压分 .8选取原则 .9发展现状注意事项 .10发展现状 .11应用前景 基本资料 编辑 简介 光电耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光电耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。 光电耦合器是一种把发光器件和光敏器件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。其中,发光器件一般都是发光二极管。而光敏器

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由

线性光耦原理与电路设计

可编辑 线性光耦原理与电路设计 1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍 2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示 其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即 K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。 . . 精品

光电耦合器组成的脉冲电路(精)

https://www.360docs.net/doc/6f1713671.html, 光电耦合器组成的脉冲电路https://www.360docs.net/doc/6f1713671.html, 这里介绍的光电耦合器是由发光二极管和光敏三极管组合起来的器件,发光二极管是把输入边的电信号变换成相同规律变化的光,而光脉敏三极管是把光又重新变换成变化规律相同的电信号,因此,光起着媒介的作用。由于光电耦合器抗干扰能力强,容易完成电平匹配和转移,又不受信号源是否接地的限制。所以应用日益广泛。 一、用光电耦合器组成的多谐振荡电路 用光电耦合器组成的多谐振荡电路见图1。 当图1(a)刚接通电源Ec时,由于UF随C充电而增加,直到UF≈1伏时,发光二极管达到饱和,接着三极管也饱和,输出Uo≈Ec。 三极管饱和后,C放电(由C→F→E1→Er和由C→RF→+Ec→Re两条路径放电),uo减小,二极管在C放电到一定程度后就截止,而三极管把储存电荷全部移走后,接着也截止,uo为零。三极管截止后,电源Ec又对C充电,重复上述过程,得出图示的尖峰输出波形,其周期,为(当RF》Re时): T=C(RF+Re)In2 图1(b)是原理相同的另一种形式电路。 图1、用光电耦合的多谐振荡器 二、用光电耦合器组成的双稳态电路 用光电耦合器组砀双稳态电路如图2所示。 电路接通电源后的稳态是BG截止,输出高电位。在触发正脉冲作用下,ib 增加使BG进入放大状态,形成ib↑→if↑→ib↑↑,结果BG截止,这种电路比普通的触发顺具有更高的抗干扰能力。若设BG的极限电流Ic=6毫安,则R2=取为: R2≥(13-1)/(6×10)=24欧 限流电阻R1可按下式计算 R1≥(E-IbmRce2min)/Ibm 式中:Ibm是晶体管的最大基极电流,Rce2min是光敏三极管集射间的最小电阻值。

光电耦合器moc

光电耦合器 ? 本词条由?审核。 光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。 中文名 光电耦合器 外文名 optical coupler 英文缩写 OC 目录 .1? .?? .2? .?? .?? .3? .4? .5?

.?? .6? .?? .?? .?? .?? .?? .7? .?? .?? .?? .?? .?? .?? .?? .?? .8? .9? .10? .11? 基本资料 简介 光电耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光电耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。 光电耦合器是一种把发光器件和光敏器件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。其中,发光器件一般都是发光二极管。而光敏器

件的种类较多,除光电二极管外,还有光敏三极管、光敏电阻、光电晶闸管等。光电耦合器可根据不同要求,由不同种类的发光器件和光敏器件组合成许多系列的光电耦合器。 图1显示了一个典型的光电耦合器驱动电路。在该例中,右边的5V副边输出将会被左边原边电路的脉宽调制器控制。 比较器A1将ZDl(结点A)的参考电压和通过分压电路R7和R8的输出电压进行比较,因而控制Q2的导通状态,可以定义发光二极管D1的电流和通过光耦合在光敏晶体管Q1的集电极电流。然后Q1定义脉冲宽度和输出电压,补偿任何使输出电压改变的倾向。 随着光电耦合器的使用时间增加和传输比即增益的下降,为了防止控制失灵,给Q2提供充足的驱动电流裕量是很有必要的。 光电耦合器实物图 光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。(外形有金属圆壳封装,塑封双列直插等)。 工作原理 基本原理 在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。 光电耦合器主要由三部分组成:光的发射、光的接收及信号放大。光的发射部分主要由发光器件构成,发光器件一般都是发光二极管,发光二极管加上正向电压时,能将电能转

常用光电耦合器代换大全

常用光电耦合器代换大全 常用光电耦合器代换大全 时间: 2012-05-19 18:15:51 来源: 山阳维修网 光电耦合器结构及代换型号 时间: 2010-10-25 03:22:21 来源: 山阳维修网 光电耦合器在彩电控制电路中应用比较广泛,维修人员也常接触到光电耦合器。 笔者依据光电耦合器的特性,设计了一个方便的测试光电耦合器好坏的电路,如图1所示。该电路简单、准确,使用方便。 电路原理 当接通电源后,LED不发光,按下S2,LED会发光。调Rp,LED的发光强度会发生变化,说明光电耦合器是好的。实际制作时,可用面包板安装元器件和焊接。另外,若S2用轻触常开开关,S1用钮子开关,电池用纽扣电池AG3等,再加上集成块座可把该测试电路安装在一个小印板上,整个装置只相当于1/2火柴盒大小。 附:常见光电耦合器结构及代换型号见图2。光耦

合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。各品牌光耦替代型号Fairchild NEC Part Nnmber TOSHIBA Par Number Lv PartNnmber

TOSHIBA Par Number Lv H11A617 TLP421 B PS2501-1 TLP421 A H11A817 TLP421

光电耦合器原理及使用

光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。点击进入万联芯城 点击进入万联芯城

光耦使用技巧 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在 电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1 光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发 光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管, 因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图 可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精

度较差。 图1 光电耦合器结构及输入、输出特性 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输 特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/ U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,利用T1 和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。 图2 光电耦合线性电路 另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送

相关文档
最新文档