钢管混凝土在结构工程中的应用分析

钢管混凝土在结构工程中的应用分析
钢管混凝土在结构工程中的应用分析

钢管混凝土在结构工程中的应用分析

摘要:近年来,钢管混凝土结构在我国的发展进入一个新阶段,无论是科学研究还是设计施工都取得较大进展,取得了良好的经济效益和社会效益。本文首先分析了钢管混凝土的发展概况,然后对钢管混凝土在结构工程中的特点以及应用进行了研究,具有重要的参考意义。

关键词:钢管混凝土优点应用

1 钢管混凝土的发展概况

钢管混凝土结构的出现和应用已有上百年的历史最早的钢管混凝土出现在上个世纪八十年代,在英国,钢管混凝土首次被用于桥墩的设计,它是在钢管内灌筑混凝土以防止锈蚀并承受压力。随后又被用作多层、高层建筑物的结构柱。对钢管混凝土力学性能进行较为深入的研究始于20世纪六七十年代,美国等国家开展了大量的钢管混凝土试验研究和理论分析工作,取得了很大进展。并在一些工程中加以应用近些年来.对长期荷载作用下的钢管混凝土力学性能的研究取得新进展。对钢管混凝土动力性能研究的也进一步深入,此外,对采用高强钢材和高强混凝土的钢管混凝土构件力学性能以及对钢管局部屈曲等问题也进行了不少研究工作。我国最早主要集中研究在钢管浇灌素混凝土的内填型钢管混凝结构,60年代中期,钢管混凝土开始在一些厂房柱和地铁工程中采用。进入70年代后,这类结构在冶金、造船、电力等行业的工业厂房得到广泛的推广应用。1978年,钢管混凝土结构被列入国家科学发展规划,使这一结构在我国的发展进入一个新阶段,无论是科学研究还是设计施工都取得较大进展,取得了良好的经济效益和社会效益。

2 钢管混凝土的特点

2.1 承载力高

钢管和混凝土之间的相互作用使该组合结构的承载力显著提高。经实验和理论分析证明钢管混凝土受压构件强度承载力可以达到钢管和混凝土单独承载力之和的I.7~2.0 倍。

2.2 塑性和韧性好

钢管的套箍作用,使核心混凝土的物理性能发生了质的变化,不但在使用阶段提高了弹性性质,而且破坏时产生很大的塑性变形,由脆性破坏转变为塑性破坏,构件的延性明显改善。试验结果表明,钢管混凝土轴心受压短柱破坏时可以压缩到原长的三分之二,完全没有脆性破坏的特征这种新结构在承受冲击和振动荷载时,也具有很大的韧性,因而抗震性能良好。

2.3 制作和施工方便

钢管混凝土组合柱施工方案

目录 一、主要编制依据 (2) 二、钢管混凝土组合柱工程概况 (2) 1、工程概况 (2) 2、施工重点与难点 (3) 三、施工准备 (3) 1、材料准备 (3) 2、技术准备 (3) 3、机械准备 (3) 四、施工部署 (3) 1、施工工期 (3) 2、人员组织 (4) 3、施工流水段的划分 (6) 五、组合柱的施工方法 (7) 1、主要施工工艺流程 (7) 2、柱脚施工 (7) 3、钢结构工程 (9) 4、钢筋工程 (13) 5、模板工程 (15) 6、混凝土工程 (16) 六、质量验收要求 (17) 1、验收依据 (17) 2、钢管混凝土组合柱工程验收资料主要内容 (18) 3、钢构件质量控制 (18) 4、钢管安装 (18) 七、施工安全、文明要求 (19)

一、主要编制依据 1、《东北传媒文化广场工程施工组织设计》 2、《钢管砼叠合柱结构技术规程》(CECS 188:2005) 3、《混凝土结构工程施工质量验收规范》(GB50204-2002) 二、钢管混凝土组合柱工程概况 1、工程概况 本工程主楼为筒中筒结构,裙房为框架结构,其中主楼内外框筒设计采用现浇钢管混凝土组合柱;柱截面采用矩形截面和异形截面;框架柱内设置钢管,形成组合柱,柱内钢管采用无缝钢管,钢管接高采取两层或三层一接。外框筒钢管混凝土组合柱共70根;70根直径325×20mm的管从-5.45m-31.15m,70根直径299×16mm的管从31.15-66.25;钢管混凝土柱脚采用端承式,柱脚标高从-5.45处起(KZ-6从1.65处起);-1层~10层采用C60混凝土,11层~16层采用C50混凝土,管内高强混凝土要求低收缩,低徐变,早强、后期强度有一定的增长、可泵送、不沁水不离析。

钢管混凝土柱对钢框架结构抗震性能的影响

钢管混凝土柱对钢框架结构抗震性能的影响 摘要:对于下部几层不宜增设内部支撑的大空间钢框架建筑,本文欲通过在结构底部几层布置钢管混凝土柱,以此提高结构抗震性能。利用有限元法建立底部1~3层无内部支撑钢框架结构和无内部支撑的1~3层采用钢管混凝土柱的一组模型,进行Pushover静力非线性分析,通过对分析结果层间位移角的比较,探究钢管混凝土柱对结构抗震性能的影响。 关键词:钢管混凝土柱;钢框架结构;抗震性能; 中图分类号:TU33+3 文献标志码:A 钢管混凝土结构是指将薄壁钢管内灌入混凝土,而形成的一种新的组合结构形式。这种组合结构不仅能够将钢和混凝土的优点结合起来,提高结构的塑性和韧性,而且可以克服钢结构容易产生局部屈曲的缺点。对于无法增设支撑的结构楼层,可以采用钢管混凝土柱,不但可以增大结构的使用空间,而且可以提高底部大空间高层建筑的抗侧刚度。因此钢管混凝土柱+钢的组合结构在高层建筑逐渐被大量应用。 1 模型建立 本文利用有限元法建立一组底部1~3层无内部支撑8层钢框架结构(图1)和无内部支撑的1~3层采用钢管混凝土柱8层结构模型(图2),结构形式布置规则,每层层高4m,建筑总高度32m,长54m,宽16.4m。场地类别为Ⅱ类,场地特征周期0.45s,抗震设防裂度为8(0.20g)度,抗震等级三级,多遇地震下结构阻尼比采用0.03,罕遇地震下阻尼比为0.05。钢管柱、型钢梁和钢支撑采用Q345B钢,混凝土强度等级C30,楼板采用100厚的压型钢板现浇混凝土组合楼板。楼面恒载取4.0kN/m2,楼面活载取3.0 kN/m2;屋面恒载取4.5 kN/m2,屋面活载取2.0 kN/m2;风载取4.0 kN/m2,地面粗糙度为C类。 图1 1-3层撤除内部支撑图2 1-3层采用钢管混凝土柱 2 模型建立处理 本文钢框架支撑采用偏心支撑,偏心支撑在多遇地震及正常使用条件下的抗侧刚度与中心支撑相当,在设防地震和罕遇地震作用下依靠梁的消能梁段耗能,具有与纯钢框架相当的延性和耗能能力,是一种良好的抗震结构,但构造相对复杂。 3 模态分析 模态分析也被称为振型叠加法动力分析,是线性结构系统地震分析中的最常用而且最有效的方法。结构振型是模态反应的重要参数,以下是2组模型结构前3阶振型的模态反应特征见表1:

钢管混凝土柱

摘要:介绍了钢管混凝土结构的特点、研究现状及其工程应用,探讨了钢管混凝土结构研究方向。 关键词:钢管混凝土 近20年来,钢管混凝土结构逐渐被应用于建筑结构尤其是在高层建筑结构中,随着建筑物高度的增加,钢管高强混凝土和钢管超高强混凝土结构的应用也将会得到快速的发展。一般的,我们把混凝土强度等级在C50以下的钢管混凝土称为普通钢管混凝土;混凝土强度等级在C50以上的钢管混凝土称为钢管高强混凝土;混凝土强度等级在C100以上的钢管混凝土称为钢管超高强混凝土。 钢管混凝土结构是由混凝土填入钢管内而形成的一种新型组合结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。 1.钢管混凝土结构的特点 众所周知,混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 1.1 承载力高、延性好,抗震性能优越 钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度;钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。

钢管混凝土柱环梁节点及其应用

钢管混凝土柱环梁节点及其应用 摘要:本文介绍了钢管混凝土柱环梁节点的构造和基本受力机理。通过合理设计,环梁节点能有效地传递框架梁端的剪力和弯矩,具有良好的变形能力和耗能能力,可以实现“强节点、弱构件”的抗震概念设计。简要介绍了环梁节点的设计方法及其在房屋建筑中的应用。 关键词:钢管混凝土柱环梁节点房屋建筑 一、引言 钢管混凝土柱作为一种性能优异的结构构件,与钢筋混凝土柱和钢柱相比,在许多方面有突出的优点。目前,用于我国房屋建筑中的钢管混凝土柱与混凝土梁连接节点的主要形式有:上下环板牛腿式、双梁式、梁端局部加宽式、对穿暗牛腿式、穿心钢筋暗牛腿式、暗牛腿-环梁组合节点、钢筋混凝土环梁节点等。这些节点形式各有优越性和不足,都已有一定的试验研究。 二、环梁节点的构造形式及特点 钢筋混凝土环梁节点的构造形式是在环梁高度范围内,沿钢管壁贴焊一道(或两道)钢筋作为抗剪环。抗剪环为通过连续的双面焊缝牢固焊于钢管壁上的闭合钢筋环或闭合带钢环。钢筋直径d或带钢厚度b一般在20-30mm左右。抗剪环与环形牛腿一样,实为钢管柱的环形凸缘(法兰盘)。基于与环形牛腿同样的考虑,沿抗剪环需设置与楼盖结构等厚的闭合混凝土环梁或与之相当的混凝土托盘,与钢管柱紧密箍抱,楼盖粱的纵筋则锚固于环梁内,借助环梁传递弯矩。 该节点节点无需穿心构件;钢管内、外无需设置加劲环,不影响钢管内混凝土浇注;环梁箍筋无方向性,便于与任意角度的混凝土梁连接。 三、环梁节点的受力机理 1、梁端剪力传递 框架梁梁端剪力主要通过三个途径传递给钢管混凝土柱: (1)通过环梁混凝土与抗剪环接触面的局部承压作用力将剪力由环梁传递到抗剪环上,并通过抗剪环与钢管间的焊缝将剪力传递到钢管上。由于抗剪环钢筋直径一般不大,由剪力引起的对钢管壁的局部弯矩很小。由于焊缝作用力可以保证,设计时以抗剪环的作用力为主进行抗剪验算。 (2)环梁混凝土与钢管之间的粘结作用。粘结作用力虽然很大,但在地震作用下难以保证,一般不予考虑,仅作为安全储备。

钢管混凝土结构

钢管混凝土结构 1、前言 钢管混凝土即在薄壁钢管内填充普通混凝土,将两种不同性质的材料组合而形成的复合结构,它是将钢管结构和钢筋混凝土结构的优点结合在一起而发展起来的新型结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。钢管混凝土作为一种结构构件形式最早在十九世纪八十年代被设计应用做桥墩,然后随着科学技术的提高使它的应用范围得到了很大的扩展。从八十年代末开始,钢管混凝土在我国的土建工程中的应用发展很快。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广泛。 2、钢管混凝土结构的特点 ,混凝土的抗压强度高,但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高。同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。 钢管混凝土柱在荷载作用下的应力状态和应力路径是十分复杂的,仅以常用的一种加载方式为例,对其受力、变形特点进行简单剖析。据有关大量实验表明,如图l的一根钢管混凝土短试件在轴向力N作用下钢管和核心混凝土随着纵向压

力的增加两者均产生较大的纵向应力和纵向应变,同时将产生横向变形。横向应变与纵向应变的关系为S S IS 3εμε=,C C C 31εμε=(式中的13,εε分别为纵向、环向应变,μ为材料的泊松比,下标s ,c 分别代表钢管和核心混凝土)。在轴向力N 作用下钢管和核心砼的变形是协调的,即C S 33εε=。钢材的泊松S μ在弹性阶段为一常数(O.283),进入塑性阶段(应力达屈服点y f 时)增大至0.5而保持不变。而混凝土的横向变形系数C μ则为变数,可以从低应力时的0.17增加到0.5至1.0甚至大于1.0。由上式可见,钢管混凝土在轴心压力N 作用下,开始时C S μμ>, 钢管 1σ 混凝土2 1 N 图1 试件轴压时的内力状态 故C S 11εε>,但C μ在很快赶上S μ,则S μ=C μ,而C S 11εε=,随后C μ>S μ,S C 11εε>。这说明钢管混凝土在压力N 作用下混凝土向外的横向变形大于钢管向外的横向变形。钢管约束了砼,在钢管与混凝土之间产生了相互作用力P ,称为紧箍力。从而使钢管纵向和径向受压而环向受拉,混凝土则处于三向受压状态。这样一来就大大提高了混凝土的抗压强度,同时塑性性能得到了很大的改善。在工作性质

RC 梁-圆钢管混凝土柱节点环梁承载力设计方法

191 附录G RC 梁-圆钢管混凝土柱节点环梁承载力设计方法 G.1 节点环梁受拉环筋和箍筋的计算 G.1.1 当环梁(图G.1.1)上部环向钢筋的直径相同、水平间距相等时,环梁受拉环筋面积及箍筋单肢面积按下式计算: 1 不考虑楼板的有利作用 2 1 2sin 7sin θλθ≥ (G.1.1-1) k sh dp yh r 22202r 51.4{sin sin [sin()sin ]} 7M A R r f l l αθλθλθαθ≥ -+++- (G.1.1-2) 2 考虑楼板的有利作用 12 21 2sin 7sin βθλβθ≥ (G.1.1-3) k sh dp yh r 22202213r 5 1.4{sin sin [sin()sin ]} 7M A R r f l l λαθθλθαθβββ≥ -+++- (G.1.1-4) 在负弯矩作用下,β1取0.5, β2取0.65, β3取0.6;正弯矩作用下取β1=β2=β3=1.0。 3 环梁箍筋单肢面积 sv yh sh H v yv 0.7/()A f A f λγα= (G.1.1-5) 式中:λ ——剪环比,为环梁箍筋名义拉力与环梁受拉环筋名义拉力的比值, v h /F F λ=,可取0.35~ 0.7,不考虑楼板的作用时取较高值,考虑楼板的作用时取较低值; F h ——受拉环筋的名义拉力,h yh sh 0.7F f A =; f yh ——环向钢筋抗拉强度设计值; A sh ——环向钢筋的截面面积; F v ——环梁箍筋的名义拉力,v v sv yv H F A f αγ=; f yv ——箍筋抗拉强度设计值; H γ ——箍筋间夹角(弧度),H h /(/2)S r b γ=+; S ——环梁中线处箍筋间距; A sv ——环梁箍筋单肢面积; αv ——闭合箍筋计算系数,按表G.1.1取值; M k ——由实配钢筋计算得出的框架梁梁端截面弯矩; αdp ——修正系数,取αdp =1.3; l r ——环梁受拉环筋合力作用点到受压区合力点的力臂,取l r =min{0.87h r0,h r -50mm};

钢管混凝土结构技术规范

.. . word. GB50936-2014钢管混凝土结构技术规 应知条文 必会条文 4.1.8 钢管混凝土柱的钢管在浇筑混凝土前,其轴心应力不宜大于钢管抗压强度设计值的60%,并应满足稳定性要求。 4.1.11 直径大于2m 的圆形钢管混凝土构件及边长大于1.5m 的矩形钢管混凝土构件,应采取有效措施减小钢管混凝土收缩对构件受力性能的影响。 5.4.1 对轴压构件和偏心率不大于0.3的偏心钢管混凝土实心受压构件,当由永久荷载引起的轴心压力占全部轴心压力的50%及以上时,由于混凝土变的影响,钢管混凝土柱的轴心受压稳定承载力设计值 Nu 应乘以折减系数0.9。 7.2.1 等直径钢管对接时宜设置环形隔板和衬钢管段,衬钢管段也可兼作为抗剪连接件,并应符合下列规定: 1 上下钢管之间应采用全熔透坡口焊缝,坡口可取35°,直焊缝钢管对接处应错开钢管焊缝; 2 衬钢管仅作为衬管使用时(图7.2.1a ),衬管管壁厚度宜为4mm ~6mm ,衬管高度宜为50mm ,其外径宜比钢管径小2mm ; 图7.2.1 等直径钢管对接构造 1-环形隔板;2-衬钢管 3 衬钢管兼作为抗剪连接件时(图7.2.1b ),衬管管壁厚度不宜小于16mm ,衬管高度宜为100mm ,其外径宜比钢管径小2mm 。 7.2.2 不同直径钢管对接时,宜采用一段变径钢管连接。变径钢管的上下两端均宜设置环形隔板,变径钢管的壁厚不应小于所连接的钢管壁厚,变径段的斜度不宜大于1:6,变径3.1.4 抗震设计时,钢管混凝土结构的钢材应符合下列规定: 1 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3 钢材应有良好的可焊性和合格的冲击韧性。 9.4.1 钢管混凝土结构中,混凝土禁使用含氯化物类的外加剂。

钢管混凝土柱与钢筋混凝土梁连接

钢管混凝土柱与钢筋混凝土梁连接 推荐一种钢管商品混凝土柱与钢筋商品混凝土梁节点做法,使钢管在节点区的连接更 加安全、可靠。商品混凝土梁可以很好的传递内力,与其他节点做法相比,具有施工方便、加快功效和节约材料的优点。 一、概述 钢管商品混凝土结构是由商品混凝土填入钢管内而形成的一种新型组合结构,改变了 各自本身的材料性质,共同成为一种新的复合材料,由于钢管商品混凝土结构能够更有效地发挥钢材和商品混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点,使得商品混凝土强度和延伸性大大提高,形成了卓越的承载能力和变形能力。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管商品混凝土结构按照截面形式的不同可以分为矩形钢管商品混凝土结构、圆钢管商品混凝土结构和多边形钢管商品混凝土结构等,其中矩形钢管商品混凝土结构和圆钢管商品混凝土结构应用较广。 1.钢管商品混凝土结构的特点 众所周知,商品混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯 能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管商品混凝土在结构上能够将二者的优点结合在一起,可使商品混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于商品混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管商品混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管商品混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 1.1 承载力高、延性好,抗震性能优越

钢管混凝土柱与钢筋混凝土梁连接

钢管混凝土柱与钢筋混凝土梁连接 摘要:本文推荐一种钢管混凝土柱与钢筋混凝土梁节点做法,使钢管在节点区的连接更加安全、可靠。混凝土梁可以很好的传递内力,与其他节点做法相比,具有施工方便、加快功效和节约材料的优点。 《关键词》钢管、钢筋、混凝土、施工 Abstract: this paper recommends a kind of concrete-filled steel tube column and reinforced concrete beam node approach makes steel pipe in the node connected more safe and reliable. Concrete beams can be very good transfer internal force, compared with other node practice, construction is convenient, speed up with efficiency and save materials advantages. 《Keywords》steel pipe、steel、concrete、construction 中图分类号:TU37文献标识码:A 文章编号: 一、概述 钢管混凝土结构是由混凝土填入钢管内而形成的一种新型组合结构,改变了各自本身的材料性质,共同成为一种新的复合材料,由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点,使得混凝土强度和延伸性大大提高,形成了卓越的承载能力和变形能力。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。 1.钢管混凝土结构的特点 众所周知,混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 1.1 承载力高、延性好,抗震性能优越 钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状

钢管混凝土结构技术规范

专业资料 GB50936-2014钢管混凝土结构技术规 应知条文 必会条文 4.1.8 钢管混凝土柱的钢管在浇筑混凝土前,其轴心应力不宜大于钢管抗压强度设计值的60%,并应满足稳定性要求。 4.1.11 直径大于2m 的圆形钢管混凝土构件及边长大于1.5m 的矩形钢管混凝土构件,应采取有效措施减小钢管混凝土收缩对构件受力性能的影响。 5.4.1 对轴压构件和偏心率不大于0.3的偏心钢管混凝土实心受压构件,当由永久荷载引起的轴心压力占全部轴心压力的50%及以上时,由于混凝土变的影响,钢管混凝土柱的轴心受压稳定承载力设计值 Nu 应乘以折减系数0.9。 7.2.1 等直径钢管对接时宜设置环形隔板和衬钢管段,衬钢管段也可兼作为抗剪连接件,并应符合下列规定: 1 上下钢管之间应采用全熔透坡口焊缝,坡口可取35°,直焊缝钢管对接处应错开钢管焊缝; 2 衬钢管仅作为衬管使用时(图7.2.1a ),衬管管壁厚度宜为4mm ~6mm ,衬管高度宜为50mm ,其外径宜比钢管径小2mm ; 图7.2.1 等直径钢管对接构造 1-环形隔板;2-衬钢管 3 衬钢管兼作为抗剪连接件时(图7.2.1b ),衬管管壁厚度不宜小于16mm ,衬管高度宜为100mm ,其外径宜比钢管径小2mm 。 7.2.2 不同直径钢管对接时,宜采用一段变径钢管连接。变径钢管的上下两端均宜设置环形隔板,变径钢管的壁厚不应小于所连接的钢管壁厚,变径段的斜度不宜大于1:6,变径3.1.4 抗震设计时,钢管混凝土结构的钢材应符合下列规定: 1 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3 钢材应有良好的可焊性和合格的冲击韧性。 9.4.1 钢管混凝土结构中,混凝土禁使用含氯化物类的外加剂。

钢管混凝土组合柱施工工法

多层连接钢管砼组合柱施工工法 工法编号:ZJ1GF-310-2009 编制单位: 主要执笔人: 1 前言 钢管砼叠合柱(steel tube-reinforced concrete column)是指由截面中部钢管砼和钢管外钢筋砼叠合而成的柱,简称叠合柱。按截面形态可分为矩形截面和圆形截面。叠合柱的内外组成部分可不同期施工,也可同期施工。同期施工是指,同时浇筑钢管内砼和钢管外砼。同期施工的叠合柱可称组合柱。东北传媒文化广场工程外框筒采用组合柱方式。钢管砼组合柱共70根,钢管采用无缝钢管,非定尺加工,现场提供的钢管长度为8—12m,层高为5.1m、3.9m。钢管连接的一般做法为一层一接,从而保证了钢管内外砼同时浇筑。若采用一层一接方式则须将钢管在现场切断,然后再接高,但增加了内衬管的用量以及焊接次数,且钢管接高位置不能设在梁柱核心区内,必有部分钢管不能使用,将会大大增加成本,工期也大大增加。钢管长度采用二层或三层一接,吊装临时固定采用专用卡具,钢管内砼浇筑施工时,提前在钢管上留设10*20cm浇筑孔,砼浇筑完毕及时进行封堵,满足二级焊缝要求。通过多项创新技术,解决了钢管吊装、钢管内外砼同时浇筑等技术难题,大大加快施工进度,取得了良好的经济效益。在此基础上形成本工法。 2 工法特点 2.0.1 钢管采用多层一接,减少塔吊吊次,减少内衬管用量和钢管焊接,缩短工期,降低成本; 2.0.2采用单层砼浇筑,钢管内用普通砼取代自密实砼,降低成本; 2.0.3专用临时卡具操作简单,重复使用,降低成本。 3 适用范围 3.0.1 本工法适用于采用两层或多层一接方式的钢管砼组合柱的施工。 4 工艺原理 4.0.1 钢管砼组合柱施工包含钢管吊装、钢筋绑扎、模板支设和砼浇筑、养护等多道施工工序。钢管砼组合柱中钢管采用二层或三层一接,吊装钢管临时连接固定采用专用卡具;钢管内砼浇筑施工时,提前在钢管上留设10*20cm浇筑孔,砼浇筑完毕及时进行封堵。

钢管混凝土结构浇筑

钢管混凝土结构浇筑 钢管混凝土的浇筑常规方法有从管顶向下浇筑及混凝土从管底顶升浇筑。不论釆取何种方法,对底层管柱,在浇筑混凝土前,应先灌入约100mm厚的同强度等级水泥砂浆,以便和基础混凝土更好地连接,也避免了浇筑混凝土时发生粗骨料的弹跳现象。采用分段浇筑管内混凝土且间隔时间超过混凝土终凝时间时,每段浇筑混凝土前,都应釆取灌水泥砂浆的措施。 通过试验,管内混凝土的强度可按混凝土标准试块自然养护28d的抗压强度采用,也可按标准试块标准养护28d强度的0.9采用。 钢管混凝土结构浇筑应符合下列规定: (1)宜采用自密实混凝土浇筑。 (2)混凝土应采取减少收缩的措施,减少管壁与混凝土间的间隙。 (3)在钢管适当位置应留有足够的排气孔,排气孔孔径应不小于20mm;浇筑混凝土应加强排气孔观察,确认浆体流出和浇筑密实后方可封堵排气孔。 (4)当采用粗骨料粒径不大于25mm的高流态混凝土或粗骨料粒径不太于20mm的自密实混凝土时,混凝土最大倾落高度不宜大于9m;倾落高度大于9m 时应采用串筒、溜槽、溜管等辅助装置进行浇筑。 (5)混凝土从管顶向下浇筑时应符合下列规定: 1)浇筑应有充分的下料位置,浇筑应能使混凝土充盈整个钢管; 2)输送管端内径或斗容器下料口内径应比钢管内径小,且每边应留有不小于100mm 的间隙; 3)应控制浇筑速度和单次下料量,并分层浇筑至设计标高; 4)混凝土浇筑完毕后应对管口进行临时封闭。 (6)混凝土从管底顶升浇筑时应符合下列规定: 1)应在钢管底部设置进料输送管,进料输送管应设止流阀门,止流阀门可在顶升浇筑的混凝土达到终凝后拆除; 2)合理选择混凝土顶升浇筑设备,配备上下通信联络工具,有效控制混凝土的顶升或停止过程; 3)应控制混凝土顶升速度,并均衡浇筑至设计标高。

钢管混凝土结构抗震性能

南昌大学研究生2015~2016学年第二学期期末 读书报告 课程名称:混凝结构理论与应用专业:建筑与土木工程 学生姓名:李海学号:4160146150 学院:建筑工程学院得分: 任课教师:熊进刚时间:2016年6月

钢管混凝土结构抗震性能研究 摘要: 介绍了钢管混凝土组合结构的特点,综述了国内外钢管混凝土结构的抗震性能的研究现状; 分析了其存在的问题和实用价值,展望了钢管混凝土结构发展趋势和应用前景; 指出了进一步研究的方向。 关键词: 组合结构; 钢管混凝土结构; 抗震性能; 工程应用 Abstract:This paper presents the characteristics of steel concrete composite structures, review the status of research on seismic behavior of domestic and foreign steel concrete structure; analyzes the problems and practical value, the prospect of the development trend of steel and concrete structures prospects; points out further research direction. Keywords:composite structure; steel concrete structure; seismic performance; engineering applications 钢管混凝土是指在钢管中填充混凝土而形成、且钢管及其核心混凝土能共同承受外荷载作用的结构构件,按截面形式不同,可分为圆钢管混凝土,方、矩形钢管混凝土和多边形钢管混凝土等。钢管混凝土是在劲性钢筋混凝土、螺旋配筋混凝土和钢管结构的基础上演变和发展起来的,利用钢管和混凝土两种材料在受力过程中的相互作用,即钢管对混凝土的约束作用使混凝土处于复杂应力状态之下,从而使混凝土的强度得以提高,塑性和韧性性能大为改善。同时,由于混凝土的存在可以避免或延缓钢管发生局部屈曲,保证其材料性能的充分发挥。钢管混凝土组合结构的优势主要表现在: 承载力高、塑性和韧性好、经济效果好、施工方便、耐火性能较好。 钢管混凝土结构早在19 世纪80 年代就出现了,到目前为止,钢管混凝土结构在土木工程中的应用已经有百年历史。由于钢管混凝土具有优越的力学性能和良好的经济效益,一开始便受到世界各国土木工程界的重视,并争先恐后开发利用。1879年,英国最早将钢管混凝土杆件用于Severn 铁路桥的桥墩,在钢管内填混凝土以承受轴向压力,并防止钢管内部锈蚀。1897 年,美国人JOHN LALLY 提出在钢管中填充混凝土作为房屋建筑的承重柱,并获得专利【1】。我国从1959 年开始研究钢管混凝土的基本性能和应用,1963 年成功地将钢管混凝土柱用于北京地铁车站工程。改革开放后,随着国家经济的迅猛发展,钢管混凝土结构技术在我国的高层建筑、地铁车站和大跨度桥梁等工程中得到了广泛应用,有力地推动了上述领域营造技术的发展,取得了令人瞩目的成就【2】。2008 年汶川地震中,钢管混凝土建筑显示了优越的抗震性能,钢管混凝土的研究成为热门课题之一。 1 钢管混凝土的特点 混凝土的抗压强度高,但抗弯能力差,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高,同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中( 如厂房和高层) 。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 1)承载力高、延性好,抗震性能优越。钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度; 钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。

钢与混凝土组合结构应用技术

钢与混凝土组合结构应用技术 5.8.1 技术内容 型钢与混凝土组合结构主要包括钢管混凝土柱,十字型、H型、箱型、组合型钢混凝土柱,钢管混凝土叠合柱,小管径薄壁(<16mm)钢管混凝土柱,组合钢板剪力墙,型钢混凝土剪力墙,箱型、H型钢骨梁,型钢组合粱等。钢管混凝土可显著减小柱的截面尺寸,提高承载力;型钢混凝土柱承载能力高,刚度大且抗震性能好;钢管混凝土叠合柱具有承载力高,抗震性能好同时也有较好的耐火性能和防腐蚀性能;小管径薄壁(<16mm)钢管混凝土柱具有钢管混凝土柱的特点,同时还具有断面尺寸小、重量轻等特点;组合梁承载能力高且高跨比小。 钢管混凝土组合结构施工简便,梁柱节点采用内环板或外环板式,施工与普通钢结构一致,钢管内的混凝土可采用高抛免振捣混凝土,或顶升法施工钢管混凝土。关键技术是设计合理的梁柱节点与确保钢管内浇捣混凝土的密实性。 型钢混凝土组合结构除了钢结构优点外还具备混凝土结构的优点,同时结构具有良好的防火性能。关键技术是如何合理解决梁柱节点区钢筋的穿筋问题,以确保节点良好的受力性能与加快施工速度。 钢管混凝土叠合柱是钢管混凝土和型钢混凝土的组合形式,具备了钢管混凝土结构的优点,又具备了型钢混凝土

结构的优点。关键技术是如何合理选择叠合柱与钢筋混凝土梁连接节点,保证传力简单、施工方便。 小管径薄壁(<16mm)钢管混凝土柱具有钢管混凝土柱的优点,又具有断面小、自重轻等特点,适合于钢结构住宅的使用。关键技术是在处理梁柱节点时采用横隔板贯通构造,保证传力同时又方便施工。 组合钢板剪力墙、型钢混凝土剪力墙具有更好的抗震承载力和抗剪能力,提高了剪力墙的抗拉能力,可以较好地解决剪力墙墙肢在风与地震作用组合下出现受拉的问题。 钢混组合梁是在钢梁上部浇筑混凝土,形成混凝土受压、钢结构受拉的截面合理受力形式,充分发挥钢与混凝土各自的受力性能。组合梁施工时,钢梁可作为模板的支撑。组合梁设计时要确保钢梁与混凝土结合面的抗剪性能,又要充分考虑钢梁各工况下从施工到正常使用各阶段的受力性能。 5.8.2 技术指标 钢管混凝土构件的径厚比D/t宜为20~135、套箍系数θ宜为0.5~2.0、长径比不宜大于20;矩形钢管混凝土受压构件的混凝土工作承担系数αc应控制在0.1~0.7;型钢混凝土框架柱的受力型钢的含钢率宜为4%~10%。 组合结构执行《型钢混凝土组合结构技术规程》JGJ 138、《钢管混凝土结构技术规范》GB50936、《钢-混凝土组合

钢梁-钢管混凝土柱框架结构骨架曲线研究

钢梁-钢管混凝土柱框架结构骨架曲线研究 孙修礼 (青岛农业大学建筑工程学院,山东青岛 266109) 摘要:以钢管混凝土统一理论为基础,钢管混凝土柱构件采用3线型弯矩-转角滞回模型;钢梁采用双线型弯矩-转角滞回模型。使用非线性分析程序I D A R C 分析钢梁-钢管混凝土柱框架结构的恢复力特性曲线,程序结果和试验结果吻合良好。并进一步研究了轴压比、含钢率、混凝土强度和钢材强度等对骨架曲线的影响。 关键词:钢管混凝土;骨架曲线;统一理论;框架结构中图分类号:T U 375 文献标识码:A 文章编号:1671-5322(2008)01-0006-03收稿日期:2007-12-07 基金项目:青岛农业大学“校高层次人才启动基金”资助项目(630721);江苏省“六大人才高峰”资助项目(7605009063) 作者简介:孙修礼(1975-),男,山东即墨人,工学博士,讲师,主要研究方向为钢管混凝土组合结构方面。 钢管混凝土结构体系以其良好的经济性及优越的抗震性能被广泛应用于高层和超高层建筑。目前对钢管混凝土柱的基本性能和受力机理已经进行了系统的试验和理论研究,对钢管混凝土柱与梁的各种节点形式也进行了大量的试验与理论研究。但对钢管混凝土柱结构体系的整体抗震性能的研究则处于起步阶段,仅进行了少量的试验研究 [1-3] 。因此对钢管混凝土整体结构体系进行 研究具有重要的理论和实践价值。本文在钢管混凝土统一理论的基础上,合理选择钢管混凝土柱、钢梁的抗震参数,使用非线性分析程序I D A R C 对钢梁—钢管混凝土柱框架结构体系的恢复力曲线进行了研究,程序分析结果与试验结果吻合良好,并进一步分析了轴压比、含钢率、混凝土强度和钢材强度等对骨架曲线的影响。本文研究结果不仅为钢管混凝土结构的应用推广提供了必要的理论基础,而且对钢管混凝土抗震设计有较好的参考价值。 1 钢管混凝土统一理论 由两种材料组成,但在宏观上可视其为1种“组合材料”,可用整个构件的力学性能指标来计算其承载力 [4-5] 。由于材料的本构关系中已经包 含钢管和混凝土相互作用的紧箍力效应,因而确 定的组合设计指标中也包括了这种紧箍效应。经过大量试验研究证明钢管混凝土统一理论是合理可靠的,以下是对统一理论中重要的参数的简单 介绍。 (1)含钢率α α= A s A c (1) A s 、A c 分别为钢管与混凝土的截面面积。(2)约束效应(套箍)系数ξ ξ=α f y f c k (2) f y 为钢材屈服强度;f c k 为混凝土抗压强度标准值,近似取f c k =0.8f c u 。 (3)轴压组合强度标准值f s c y f s c y =(1.212+B ξ+C ξ2 )f c k (3) 式中:B=0.1759 f y 235 +0.974;C=-0.1038f c k 20 +0.0309。(4)轴压比n n= N N μ=N f s c y A s c (4) 式中:A s c =A s +A c 。第21卷第1期2008年03月 盐城工学院学报(自然科学版)J o u r n a l o f Y a n c h e n gI n s t i t u t e o f T e c h n o l o g y N a t u r a l S c i e n c e E d i t i o n V o l .21N o .1M a r .2008 DOI :10.16018/j .cn ki .32-1650/n .2008.01.009

钢管束混凝土施工方案

富士康蓝领公寓(一期)工程钢管混凝土工程专项方案 编制: 项目技术负责人: 项目经理: 审核: 审批: 杭萧钢构股份有限公司 二O一七年二月

目录 第一章工程概况 (1) 第二章编制依据 (2) 第三章施工准备 (3) 3.1 概述 (3) 3.2 施工条件 (3) 3.3 施工作业准备 (3) 3.4 技术要求 (3) 第四章施工方案 (6) 1.施工工艺流程 (6) 2.作业步骤与方法 (6) 3.钢管束插筋 (7) 4.其他细节 (8) 5.施工注意事项 (9) 第五章质量控制及检测 (10)

第一章 工程概况 序号 项 目 内 容 1 工程名称 富士康蓝领公寓(一期) 2 工程地址 河南省兰考县310国道和顺兴路十字西北角 5 建设单位 兰考县城市建设投资发展有限公司 6 设计单位 中机十院国际工程有限公司 7 勘查单位 8 施工单位 杭萧钢构股份有限公司 9 监理单位 序号 项 目 内 容 建筑功能 地下建筑面积 地上建筑面积 层数(地下/地上) 建筑高度 标准 层高 1 11#楼 宿舍/商业 995.6 2 17922.50 1/16 54.75 3. 3 2 12#楼 宿舍 997.62 17051.14 1/16 53.35 3.3. 3 17#楼 宿舍/商业 996.31 18517.02 1/16 54.75 3.3 4 18#楼 宿舍/商业 996.31 18908.68 1/16 54.75 3.3 5 19#楼 商业 1762.53 0/2 8. 6 4.2 6 20#楼 物业 1052.78 1995.74 1/2 14.22 5.1 7 耐火等级 一级 抗震设防烈度 七度 8 结构形式 钢管束组合剪力墙

钢管混凝土结构

钢管混凝土结构 近20年来,钢管混凝土结构逐渐被应用于建筑结构尤其是在高层建筑结构中,随着建筑物高度的增加,钢管高强混凝土和钢管超高强混凝土结构的应用也将会得到快速的发展。一般的,我们把混凝土强度等级在C50以下的钢管混凝土称为普通钢管混凝土;混凝土强度等级在C50以上的钢管混凝土称为钢管高强混凝土;混凝土强度等级在C100以上的钢管混凝土称为钢管超高强混凝土。 钢管混凝土结构是由混凝土填入钢管内而形成的一种新型组合结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。 1.钢管混凝土结构的特点 众所周知,混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 1.1 承载力高、延性好,抗震性能优越 钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度;钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。 塑性是指在静载作用下的塑性变形能力。钢管混凝土短柱轴心受压试脸表明,试件压缩到原长的2/3,纵向应变达30%以上时,试件仍有承载力。剥去钢管后,内部混凝土虽已有很大的鼓凸褶皱,但仍保持完整,并未松散,且仍有约5%的承载力,用锤敲击后才粉碎脱落。抗震性能是指在动荷载或地震作用下,具有良好的延性和吸能性。在这方面,钢管混凝土构件要比钢筋混凝土构件强得多。在压弯反复荷载作用下,弯矩曲率滞回曲线表明,结构的吸能性能特别好,无刚度退化,且无下降段,和不丧失局部稳定性的钢柱相同,但在一些建筑中,钢柱常常要采用很厚的钢板以确保局部稳定性。但还常发生塑性弯曲后丧失局部稳定。因此,钢管混凝土柱的抗震性能也优于钢柱。

方钢管混凝土框架结构展望

方钢管混凝土框架结构的研究及展望摘要:“强柱弱梁”是框架结构在地震作用下屈服机制的传统认识。目前,对钢管混凝土框架结构屈服机制的研究,一般都套用钢框架、钢筋混凝土框架结构的梁铰屈服机制对其进行抗震设计。本文对方钢管混凝土框架结构抗震性能的研究现状进行了总结。同时,对新近研究的允许部分柱屈服的整体型屈服机制—混合屈服机制的钢管混凝土框架结构的研究发展进行概述及展望。混合屈服机制的钢管混凝土框架结构具有较高的承载能力、良好的抗震性能、显著的经济效益等优点,将在越来越多的高层、大跨结构中得到广泛的应用。 关键词:方钢管混凝土框架结构;混合屈服机制;研究;展望abstract: “strong column weak beam” is frame structure under earthquake effect yield the traditional view of mechanism. for the moment, the concrete-filled steel tubular frame structures yield mechanisms, generally apply mechanically steel frame, reinforced concrete frame structure of the beam hinge mechanism on the yield astigmatic design. this paper each other the concrete-filled steel tubular frame structures, the seismic performance summarized. at the same time, to recent research part of the overall yield allowed column type yield mechanism-the mixed yield mechanism of concrete filled steel tubular frame structure of the

钢管混凝土结构施工技术

钢管混凝土结构施工技术 钢管混凝土是将普通混凝土填人薄壁圆形钢管内形成的一种钢一混凝土组合结构。其工作原理是:借助内填混凝土增强钢管壁的稳定性;借助钢管对核心混凝土的套箍(约束)作用,使核心混凝土处于三向受压状态,从而使核心混凝土具有更高的抗压强度和抗变形能力。钢管混凝土适合于高层、大跨、重载和抗震抗爆结构的受压杆件。 钢管混凝土在本质上属于套箍混凝土。它除具有一般套箍混凝土的强度高、重量轻、塑性好、耐疲劳、耐冲击等优点外,在施工工艺方面还具有以下一些独特优点: 1)钢管本身即为耐侧压的模板,浇筑混凝土时可省去支模和拆模工作。 2)钢管兼有纵向钢筋(受拉和受压)和箍筋的作用,制作钢管比制作钢筋骨架省工,且便于浇筑混凝土。 3)钢管本身又是劲性承载骨架,其焊接工作量比一般型钢骨架少,可以简化施工安装工艺、节省脚手架、缩短工期、减少施工场地。在寒冷地区,可以冬季安装钢管骨架,春季浇筑混凝土,施工不受季节限制。 钢管混凝土与钢结构相比,在自重相近和承载能力相同的条件下,可节省钢材约50%,且焊接工作量大幅度减少;与普通混凝土结构相比,在保持钢材用量相近和承载能力相

同的条件下,构件的截面面积可减少约一半,混凝土用量和构件自重相应减少约50%。 20世纪90年代以来,我国高层建筑开始采用钢管混凝土柱。如23层的厦门金源大厦,地下1层至地上19层的全部28根柱以及20~23层的4根角柱,均采用钢管混凝土;北京四川大厦(地上32层,高100m),地下3层柱全部采用直径为70cm钢管混凝土。1999年建成的深圳赛格广场大厦(地上72层,高291.6m),是我国自行投资、设计、全部采用国产钢材、自行加工和施工的最高的钢管混凝土结构高层建筑。赛格广场大厦塔楼部分采用框筒结构体系,框架采用钢管混凝土柱、钢梁和压型钢板组合楼盖,内筒由28根钢管混凝土密排柱组成,受力最大的钢管混凝土柱,截面为φ1600mm×28mm,Q345钢材,内填C60混凝土。 一、钢管混凝土的节点构造 钢管混凝土结构各部件之间的相互连接,以及钢管混凝土结构与其他结构(钢结构、混凝土结构等)构件之间的相互连接,应满足构造简单、传力明确、安全可靠、整体性好、节约材料和施工方便等要求。其核心问题是如何保证可靠地传递内力。 1、一般规定 1)焊接管必须采用坡口焊,并满足Ⅱ级质量检验标准,达到焊缝与母材等强度的要求。

相关文档
最新文档