沥青混合料知识点

沥青混合料知识点
沥青混合料知识点

1.高温稳定性:在高温条件下,抵抗车辆荷载反复作用,不发生显著永久变形,保持平整度的特性。高温稳定性的影响因素:沥青混合料类型的影响(高温稳定性形成机理来源于沥青结合料的高温粘结性和矿料级配的嵌挤作用);材料(选取优质材料,合适的沥青用量,适当的级配设计。适当减少沥青用量,加大压实度,使混合料充分嵌挤,又没有留下大的空隙率是提高沥青路面高温稳定性的重要措施);气候;荷载;评价高温稳定性的试验:马歇尔稳定度试验(马歇尔稳定度和流值)和车辙试验(动稳定度)

2.低温抗裂性:低温下产生体积收缩,边界约束在其内部产生温度应力,沥青混合料抵抗这种应力而不破坏的特性。温度应力超过容许应力时会发生开裂;影响低温性能因素:沥青黏度和沥青温度敏感性,低温弯拉试验的破坏应变指标加以评价。

3.耐久性:使用过程中抵抗环境因素及行车荷载反复作用的能力。

4.抗滑性:路面的抗滑能力与沥青混合料的粗糙度、级配组成、沥青用量和矿质集料的微表面等因素有关;抗滑性的主要因素:矿物组成、化学成分及风化程度、加工方法所决定的矿料自身表面结构;矿料级配所确定的路面构造深度;沥青用量及含蜡量。

4.施工和易性:混合料在拌和、摊铺与碾压过程中集料颗粒保持分布均匀、表面被沥青膜完整的包裹,并能被压实到规定密度的性质。施工和易性的因素:组成材料的矿料级配、粗细集料之间比例、沥青与矿粉之间比例、矿料与沥青之间比例和施工条件(温度、拌和时间、拌和设备等)

5.水稳定性的因素:集料的化学组成、沥青混合料的压实空隙率或混合料类型、沥青用量和沥青膜厚度、沥青品质

水稳定性测试方法:粘附性试验(黏附性等级)、浸水马歇尔试验(残留稳定度)、冻融劈裂试验(冻融劈裂强度比)

5.气候分区指标:高温、低温、雨量

6.蠕变:在恒定荷载下随时间而增加的应变

7.合成级配:几种矿质集料按照一定的比例配合得到的沥青混合料的级配情况

8.沥青马蹄脂碎石或SMA混合料:一种粗集料多、矿粉多、沥青用量多,而细集料少,并掺加少量纤维稳定剂组成的沥青马蹄脂混合料。

9.理论最大密度:假设沥青混合料试件被压实至完全密实,没有空隙的理想状态下的最大密度

10.粗集料的毛体积密度:规定条件下烘干集料矿质实体包括空隙体积在内的单位毛体积质量。

10.胶浆理论:粗集料分布在沥青与细集料形成的沥青砂中,细集料有分布在沥青与矿粉形成的沥青胶囊中,形成具有一定摩阻力的多级网络结构

10.表面理论:沥青混合料是由粗、细、填料经人工配制成密实的级配矿质骨架。此骨架由沥青于表面将其胶结成具有强度的整体。

10.空隙率:压实状态下沥青混合料中矿料与沥青实体之外的空隙体积占试件总体积的百分率

11.矿料间隙率:压实沥青混合料试件中矿料实体以外空间体积占试件总体积的百分率

11目标配合比设计步骤:矿质混合料组成设计,沥青混合料马歇尔试验,最佳沥青用量确定,沥青混合料性能检验

12.沥青饱和度:压实的沥青混合料试件中沥青实体体积占矿料骨架实体以外的空间体积的百分率

13.马歇尔稳定度:评价高温稳定性的指标,沥青混合料试件成型后进行稳定度试验,试验荷载的最大值即表示稳定度,14.流值:马歇尔试验中试件受压至破坏时试件的垂直变形,0.1mm记

15.动稳定度:标准方法成型的试件在其表面试验轮反复作用下形成的车辙深度,以1mm车辙变形所需要的行走次数作为动稳定度

16.粘滞性:沥青材料在外力作用下沥青粒子产生相互位移的抵抗剪切变形的能力

17.延度:沥青式样制成标准试件,在规定的拉伸速度和拉伸温度下拉断时的长度,以cm记

18.软化点:沥青材料非晶体材料,没有明确的固化点和液化点,通常采用条件硬化点和滴落点来表示,在实际工程中为了保证沥青不至于温度升高而产生流动状态,取滴落点和硬化点之间温度间隔的87.32%作为软化点。

19.针入度:沥青在规定的温度下,以规定质量的标准针经过规定试件贯入沥青式样的深度,以0.1mm计

20.气候分区指标:采用工程所在地最近30年内最热月份平均最高气温的平均值,作为反映沥青路面在高温和重载条件下出现车辙等流动变形的气候因子,并作为气候分区的一级指标;最近30年内极端最低气温,作为反映沥青路面由于低温收缩产生裂缝的气候因子,并作为气候分区的二级指标;采用30年年均降雨量的平均值,作为反映沥青路面受水影响的气候因子,并作为三级指标。

21.石油沥青温度感应性:沥青黏度随温度变化的感应性

22.残留稳定度:浸水试验前后马歇尔稳定度之比

23.沥青混合料:一定黏度和适当用量的沥青材料与一定级配的矿质集料,经过充分拌和而形成的混合料

24.结构沥青:沥青与矿粉交互作用后,沥青在矿质表面产生化学组分的重新排列,沥青在矿粉表面形成一层扩散溶剂化膜,此膜以内的沥青称为结构沥青,其与矿料成化学吸附,且吸附较强

25.自由沥青.结构沥青之外的沥青,保持原有的化学性质,与矿料呈物理吸附,较弱

26.AC-13的含义:公称最大粒径为13.2的连续密级配沥青混合料混凝土

30.沥青的径度模量:以加载试件和温度而变化的参数表示沥青粘性和弹性共同作用的指标

27沥青混合料所具备的性质有那些?并分别指出我国现行规范对其评价指标。

答:高温稳定性马歇尔稳定度、流值、动稳定度低温抗裂性低温弯曲试验和破坏应变指标

耐久性抗老化性水稳定性抗疲劳性

抗滑性

施工和易性

28.集料沥青粘附力的评价方法,提高粘附性的措施

最大粒径大于13.2用水煮法,13.2-19;粒径小于13.2用水浸法,9.5-13.2

措施:使用高粘度沥青、沥青中施加抗剥落剂、干燥的消石灰粉作为填料的一部分,粗集料用石灰浆处理后使用29.最大理论相对密度的确定方法,并说明其使用条件

答:实测法真空法、溶剂法适用于普通沥青混凝土计算法适用于改性沥青混凝土和SMA 30.引起沥青老化的原因:高温影响、空气中氧的影响、光照影响、水的影响、渗流硬化、轻质油分挥发,

目前评定沥青抗老化能力的试验方法是:沥青加热蒸发损失试验、薄膜烘箱加热试验

31.沥青混合料中沥青含量的试验:离心分离法、高温燃烧法、回流式提议法

32沥青老化:沥青在储存、运输、施工及使用过程中,长时间暴露在空气中,在环境因素如氧气、阳光、水的作用下,会发生一系列的挥发、氧化和聚合,使沥青内部结构发生变化,改变沥青性质,导致沥青性能劣化的过程

老化三阶段:运输、贮存、加热过程的老化;加热拌和和摊铺过程的老化(短期,施工过程中出于高温状态,受热会老化);使用过程的老化(长期,使用过程中,受光、氧、水的作用)

沥青老化后:针入度下降、延度降低、软化点升高。绝对黏度升高,脆点降低

预防老化措施:耐老化沥青、细粒密级配、足量的沥青(减少空隙率),施工过程中应控制拌和温度,控制路面压实密度33.SBS改性沥青的特点:延度大幅度增加,特别是低温延度增加较大,软化点提高、粘韧性和韧性增加但耐高温老化性能较差,SBR适用于西藏、青海

等高寒地区。

34.简述沥青三中结构类型和特点:

悬浮-密实型:用连续型密级配矿质混合料和沥青拌和而成的沥青混合料,特点:粘聚力大,内摩擦角较小,耐久性好,稳定性差。

骨架-空隙型:用连续型开级配矿质混合料和沥青拌和而成的沥青混合料,特点:粘聚力小,内摩擦角大,耐久性差,稳定性好

骨架-密实型:用间断型密级配矿质混合料和沥青拌和而成的沥青混合料,特点:粘聚力和内摩擦角都较大,耐久性和稳定性较好,但施工和易性差

35.沥青混合料在拌和、成型过程中要控制温度在一定范围,分析温度超过控制范围造成的不良影响

答:高温时,会使沥青老化(老化的危害);低温时,无法保障施工和易性

36.吸水率:室内常温(20度)和标准大气压下,石料试件最大吸水质量占烘干(105度烘干至横重)石料试件质量的百分率;饱水率:室内常温和真空抽气(抽至真空度为残压)后的条件下,同上

37.沥青与石料的粘附机理:复杂的物理—化学过程,湿润理论认为,有水的条件下,沥青对石料的粘附性,可用沥青—水—石料三项体系来讨论。沥青欲置换水而粘附在石料表面,主要取决于沥青与水的界面能和沥青与水的接触角,在确定石料的条件下,界面能和接触角取决于沥青的性质。沥青稠度和酸含量的增加,粘附性提高。

38.沥青混合料的强度机理:强度主要取决于两个参数——粘结力和内摩擦角,抗剪强度计算公式为:强度影响因素:1)沥青性质对粘结力的影响,粘滞度越大,抵抗变形能力越强,可以保持矿质集料的相对嵌挤作用;2)矿料级配、颗粒形状及表面性能对内摩擦角的影响,粒径越大,内摩擦角越大,但应保障级配良好,空隙率适当;3)沥青与混合料的交互作用,沥青与碱性集料将产生较多结构沥青,较好的粘附性,与酸性则相反;4)矿料比面积和沥青用量的影响,矿料比面积一般80%以上,矿质颗粒能够粘结牢固,构成强度,混合料的粘结力主要取决于自由沥青;5)温度和变形速率的影响,温度升高、变形速率增大,粘结力都显著增大,但内摩擦角影响很小。

39.用什么方法评价沥青混合料的疲劳性?

答:现象学法:传统的疲劳理论方法,采用疲劳曲线表征材料的疲劳特性。力学近似法:应用断裂力学原理分析疲劳裂缝扩展规律以确定材料疲劳寿命的一种方法。前者包括裂缝的形成和扩展阶段,后者只考虑扩展阶段

40.夏季高温地区或高温持续地区应选择黏度高的沥青,冬季寒冷地区,应选择稠度低、低温径度较小的沥青。日温差较大的地区还应考虑针入度指数较大、感温性较低的沥青。41.沥青混合料的体积参数:密度、空隙率、矿料间隙率、沥青饱和度

42.高速公路应采用重交通石油沥青,高速公路渠化交通,应选择稠度大的的沥青

沥青混合料(题)

沥青混合料 一、填空题 1、沥青混合料是经人工合理选择组成的矿质混合料,与适量拌和而成的混合料的总称。 2、沥青混合料按公称最大粒径分类,可分为、、 、、。 3、沥青混合料按矿质材料的级配类型分类,可分为和。 4、沥青混合料按矿料级配组成及空隙率大小分类,可分为、、和。 5、沥青混合料按沥青混合料制造工艺分类可分为、、 ,目前公路工程中最常用的是。 6、目前沥青混合料组成结构理论有和两种。 7、沥青混合料的组成结构有、、三个类型。 8、沥青与矿料之间的吸附作用有与。 9、沥青混合料的强度主要取决于与。 10、根据沥青与矿料相互作用原理,沥青用量要适量,使混合料中形成足够多的沥青,尽量减少沥青。 11、沥青混合料若用的是石油沥青,为提高其粘结力则应优先选用矿料。 12、我国现行国标规定,采用试验和试验来评价沥青混合料高温稳定性,其技术指标项目包括、和。 13、沥青混合料配合比设计包括、和三个阶段。 14、在AC—25C中,AC表示;25表示;C表示。 15、沥青混合料悬浮—密实结构中的粗集料数量比较,不能形成骨架。它的粘聚力比较,内摩阻角比较,因而高温稳定性。 16、标准马歇尔试件的直径为mm,高度为mm。 17、目前最常用的沥青路面包括、、和等。 18、沥青混合料按施工温度可分为和。 19、沥青混合料按混合料密实度可分为、和。 20、沥青混合料是和的总称。

21、沥青混合料的强度理论是研究高温状态对的影响。 22、通常沥青-集料混合料按其组成结构可分为、和三类。 23、沥青混合料的抗剪强度主要取决于和两个参数。 24、我国现行标准规定,采用、方法来评定沥青混合料的高温稳定性。 25、我国现行规范采用、、和等指标来表征沥青混合料的耐久性。 26、沥青混合料配合比设计包括、和三个阶段。 27、沥青混合料试验室配合比设计可分为和两个步骤。 28、沥青混合料水稳定性如不符合要求,可采用掺加的方法来提高水稳定性。 29、马歇尔模数是和的比值,可以间接反映沥青混合料的能力。 30、沥青混合料的主要技术性质为、、、和。 二、选择题 1、特粗式沥青混合料是指()等于或大于31.5mm的沥青混合料。 A、最大粒径 B、平均粒径 C、最小粒径 D、公称最大粒径 2、在沥青混合料AM—20中,AM指的是() A、半开级配沥青碎石混合料 B、开级配沥青混合料 C、密实式沥青混凝土混合料 D、密实式沥青稳定碎石混合料 3、关于沥青混合料骨架—空隙结构的特点,下列说法有误的是() A、粗集料比较多 B、空隙率大 C、耐久性好 D、热稳定性好 4、关于沥青混合料骨架—密实结构的特点,下列说法有误的是() A、密实度大 B、是沥青混合料中差的一种结构类型 C、具有较高内摩阻角 D、具有较高粘聚力 5、关于沥青与矿料在界面上的交互作用,下列说法正确的是() A、矿质集料颗粒对于包裹在表面上的沥青分子只具有物理吸附作用 B、矿质集料颗粒对于包裹在表面上的沥青分子只具有化学吸附作用 C、物理吸附比化学吸附强 D、化学吸附比物理吸附强; 6、关于沥青与矿粉用量比例,下列说法正确的是() A、沥青用量越大,沥青与矿料之间的粘结力越大

沥青混凝土详细分类

沥青混凝土中文名称: 沥青混凝土英文名称: asphalt concrete定义1: 经过加热的骨料、填料和沥青、按适当的配合比所拌和成的均匀混合物,经压实后为沥青混凝土。定义2: 由沥青、填料和粗细骨料按适当比例配制而成。 拼音:liqing hunningtu英文:bituminous concrete沥青混凝土俗称沥青砼(tong)经人工选配具有一定级配组成的矿料(碎石或轧碎砾石、石屑或砂、矿粉等)与一定比例的路用沥青材料,在严格控制条件下拌制而成的混合料。分类 沥青混凝土按所用结合料不同,可分为石油沥青的和煤沥青的两大类;有些国家或地区亦有采用或掺用天然沥青拌制的。按所用集料品种不同,可分为碎石的、砾石的、砂质的、矿渣的数类,以碎石采用最为普遍。按混合料最大颗粒尺寸不同,可分为粗粒(35~40毫米以下)、中粒(20~25毫米以下)、细粒(10~15毫米以下)、砂粒(5~7毫米以下)等数类。按混合料的密实程度不同,可分为密级配、半开级配和开级配等数类,开级配混合料也称沥青碎石。其中热拌热铺的密级配碎石混合料经久耐用,强度高,整体性好,是修筑高级沥青路面的代表性材料,应用得最广。各国对沥青混凝土制订有不同的规范,中国制定的热拌热铺沥青混合料技术规范,以空隙率10%及以下者称为沥青混凝土,又细分为Ⅰ型和Ⅱ型,Ⅰ型的孔隙率为3(或2)~6%,属密级配型;Ⅱ型为6~10%,属半开级配型;空隙率10%以上者称为沥青碎石,属开级配型;混合料的物理力学指标有稳定度、流值和孔隙率等。 配料情况 沥青混合料的强度主要表现在两个方面。一是沥青与矿粉形成的胶结料的粘结力;另一是集料颗粒间的内摩阻力和锁结力。矿粉细颗粒(大多小于0.074毫米)的巨大表面积使沥青材料形成薄膜,从而提高了沥青材料的粘结强度和温度稳定性;而锁结力则主要在粗集料颗粒之间产生。选择沥青混凝土矿料级配时要兼顾两者,以达到加入适量沥青后混合料能形成密实、稳定、粗糙度适宜、经久耐用的路面。配合矿料有多种方法,可以用公式计算,也可以凭经验规定级配范围,中国目前采用经验曲线的级配范围。沥青混合料中的沥青适宜用量,应以试验室试验结果和工地实用情况来确定,一般在有关规范内均列有可资参考的沥青用量范围作为试配的指导。当矿料品种、级配范围、沥青稠度和种类、拌和设施、地区气候及交通特征较固定时,也可采用经验公式估算。 制备工艺 热拌的沥青混合料宜在集中地点用机械拌制。一般选用固定式热拌厂,在线路较长时宜选用移动式热拌机。冷拌的沥青混合料可以集中拌和,也可就地路拌。沥青拌和厂的主要设备包括:沥青加热锅、砂石贮存处、矿粉仓、加热滚筒、拌和机及称量设备、蒸汽锅炉、沥青泵及管道、除尘设施等,有些还有热集料的重新分筛和贮存设备(见沥青混合料拌和基地)。拌和机又可分为连续式和分批式两大类。在制备工艺上,过去多采用先将砂石料烘干加热后,再与热沥青和冷的矿粉拌和。近来,又发展一种先

道路沥青混合料种类与性质

第七章沥青混合料的组成设计 沥青混合料从颗粒均匀预涂沥青的沥青涂层碎石(coated stone)到沥青玛碲脂(mastic asphalt)其成分变化无穷。然而,沥青混合料大体上可以分为沥青混凝土(asphalt)和沥青碎石(macadam)两大类。 沥青混凝土与碎石的主要区别如下: ●沥青混凝土的集料级配一般由颗粒大致均匀的粗集料加上大量的细集料和很 少量的中等大小的集料组成。 ●沥青混凝土的强度与砂/填料/沥青成份的劲度即沥青砂浆有关;为了砂浆 要有足够的劲度,制造沥青混凝土时要用比较硬的沥青和含量高的填料;至于沥青碎石的强度,主要是依靠摩擦和集料颗粒间的机械互锁力,因此可以用较软等级的沥青。 ●由于沥青混凝土含的填料比例很大,也即是集料有大幅的表面积要用沥青裹 覆,因而沥青用量较高;而沥青碎石含细小的集料少,因此用以裹覆集料的沥青少量也够了;沥青碎石内的沥青主要功能是在压实时作为润滑剂和在使用过程中粘结着集料颗粒。 ●沥青混凝土的空隙率低,基本上不透水并且用予繁重交通的道路上非常耐久 ;沥青碎石的空隙率相对较高而具透水性,并不如前者耐久。从沥青涂层碎石到沥青玛蹄脂各种沥青合料中,使用的沥青等级愈来愈硬,沥青、矿料和砂的含量增加,粗集料含量减少。 图7-1 各种沥青混合料的典型级配曲线

§7.1道路沥青混合料的种类与性质 7.1.1沥青混凝土 用不同粒径的碎石、天然砂、矿粉和沥青按一定比例以及最佳密实级配原则设计、在拌和机中热拌所得的混合料称沥青混凝土混合料。这种混合料的矿料部分应有严格的级配要求。它们经过压实后所得的材料具有规定的强度和孔隙率时称作沥青混凝土。沥青混凝土的强度和密实度是一般沥青混合料中最大的,但它们在常温或高温下都具有一定的塑性。沥青混凝土的高密实度使得它水稳性好,因此有较强的抗自然侵蚀能力,故寿命长、耐久性好,适合作为现代高速公路的柔性面层。从国外以及国内的工程实践来看,以沥青混凝土作为高等级公路或城市道路的路面材料已经相当普遍。 由于沥青混凝土的胶结料主要为沥青,沥青是一种对温度十分敏感的材料,这就导致了沥青混凝土的性质(主要为力学性能)受温度的影响十分突出(这也是沥青混合料最大的特点),如它们的劈裂强度随温度的变化可从零下温度的几兆帕到高温的零点几兆帕而不同。 沥青混凝土的分类从广义来说,可包括沥青玛碲脂(MA)、热压式沥青混凝土(HRA)、传统的密级配沥青混凝土(HMA)、多空隙沥青混凝土(PA)、沥青玛碲脂碎石(SMA)以及其它新型的沥青混凝土。 传统沥青混凝土、SMA和多空隙沥青混凝土典型级配曲线的比较见下图: 图7-2 三种典型混凝土级配比较 上图中,曲线1为传统沥青混凝土,孔隙率3%;曲线2为SMA,孔隙率3%;曲线3为多孔沥青混凝土、孔隙率20%。就孔隙率而言,当马歇尔设计孔隙率小于4%(或路面实际孔隙率小于8%)时,它已形成较为密实的结构,水不易进入沥青混凝土,整个结构的耐久性较好;或者路面实际孔隙率大于15%时,

沥青混合料配比设计

沥青公路混合料配合比设计

目录 一、摘要、引言 (1) 二、工程设计级配范围的确定 (1) 三、原材料选择与准备 (1) 四、矿料配合比设计 (3) 五、马歇尔试验 (3) 六、确定最佳沥青用量 (3) 七、配合比设计检验 (4) 八、工程应用实例 (4) 九、结束语 (5) 十、参考文献 (6)

摘要:本文结合沥青混凝土路面工程实例,论述了沥青混合料配合比设计中影响沥青路面使用品质的几点重要因素,包括工程设计级配范围的确定、原材料选择与准备、矿料配合比设计、马歇尔试验、确定最佳沥青用量、配合比设计检验。 关键词:沥青混合料;级配设计、原材料、马歇尔试验、配合比设计、最佳沥青用量 引言:随着经济的飞速发展,我国交通运输业特别是公路运输业显现出突飞猛进的态势,公路交通量越来越大,轴载迅速增长,车速不断提高,严重影响了沥青路面的使用质量,缩短了沥青路面的使用寿命;同时,沥青路面的病害现象(如泛油、裂缝、坑槽、局部沉陷、松散、车辙等)的普遍性和严重性,对路面的正常使用已构成了严重的威胁。这给沥青路面的使用性能提出了愈来愈高的要求,而影响沥青面层使用性能的关键是沥青混合料的设计。本文就结合工程实例对沥青混合料配合比设计进行探讨。 一、工程设计级配范围的确定 选择合适的沥青混合料级配类型是确保沥青凝土路面面层质量的前提。密级配沥青混合料是设计级配应根据公路等级、工程性质、气候条件、交通条件、材料品种等因素,通过对条件大体相当的工程使用情况进行调查研究后调整确定。夏季温度高、高温持续时间长,重载交通多的路段,宜选用粗型密级配沥青混合料(AC-C型),并取较高的设计空隙率。对冬季温度低、且低温持续时间长的地区,或者重载交通较少的路段,宜选用细型密级配沥青混合料(AC-F型),并取较低的设计空隙率。沥青混凝土面层集料的最大粒径宜从上层至下层逐渐增大。上层宜使用中粒式及细粒式,且上面层沥青混合料集料的最大粒径不宜超过层厚1/2,中、下面层集料的最大粒径不宜超过层厚的2/3。采用双层或三层式结构的沥青混凝土面层中应有一层及一层以上是Ⅰ型密级配沥青混凝土混合料,以防水下渗。若上面层采用Ⅱ型沥青混凝土,中面层应采用Ⅰ型沥青混凝土,AM型开级配沥青碎石不宜作面层,仅可做联结层。 二、原材料选择与准备 要保证沥青混合料的质量,必须对原材料进行严格的选择和检验,这也是在沥青混合料配合比设计前必不可少的一个重要环节。选择确定原材料应根据设计文件对路面结构和使用品质的要求,

沥青混合料组成设计

沥青混合料组成设计 热拌沥青混合料的配合比设计包括3个阶段: 1、目标配合比设计阶段——确定所用材料、计算矿料配合比、据马歇尔试验确定最佳沥青用量,把这个结果作为目标配合比进行试拌,确定拌合机各冷料仓的供料比例、进料速度。 2、生产配合比设计阶段——从二次筛分后进入各热料仓的材料取样筛分,确定各热料仓的材料比例(供控制室使用)。同时调整冷料仓的进料速度,确定生产配合比得最佳沥青用量(目标配合比的最佳沥青、±0.3%)。 3、生产配合比验证阶段——用生产配合比进行试拌、铺试验段,做马歇尔试验进行检验,确定生产用的标准配合比。标准配合比是生产控制的依据和质量检验的标准。矿料级配至少0.075、2.36、4.75三档的筛孔通过率接近要求的中值。 沥青混合料目标配合比设计阶段如何根据马歇尔试验确定沥青最佳用量1).首先根据选用矿料颗粒组成确定各种矿料的比例,使混合的矿料级配符合设计或规范要求。 2).根据规范和经验估计适宜的沥青用量,以此沥青用量为中值、0.5%为间隔取5个不同的沥青用量,分别拌和沥青混合料,制备5组马歇尔试验试件。3).测定试件的密度,计算孔隙率和饱和度。并进行马歇尔试验,测定稳定度和流值等物理力学指标。 4).整理试验结果。以沥青用量为横坐标,以密度、孔隙率、稳定度、流值和饱和度指标为纵坐标,分别点出试验结果,并绘制关系曲线图。 5).在图中求取密度最大值对应的沥青用量为a1,稳定度最大值对应的沥青用量为a2,规定空隙率范围的中值对应的沥青用量为a3。计算出沥青最佳用量的初始值OAC1=(a1+a2+a3)/3。 6).求出符合规范或设计的沥青用量范围OACmin~OACmax,并求取中值OAC2=(OACmin+OACmax)/2。 7).按沥青最佳用量初始值OAC1在曲线图上求取相应的各项指标值,当各项指标均符合要求时,OAC1和OAC2综合决定沥青最佳用量。若不满足要求时,

公路工程沥青与沥青混合料试验规范流程

公路工程沥青及沥青混合料试验规程 2 术语 2.1.1 沥青的密度 沥青在规定温度下单位体积所具有的质量,以g/cm3计。 2.1.2 沥青的相对密度 在同一温度下,沥青质量与同体积的水质量之比值,无量纲。 2.1.3 针人度 在规定鍵和时间内,附加一定质量的标准针垂直贯入沥的深度,以0.1mm计。 2.1.4 针人度指数 沥青结合料的温度感应性指标,反映针入度随温度而变化的程度,由不同温度的针入度按规定方法计算得到,无量纲。 2.1.5 延度 规定形态的沥青试样,在规定温度下以一定速度受拉伸至断开时的长度,以cm计。 2.1.6 软化点(环球法) 沥青试样在规定尺寸的金属环内,上置规定尺寸和质量的钢球,放于水或甘油中,以规定的速度加热,至钢球下沉达规定距离时的温度,以℃计。 2.1.7 沥青的溶解度 沥青试样在规定溶剂中可溶物的含量,以质量百分率表示。 2.1.8 蒸发损失 沥青试样在163℃温度条件下加热并保持5h后质量的损失,以百分率表示。 2.1.9 闪点 沥青试样在规定的盛样器内按规定的升温速度受热时所蒸发的气体以规定的方法与试焰接触,初次发生一瞬即灭的火焰时的温度,以℃计。盛样器对黏稠沥青是克利夫兰开口杯(简称COC),对液体沥青是泰格开口

杯(简称TOC)。 2.1.10 弗拉斯脆点 涂于金属片上的沥青薄膜在规定条件下,因冷却和弯曲而出现裂纹时的温度,以℃计。 2.1.11沥青的组分分析 按规定方法将沥青试样分离成若干个组成成分的化学分析方法。 2.1.12 沥青的黏度 沥青试样在规定条件下流动时形成的抵抗力或内部阻力的度量,也称黏滞度。 2.1.13 沥青、混合料的密度 压实沥青混合料常温条件下单位体积的干燥质量,以g/cm3计。 2.1.14枥青混合料的相对密度 同一温度条件下压实沥青混合料试件密度与水密度的比值,无量纲。 2.1.15浙青混合料的理大密度 假设压实沥青混合料试件全部为矿料(包括矿料自身内部的孔隙)及沥青所占有、空隙率为零的理想状态下的最大密度,以g/cm3计。 2.1.16沥青混合料的理论最大相对密度 同一温度条件下沥青混合料理论最大密度与水密度的比值,无量纲。 2.1.17沥青混合料的表观密度 沥青混合料单位体积(含混合料实体体积与不吸收水分的内部闭口孔隙体积之和)的干质量,又称视密度,由水中重法测定(仅适用于吸水率小于0.5%的沥青混合料试件),以g/cm3计。 2.1.18沥青混合料的表观相对密度 沥青混合料表观密度与同温度水密度的比值,无量纲: 2.1.19沥青混合料的毛体积密度 压实沥青混合料单位体积(含混合料的实体矿物成分及不吸收水分的闭口孔隙、能吸收水分的开口孔隙等颗粒表面轮廓线所包围的全部毛体积)的干质量,以g/cm3计。 2.1.20沥青混合料的毛体积相对密度

沥青混合料A卷

1.一般来说,沥青的粘度越大,沥青混合料的粘聚力越大。 2.在进行沥青混合料质量检测时,当采集的试样温度下降不符合温度要求时,只允许加热一次,加热不宜超过 4 小时。 3. 表干法测定沥青混合料密度时,称得干燥试件的空中质量为,试件的水中质量为,表干质量为,则该试件的吸水率为 %。 4.马歇尔稳定度试验标准试件的制作时,在击实结束后,立即用镊子取掉上下面的滤纸,测得试件高度为,高度不符合±的要求,应作调整,又测得该试件质量为,调整后沥青混合料质量为以上都不对。 A. B. C. D. 以上都不对以上都不对 5.对沥青混合料中的矿料级配进行筛分时,已知:筛孔上累计筛余为%, mm筛孔上累计筛余为%,筛孔上分计筛余为%,求筛孔上通过率为 % 6. 某一组沥青混合料马歇尔稳定度试验结果如下:,,,(kN)则该组马歇尔稳定度为 kN 。 7.试验室沥青混合料车辙试验测得,试件宽300mm,采取曲柄连杆驱动加载轮往返运行方式,对应于时间t1的变形量为,对应于时间t2的变形量为,试验轮往返碾压速度为42次/min,则该试件的动稳定度为1500 次/mm。 8.沥青混合料谢伦堡沥青析漏试验时,测得烧杯质量为,烧杯及试验用沥青混合料总质量,烧杯及黏附在烧杯上的沥青混合料、细集料等总质量,则沥青析漏损失为%。 9.随沥青含量增加,沥青混合料试件空隙率将(减少)。 10.沥青混合料中集料优先采用碱性。 11.沥青混合料试件质量为1200g,高度为65.5mm,成型标准高度63.5mm的试件,混合料用量约为1163 。 12.随着沥青含量增加,普通沥青混合料试件的稳定度变化趋势将呈抛物线变化。 13.某型沥青混合料的最佳油石比为%,换算后最佳沥青用量为%。

沥青混合料分类代号

类别 ?沥青混合料的规格?性能及用途 普通沥青及改性沥青密级配沥青混合料?AC-25、AC-20、 AC-16、 ?AC-13、AC-10、 ATB-40、 ?ATB-30、ATB-25 ?密级配沥青混合料是按密实级配原理设计组成 的各种粒径颗粒的矿料与沥青结 ?合料拌和而成,设计空隙率较小(对不同交通及 气候情况、层位可作适当调整 ?)的密实式沥青混凝土混合料(以AC表示)和 密实式沥青稳定碎石混合料(以 ?ATB表示)。按关键性筛孔通过率的不同又可分 为细型、粗型密级配沥青混合 ?料。该类产品可以广泛应用于公路、城市道路、 桥面、隧道、机场、停车场等 ?诸多方面及沥青路面结构的各个层次,是沥青混 凝土中最常用的混合料。 沥青马蹄脂碎石混合料?SMA-16、SMA-13、 SMA-10 ?沥青玛蹄脂碎石混合料,是一种由沥青、纤维稳 定剂、矿粉及少量的细集料组 ?成的沥青玛蹄脂填充间断级配的粗集料骨架间 隙组成一体的沥青混合料,具 ?有空隙率小,良好的高、低温性能及耐久性能等 特点。由于其良好的路用性 ?能,该类混合料主要应用于高等级公路和城市主 干道沥青路面的表面层。

厂拌热再生沥青混合料?AC-25、AC-20、 AC-16、 ?AC-13 ?再生沥青混合料是将回收的旧料,掺加部分再生 剂或新料充分拌和而成,具有 ?节能环保等特点。通过优选再生剂和矿料级配热 再生沥青混合料的路用性能与 ?普通热拌沥青混合料相同,在沥青路面结构中可 同等使用。 密级配及开级配橡胶沥青混合料?ARAC-25、 ARAC-20、 ?RAC-16、ARAC-13、 ARAC-10 ?橡胶粉用于沥青混合料中,有利于改善沥青混合 料的高温稳定性、抗疲劳性能 ?、水稳定性和低温性能等路用性能。橡胶沥青混 合料适用于各种等级的道路沥 ?青路面结构层,尤其对降低城市道路的行车噪音 有明显效果。 抗车辙沥青混合料?KAC-25、KAC-20、 KAC-16、 ?KAC-13 ?抗车辙沥青混合料是通过调整矿料级配、优选沥 青结合料、选用适宜的外掺剂 ?等手段,提高沥青混合料的高温稳定性,同时保 证混合料的低温性能、水稳定 ?性以及耐久性的沥青混合料。由于其具有非常好 的高温抗车辙性能,主要应用 ?于不同等级公路、城市道路的路口、停车港湾、 收费站、重载交通及长上坡路 ?段。

沥青与沥青混合料知识点总结

沥青质提高热稳定性和粘滞性。含量↑则粘度↑,针入度↓,软化点↑,温度稳定性↑,硬度↑ 油分赋予沥青流动性。含量越多,则软化点↓,稠度↓ 树脂赋予胶体稳定性,提高粘附性及可塑性 蜡破坏沥青结构的均匀性,降低塑性 石油沥青的化学结构与技术性质的关系:(1)烷碳率↑侧链根数↓平均侧链长度↑→感温性↑(2)芳烃指数↑芳香环数↑→粘附性↑(3)饱和率↑→耐候性↑(4)分子量聚合度→粘度(5)分子量聚合度平均侧链长度→劲度模 ㈠悬浮-密实结构:采用连续级配,矿料颗粒连续存在,而且细集料含量较多,将较大颗粒挤开,使大颗粒不能形成骨架,而较小颗粒与沥青胶浆比较充分,将空隙填充密实,使大颗粒悬浮于较小颗粒与沥青胶浆之间,形成“悬浮-密实”结构。这种结构的沥青混合料粘聚力较高,内摩阻力较小,密实度、强度、耐久性较高,但稳定性较差㈡骨架-空隙结构:采用连续开级配,粗集料含量高,彼此相互接触形成骨架;但细集料含量很少,不能充分填充粗集料间的空隙,形成所谓的“骨架-空隙”结构。这种结构的沥青混合料粘聚力较低,内摩阻力较大,稳定性较好,但耐久性较差。 ㈢骨架-密实结构结构特点:采用间断级配,粗、细集料含量较高,中间料含量很少,使得粗集料能形成骨架,细集料和沥青胶浆又能充分填充骨架间的空隙,形成“骨架-密实”结构。这种结构的沥青混合料粘聚力与内摩阻力均较高,稳定性好,耐久性好,但施工和易性较差。 ※※影响沥青混合料强度的因素 内因:沥青集料集料和沥青的交互作用 外因:温度T 时间t 1·沥青的性质对粘结力的影响 *沥青的粘滞度是影响粘结力C的首要因素 沥青的粘滞度反映了沥青在外力作用下抵抗变形的能力。 粘滞力越大→抵抗变形的能力越强→保持矿质集料的相对嵌挤作用 ※粘度↑→粘聚力↓,影响大对内摩阻角影响不大 2·矿质混合料级配、矿质颗粒形状和表面特性等对内摩阻角的影响 ※矿质颗粒粒径↑→内摩阻角↑内摩阻角:中粒式沥青混凝>>细粒式和砂粒式级配类型:级配良好空隙率适当颗粒棱角尖锐→内摩阻角↑ 3·矿料与沥青的交互作用能力的影响 沥青与矿料表面的相互作用对沥青混合料的粘结力和内摩阻角有重要的作用 沥青四组分在石料表面重新排列:结构沥青→连接作用自由沥青→粘度较低使粘结力降低 4·沥青混合料中矿料比面积和沥青用量的影响 4·1沥青的用量 沥青用量很少时沥青不足以形成结构沥青的薄膜来粘结矿料颗粒 沥青用量增加结构沥青逐渐形成沥青更完整地包裹在粒料表面使沥青与矿料间的粘附力随着沥青用量的增加而增加→当沥青用量足以形成薄膜并充分粘附在矿粉颗粒表面时,沥青胶浆具有最高的粘结力 沥青用量过多逐渐将矿料颗粒推开在颗粒间形成自由沥青则沥青胶浆的粘结力随着自由沥青的增加而降低 4·2矿料的化学性质

开级配沥青路面设计方案

开级配橡胶沥青路面 技术方案

目录 1、开级配沥青路面特点 (1) 1.1一般路面造成的问题 (1) 1.2透水路面优点 (1) 2、方案设计依据 (1) 3、透水沥青路面结构 (2) 4、混合料技术 (2) 4.1原材料要求 (2) 4.1.1 集料 (2) 4.1.2 填料(矿粉) (3) 4.1.3胶结料 (4) 4.1.4 添加剂 (4) 4.2 混合料质量要求 (4) 5、工程案例 (5)

1、开级配沥青路面特点 1.1一般路面造成的问题 绝大多数的城市道路、广场、商业街、步行道、停车场、小区和公园道路广泛使用密级配沥青混合料、水泥混凝土、大理石和花岗岩等不透水材料,城市地表逐渐被不透水面层覆盖。a、影响城市的水平衡b、影响城市地表植物的生长c、破坏了城市地表的的生态平衡d、地层下陷 其次,表面致密的路面在雨天不能及时排水,形成路表水膜或路面积水,使行车容易出现水漂、水雾,给行人和车辆行驶带来不便,增大了交通事故发生率。 同时,在暴雨时地面径流量急剧增高,很快出现峰值,加重了测试排水系统的负担,甚至引起洪涝灾害。 1.2透水路面优点 (1)环境友好型 A、减轻城市排水系统压力,防止河流泛滥和水体污染 B、利用雨水补充地下水,保持土壤湿度,提高道路生态环保效益 C、降低车辆行驶噪音 D、改善城市热循环,缓解城市热岛效应 (2)行车安全舒适、高效 A、有效防止汽车行驶溅水,提高雨天行驶安全性 B、提高路面的抗滑能力 C、改善路面反射视觉效果 D、提高车辆燃油效率 E、冬天路面的反向蒸腾作用,透水路面的积雪比一般路面融化的更快 F、降低行车噪音 2、方案设计依据 (1)《公路沥青路面设计规范》(JTG D50-2006); (2)《公路沥青路面施工技术规范》(JTG F40-2004); (3)《公路工程质量检验评定标准》(JTG F80/1-2004);

沥青及沥青混合料试题计算题50道

1、现有三组混凝土试块,试块尺寸都为100mm×100mm×100mm,其破坏荷载(kN)分别为第一组265、255、320;第二组310、295、280;第三组320、220、270,计算三组混凝土试块的抗压强度值。 答:分别比较每组中最大值和最小值与中间值的差是否超过中间值的15%,结果表明: 第一组中只有最大值320超过了中间值的15%,所以直接去中间值260kN,其抗压强度为 f=260×1000÷100×100×0.95=24.7MPa 第二组中最大值与最小值均未超过中间值的15%,所以首先计算平均值,其抗压强度为 f=(310+295+280)÷3×1000÷100×100×0.95=28.0MPa 第三组中最大值与最小值均超过了中间值的15%,所以试验无效。 2、已知某普通水泥混凝土,其水胶比(W/B)为0.45,砂率(SP)为35%,每立方米混凝土用水量M w为185kg,,矿物掺合料粉煤灰的掺量(M f)为水泥用量(M c)的15%,减水剂掺量(M j)为2.5%,假定其每立方米混凝土质量为2400kg,试计算其试验室混凝土配合比?若工地所用砂的含水率为3%,碎石的含水率为1%,求:该混凝土的施工配合比? 答:胶凝材料总质量=M w÷W/B=185÷0.45=411.1kg

M c=411.1÷1.15=357.5kg M f=411.1-357.5=53.6kg 因为,M砂+M石=2400-411.1-185=1830.9 且SP=35% 所以,砂质量M砂=631.4kg,碎石质量M石=1199.5kg 混凝土试验室配合比为水泥:水:粉煤灰:砂:石=357.5:185:53.6:631.4:1199.5(1:0.52:0.15:1.77:3.36) 施工配合比:水泥用量M c =357.5kg 粉煤灰用量M f==53.6kg 砂用量M砂=631.4×(1+ 3%)=650.3kg 石用量M石=1199.5×(1+1%)=1211.5kg 施工配合比为水泥:水:粉煤灰:砂:石=357.5:185:53.6:650.3:1211.5((1:0.52:0.15:1.82:3.39) 3.有一根直径为20mm的HRB335钢筋,其初试标距为断后标距为119.2mm,其断裂位置如下图: 119.2mm o S 65 .5

沥青与沥青混合料教程文件

一、普通沥青 1、技术性质: (1)物理常数:密度——在规定温度条件下,单位体积的质量; 相对密度——在规定温度下,沥青质量与同体积水质量之比。 (2)粘滞性:反映沥青材料内部阻碍沥青粒子产生相对流动的能力,简称粘性,以绝对粘度表示。 工程中通常采用条件粘度反映沥青的粘性。 条件粘度:针入度(适应粘稠石油沥青);粘度(适应液体石油沥青) (3)延性:沥青材料当受到外力拉伸作用时,所能承受的塑性变形的总能力,以延度作为条件延性的表征指标。 (4)温度敏感性:高温性能指标(软化点、针入度指数);低温性能指标(脆点) (5)抗老化性(耐久性):评价方法采用蒸发损失试验、薄膜加热试验、旋转薄膜加热试验; 评价指标;蒸发损失百分率、针入度比、蒸发后沥青延度。 (6)安全性:评价指标闪点、燃点。 (7)其他性质:如溶解度、含蜡量、粘附性等。 2、组分:三组分(油分、树脂和沥青质);四组分(饱和分、芳香分、胶质和沥青质) 3、胶体结构:溶胶型结构、溶-凝胶型结构、凝胶型结构(按沥青质含量少、适中、多) 4、三大指标:针入度、延度、软化点,分别表征粘滞性、延性和温度敏感性。 (1)针入度:在规定温度(25℃)条件下,以规定质量(100g)的标准针经过规定的时(5s)贯入沥青试样的深度,单位:0.1mm。 表示方法:P(25℃,100g,5s) 表征意义:针入度值愈大,表示沥青的粘度愈小,是目前我国粘稠石油沥青的分级指标。 (2)延度:将沥青试样制成∞字形标准试件,采用延度仪,在规定温度和规定拉伸速度下拉断时的长度,单位:cm。 表示方法:D(T,v)T为试验温度(0℃、15℃、25℃),v为拉伸速度(1cm/min、5cm/min )表征意义:沥青延度越大,其塑性变形越大,有利于低温变形。 (3)软化点:将沥青试样注于规定内径的铜环中,环上置一钢球,在规定加热速度下,沥青逐渐软化,直至在钢球荷重作用下滴落到下层金属板时的温度,单位:℃。 表示方法:T R&B 表征意义:沥青软化点越高,沥青的温度稳定性越好。 针入度是在规定温度下测定沥青的条件粘度,软化点则是沥青达到规定条件粘度时的温度。因此,软化点既是反映沥青材料温度稳定性的一项指标,又是沥青粘度的一种量度。 5、其他性质 (1)脆点:沥青材料在低温下受到瞬时荷载时表现为脆性破坏,采用弗拉斯脆点测定。 (2)闪点:沥青使用时必须加热,由于沥青在加热过程中挥发出的油会与周围的空气组成混合气体,当遇到火焰会发生闪火,此时的温度称为闪点。 (3)燃点:若继续加热,挥发的油分饱和度增加,与空气组成的混合气体遇火极易燃烧,燃烧时的温度称为燃点。 闪点和燃点是保证沥青安全加热和施工的一项重要指标,通常采用克利夫兰开口杯法测定(简称COC法)。 二、改性沥青 1、定义:包括改性沥青混合料,指掺和橡胶、树脂、高分子聚合物、天然沥青、磨细的橡胶粉,或者其他材料等外掺剂(改性剂),从而使沥青或沥青混合料的性能得以改善的沥青结合料。 2、改性剂:在沥青或沥青混合料中加入的天然的或人工的有机或无机材料,可熔融、分散在沥青中,与沥青发生反应或裹覆在集料表面上,改善或提高沥青路面性能的材料。

2.沥青混合料与水泥混凝土

4、沥青和沥青混合料 4.1了解: 4.1.1沥青混合料类型的划分 ①连续密级配沥青混凝土混合料:AC 、ATB ②连续半开级配沥青混合料:AM ③开级配沥青混合料:ATPB 、OGFC ④间断级配沥青混合料:SMA 4.1.2沥青混合料的结构类型及其特点 ①悬浮密实型结构:密实程度高、空隙率低,水稳定性好、低温抗裂和耐久性好,高温稳定性不好; ②骨架空隙结构:高温稳定性好,水稳定性和耐久性不好; ③骨架密实结构:具有上述两种结构的优点。 4.1.3沥青混合料高温稳定性 指在高温条件下,沥青混合料能够抵抗车辆反复作用,不会产生显著永久变形,保证路面平整的特性。 4.1.4低温抗裂性 4.1.5水稳定性 4.1.6沥青混合料各项技术指标概念及所代表的含义 4.2熟悉 4.2.1空隙率大小对混合料性能影响 空隙率过大:透水、耐久性差,高温稳定性差,易形成车辙、拥包或波浪 空隙率过小:抗滑性能差、影响夏季沥青材料的膨胀 4.2.2沥青混合料中沥青用量表示方法 沥青含量、油石比 4.2.3沥青含量和油石比的定义及二者之间的换算方法 沥青含量:沥青结合料质量与沥青混合料总质量的比值,以百分率计Pa ; 油石比:沥青结合料质量与矿料总质量的比值,以百分率Pb 。 pb Pb +=1Pa ; Pa Pa Pb -=1 4.2.4马歇尔试件不同密度定义,常用密度检测方法 理论最大密度:假设沥青混合料被压实至完全密实,没有空隙的理想状态下的最大密度。 表观相对密度:在规定条件下,沥青混合料试件的单位表观体积(混合料实体体积与不吸水的内部闭口孔隙体积之和)的干质量。 毛体积密度:单位毛体积(实体矿物成分体积+不吸水的闭口体积+能吸水的开口空隙所占体积)的干质量。 常用密度检测方法:水中重法、表干法、蜡封法、体积法 4.2.5不同密度检测方法的适用性 具体密度测定方法:

沥青与沥青混合料复习知识点及试题

沥青与沥青混合料复习知识点 1、按来源,1天然沥青(湖沥青,岩沥青)、2石油沥青、3焦油。 2、沥青路面必须满足的基本要求:具有一定的强度刚度、稳定性、耐久性、平整性、抗滑性。 3、老化:沥青中的有机高分子材料,在环境因素的作用下发生氧化等各种反应。 4、原油是由不同分子量和沸点幅度的碳氢化合物组成的混合物。 5、根据基属不同,分为石蜡基沥青、中间基沥青、环烷基沥青。 6、实验对沥青质的影响:溶剂的性质、溶剂的用量、温度。 7、沥青质的含量增加,软化点升高,胶质芳香族增加,软化点下降,饱和族对软化点影响较小。 8、沥青质含量增加,针入度减小,软化点增高,粘度增大。 9、胶质化学稳定性差,能使沥青具有足够的粘附力,对沥青的粘弹性形成良好的胶体溶液等方面都有重要作用。 10、油分,混合烃及非化合物组成的混合物,起柔软和润滑作用。 11、腊,原油、渣油及沥青在冷冻时,能结晶出的熔点在25以上的混合组分.测定腊含量(脱胶步骤,脱腊步骤) 12、沥青分子的结构形态和状态与胶体性质、流变性质和路用性质有关。 13、胶体结构的分类:溶胶型结构,溶-凝胶型结构,凝胶型结构(-2《PI《2) 14、优质路用沥青:化学组分比例适当,腊含量少,化学结构环数多,芳环多,烷侧链少,溶-凝胶型结构的沥青。 15、评价沥青与矿料的粘附性:1沥青与集料粘附性实验,2沥青混合料粘附性实验 16、改善沥青粘附性措施:1活化集料表面 2在沥青中加入抗剥落剂 17、耐久性:保持良好的流变性能、凝聚力和粘附性的能力 18、沥青变脆变硬的原因:蒸发损失,暗处氧化,光照氧化 19、延性:沥青在外力作用下发生拉伸变形而不破坏的能力 20、延性的影响因素:内,化学组分,化学结构;外,试验温度,拉伸速度。 21、沥青的低温性质:沥青低温脆性,温度收缩系数和低温延性 22、改性沥青混合料:掺和橡胶、树脂、高分子聚合物、天然沥青、磨细橡胶粉或其他改性剂,从而使沥青或沥青混合料改善的沥青结合料 23、改性剂:在沥青或沥青混合料中加入天然的或人工的有机无机材料,可熔融,分散在沥青中,改善和提高沥青路面性能的材料 24、高聚物基本特征:巨大的分子量,复杂的链结构,晶态与非晶态共存,同一种高聚物可加工成不同性质的材料,高的品质系数 25、高聚物的性能用途分:塑料,橡胶,纤维 26、聚乙烯:强度高,延伸率大,耐寒性好,优良的改性剂 27、改性沥青聚合物:热塑性橡胶类(SBS),橡胶类(SBR),树脂类(EVA,PE) 28、1老化试验仪,2动态剪切流变仪-粘弹性,3旋转式粘度计-粘度,4弯曲梁流变仪-低温劲度,5直接拉伸试验仪-低温变形 29、岩石:岩浆岩,沉积岩,变质岩 30、石料的技术性质:1物理性质,密度,吸水性,耐水性,抗冻性,耐热性,坚固性。2力学性质,抗压强度,冲击韧性,硬度,耐磨性。3工艺性质,加工性,磨光性,抗钻性。4化学性质 31、抗冻性:材料在饱和水状态下,能经受多次冻结和融化作用而不破坏也不严

沥青混合料组成及结构

第五章普通沥青混合料 本章着重阐述了热拌沥青兴混合料的组成结构、强度形成原理、沥青混合料的体积特征参数、应具有的技术性质、影响因素及评价方法,重点介绍了热拌沥青混合料的马歇尔设计方法,包括组成材料的选择和配合比设计方法,同时对Superpave与GTM沥青混合料设计方法进行了简要介绍。通过学习,要求掌握沥青混合料的组成结构、强度形成原理、技术性质和技术要求,并能按马歇尔法设计沥青混合料的配合组成,同时对Superpave与GTM设计法有一定了解。 5.1 沥青混合料组成及结构 ⑴沥青混合料 ⑵沥青混凝土混合料 ⑶沥青碎石混合料 ⑷沥青玛蹄脂碎石混合料 ⑴按结合料分类 石油沥青混合料煤沥青混合料 石油沥青混合料又包括粘稠石油沥青、乳化石油沥青及液体石油沥青混合料 ⑵按矿料的级配类型划分 ①连续级配沥青混合料 ②间断级配沥青混合料 ⑶按矿料级配组成及空隙率大小划分 ①密级配沥青混合料设计空隙率为3%~6% 密级配沥青混凝土混合料(AC) 密级配沥青稳定碎石混合料(ATB)

沥青玛蹄脂碎石混合料(SMA) ②半开级配沥青混合料剩余空隙率在6%~12% 沥青碎石(AM) ③开级配沥青混合料设计空隙率为18%的混合料 排水式沥青磨耗层(OGFC) 排水式沥青基层(ATPB) ⑷按矿料公称最大粒径划分 ①特粗式沥青混合料等于或大于31.5mm ②粗粒式沥青混合料公称最大粒径等于或大于26.5mm ③中粒式沥青混合料:集料公称最大粒径为16mm或19mm的沥青混合料。 ④细粒式沥青混合料:集料公称最大粒径为9.5mm或13.2mm的沥青混合料。 ⑸按制造工艺划分 ①热拌热铺沥青混合料 ②冷拌沥青混合料 ③再生沥青混合料 ⑴表面理论 ⑵胶浆理论 ①粗分散系。以粗集料为分散相,分散在沥青砂浆的介质中。 ②细分散系。以细集料为分散相,分散在沥青胶浆的介质中。 ③微分散系。以矿粉填料为分散相,分散在高稠度的沥青介质中。 图5-1 3种类型矿质混合料级配曲线 ⑴悬浮一密实结构 特点是粘聚力较高,混合料的密实性与耐久性较好,但内摩阻力较小,高温稳定性较差。我国传统的AC型沥青混凝土是典型的悬浮一密实结构。 ⑵骨架一空隙结构 特点:内摩擦角较高,高温稳定性较好,但粘聚力较低,耐久性差。沥青

沥青沥青混合料技术参数

注:1坚固性试验可根据需要进行。 2用于城市快速路、主干路时,多孔玄武岩的视密度可放宽至m3,吸水率可放宽至3%,但必须得到建设单位的批准, 且不得用于SMA路面。 3对S14即3~5规格的粗集料,针片状颗粒含量可不予要求,小于含量可放宽到3%。 4)粗集料的粒径规格应按表8.1.7-7的规定生产和使用。 表8.1.7-7 沥青混合料用粗集料规格

3细集料应符合下列要求: 1)含泥量,对城市快速路、主干路不得大于3%;对次干路及其以下道路不得大于5%。 2)与沥青的粘附性小于4级的砂,不得用于城市快速路和主干路。 3)细集料的质量要求应符合表8.1.7-8的规定。 表8.1.7-8 细集料质量要求 4)沥青混合料用天然砂规格见表8.1.7-9。 表8.1.7-9 沥青混合料用天然砂规格

5)沥青混合料用机制砂或石屑规格见表8.1.7-10。 表8.1.7-10 沥青混合料用机制砂或石屑规格 中要求。 4矿粉应用石灰岩等憎水性石料磨制。当用粉煤灰作填料时,其用量不得超过填料总量50%。沥青混合料用矿粉质量要求应符合表8.1.7-11的规定。 表8.1.7-11 沥青混合料用矿粉质量要求

5 纤维稳定剂应在250°C条件下不变质。不宜使用石棉纤维。木质纤维素技术要求应符合表8.1.7-12的规定。 8.1.7-12 木质素纤维技术要求 表 8.1.9 沥青混合料配合比设计应符合国家现行标准《公路沥青路面施工技术规范》JTG F40的要求,并应遵守下列规定: 1各地区应根据气候条件、道路等级、路面结构等情况,通过试验,确定适宜的沥青混合料技术指标。 2开工前,应对当地同类道路的沥青混合料配合比及其使用情况进行调研,借鉴成功经验。

沥青混合料生产配合比组成设计模板

沥青混合料生产配合比组成设计模板

沥青混合料生产配合比组成设计 分项工程: SBS改性沥青下面层级配类型: AC—25Ⅰ改进型 试验日期: 二〇〇四年十二月 吉林省交通建设集团 盐通高速公路YT—YC21标

生产配合比设计说明 一、生产配合比组成设计依据 1、盐通YT-YC21标AC-25I改进型SBS改性沥青下面层目标配合比。 2、公路沥青路面施工技术规范( JTJ032—94) 3、公路改性沥青路面施工技术规范( JTJ036—98) 4、公路工程沥青及沥青混合料试验规程( JTJ052— ) 5、公路工程集料试验规程( JTJ058— ) 6、江苏省高速公路建设指挥部沥青路面施工技术指导意见汇编 二、原材料检测与确定 1、沥青: 采用江阴宝利AH-90#SBS改性沥青, 针入度为74( 0.1mm) , 延 度为41cm, 软化点为75℃。检测结果符合规范要求; 2、集料: 采用镇江茅迪公司生产的石灰岩碎石, 经过二次筛分, 1仓( 0- 3mm) 2仓( 3-6mm) 3仓( 6-11mm) 4仓( 11-24mm) 5仓( 24-34mm) 共计5仓。5仓毛体积相对密度为2.687, 表观相对密度为2.721。4仓毛体 积相对密度为2.690, 表观相对密度为2.722。3仓毛体积相对密度为 2.691, 表观相对密度为2.727。2仓表观相对密度为2.714。1仓表观 相对密度为2.718。 3、填料: 采用大丰市腾龙建材厂生产的石灰岩矿粉, 矿粉表观相对密度为 2.711, 含水量为0.39%, 亲水系数为0.74。 三、沥青混合料试验 1、混合料级配试验: 5仓: 4仓: 3仓: 2仓: 1仓: 矿粉=8: 28: 22: 16: 22.5: 3.5

沥青和沥青混合料课程设计

《沥青与沥青混合料》 课 程 设 计 学校:重庆交通大学 学院:土木建筑学院 专业:2012级材料科学与工程班级:1班 学号:631201030102 姓名:黄峰 指导老师:黄维蓉赵可

目录 1. 引言 (1) 2. 国内外研究现状 (1) 2.1 柔性基层路面 (1) 2.2 国外研究状况 (1) 2.3 国内研究现状 (2) 2.4 目的及意义 (3) 3. 设计内容 (3) 4. 实施方案及结果 (3) 4.1 原材料的选择及检测结果 (4) 4.1.1 胶结材料 (4) 4.1.2 集料 (4) 4.2 确定矿料级配 (5) 4.2.1集料密度 (5) 4.2.2级配 (6) 4.3大马歇尔方法 (7) 4.4 GTM设计方法 (8) 4.4.1 GTM压实原理 (8) 4.4.2 GTM试验机的参数 (8) 4.4.3 GTM沥青混合料配合比设计技术要求 (11) 4.4.4 GTM法确定最佳油石比 (11) 4.4.5 GTM法下的高温稳定性 (10) 5.实验结果分析及结论 (11) 5.1 油石比及参数指标比较 (11) 5.2 分析 (11) 5.3 结论 (12) 6. 参考文献 (12)

ATB-25不同设计方法下的高温稳定性的比较 1.引言 在国内,由于经济基础及技术基础的特点所限,长期以来,各级公路大多是用半刚性材料修筑路面基层和底基层。据统计,我国沥青路面结构在高速公路路面结构中占据了主导地位,建成的高速公路路面约75%采用了沥青混凝土路面,而90%以上的高等级公路沥青路面的基层均采用了半刚性材料,半刚性基层沥青路面是我国目前高等级公路沥青路面的主要结构类型。随着国民经济的发展,在高等级公路交通量、超载、重载的增加,半刚性基层沥青路面的早期破坏日益突出。其病害主要表现为以下几方面【1】: (1)半刚性基层收缩开裂,引起沥青路面裂缝; (2)水分沿裂缝下渗、给水,在车辆荷载作用下,导致唧浆、面层松散等水损害。 (3)半刚性基层与沥青面层之间结合薄弱,在行车荷载作用下,结合面上产生较大的剪应力,致使面层沿界面滑移,形成流动性车辙。 (4)一旦面层发生病害,为了补强需要重新铺筑基层,不仅延长维修养护时间,还会增加养护维修费用,且效果也不太理想。 我国个地区气候,地质条件千差万别,但现行的路面结构过于单一,为此,根据国外经验,考虑对沥青稳定碎石为材料作为路面基层材料的研究与应用,既可以丰富我过沥青路面结构形式,同时也能因地制宜,满足各地经济水平和交通量的现状。 2.国内外研究现状 2.1 柔性基层路面 关于沥青路面的基层,笼统来说分为两类,一类为半刚性基层,另一类则是柔性基层。 柔性基层中,级配碎石和沥青稳定碎石是典型代表。级配碎石是一种材料形式,在20世纪70年代,开始研究应用。在四川成渝高速公路已有应用,基本没有出现类似半刚性基层的沥青路面病害,使用情况良好。 沥青稳定碎石混合料,是由大小不同粒径组成集料(不包括矿粉),与适量沥青按一定比例配合,经均匀拌和形成。其级配可以是连续密集配ATB-××,也可以是半开级AM。其主要特点有:高温稳定性好,低温抗裂性好,空隙较大,沥青用量少,不用矿粉、造价低、使用时间长。 虽然柔性基层路面使用性能良好,根据调查研究表明【2】,柔性基层沥青路面但容易产生车辙。尤其是在我国重交通高速公路上,当车辙病害严重时,同样也会导致沥青路面破坏。 2.2 国外研究状况 国外沥青路面发展经过了近百年的历史,其路面结构形式也经历了不断发展的过程。早期,欧美国家大都采用半刚性基层,但随着二战后,各国经济开始回暖,国民经济增长,交通量不断增大,导致前文所述病害。为了满足路面长期使用的性能要求,开始大力发展沥青稳定碎石作为基层材料。

相关文档
最新文档