含有无伴电压源电路中节点电压法的研究

含有无伴电压源电路中节点电压法的研究
含有无伴电压源电路中节点电压法的研究

线性电路分析中受控电源的等效方法

线性电路分析中受控电源的等效方法 摘 要:利用等效变换把受控源支路等效为电阻或电阻与独立电压源串联组合 求解含有受控源的现行电路。 关键词:受控电源;等效变换;独立电源 前言: 在求解含有受控源的线性电路中,存在着很大的局限性.下面就此问题作进一步的探讨. 受控源支路的电压或电流受其他支路电压、电流的控制.受控源又间接地影响着电路中的响应.因此,不同支路的网络变量间除了拓扑关系外,又增加了新的约束关系,从而使分析计算复杂化.如何揭示受控源隐藏的电路性质,这对简化受控源的计算是非常重要的.本文在对受控源的电路性质进行系统分析的基础上,给出了含受控源的线性电路的等效计算方法. 正文:根据受控源的控制量所在支路的位置不同,分别采取如下3种等效变换法. 1. 1. 当电流控制型的受控电压源的控制电流就是该受控电压源支路的电流、 或当电压控制型的受控电流源的控制电压就是该受控电流源支路两端的电压时,该受控源的端电压与电流之间就成线性比例关系,其比值就是该受控源的控制系数.因此,可采用置换定理,将受控源置换为一电阻,再进一步等效化简. 例1-1:如图求解图a 中所示电路的入端电阻R AB . + _R 2u 1 R 1 -u A B i gu 1a + 解:首先,将电压控制型的受控电流源gu 1与R 1并联的诺顿支路等效变化成电压控制型的受控电压源gu 1R 1与电阻R 1串联的等效戴维南支路,如图b 所示.在电阻R 1与电阻R 2串联化简之前,应将受控电压源的控制电压转换为端口电流i ,即u 1=-R 2i .然后,将由电压u 1控制的电压控制型受控电压源gu 1R 1转化为电流控制型的受控电压源-gR 1R 2i ,如图c 所示.由图c 可知,由于该电流控制型的受控电压源的控制电流i 就是该受控电压源支路的电流,因此,可最终将该电流控制型的受控电压源简化成一个电阻,其阻值为-gR 1R 2.这样,该一端口网络的入 端电阻R AB =R 1+R 2-gR 1R 2.

网孔电流法和节点电压法例题分析

课题8:支路电流法、网孔电流法和节点电压法 课型:讲授 教学目的: (1)利用支路电流法求解复杂直流电路 (2)利用网孔电流法求解支路数目较多的电路。 (3)利用节点电压法求解节点较少而网孔较多的电路 重点、难点: 重点:支路电流法、网孔电流法、节点电压法求解复杂直流电路 难点:列方程过程中电压、电流参考方向及符号的确定。 教学分析: 本节主要还是在巩固基尔霍夫定律的基础上,利用实例分析支路电流法、网孔电流法、 节点电压法并将其用于实践案例中。 复习、提问: (1)节点的概念和判别? (2)网孔的概念和判别? 教学过程: 导入:求解复杂电路的方法有多种,我们可以根据不同电路特点,选用不同的方法去求解。其中最基本、最直观、手工求解最常用的就是支路电流法。 一、支路电流法 利用支路电流法解题的步骤: (1)任意标定各支路电流的参考方向和网孔绕行方向。 (2)用基尔霍夫电流定律列出节点电流方程。有n个节点,就可以列出n-1个独立电流方程。 (3)用基尔霍夫电压定律列出L=b-(n-1)个网孔方程。 说明:L指的是网孔数,b指是支路数,n指的是节点数。 (4)代入已知数据求解方程组,确定各支路电流及方向。 例1试用支路电流法求图1中的两台直流发电机并联电路中的负载电流I及每台发电机的输出电流I1、和I2。已知:R1=1Ω,R2=0.6Ω,R=24Ω,E1=130V,E2=117V。 解:(1)假设各支路电流的参考方向和网孔绕行方向如图示。

图1 (2)根据KCL,列节点电流方程 该电路有A、B两个节点,故只能列一个节点电流方程。对于节点A有: I1+I2=I ① (3)列网孔电压方程 该电路中共有二个网孔,分别对左、右两个网孔列电压方程: I1R1-I2R2+E2-E1=0 ②(沿回路循行方向的电压降之和为零,如果在 I R+I2R2-E2=0 ③该循行方向上电压升高则取负号) (4)联立方程①②③,代入已知条件,可得: -I1-I2+I=0 I1-0.6I2=130-117 0.6I2+24I=117 解得各支路电流为: I1=10A I2=-5A I=5A 从计算结果,可以看出发电机E1输出10A的电流,发电机E2输出-5A的电流,负载电流为5A。由此可以知道: 结论:两个电源并联时,并不都是向负载供给电流和功率的,当两电源的电动势相差较大时,就会发生某电源不但不输出功率,反而吸收功率成为负载。因此,在实际供电系统中,直流电源并联时,应使两电源的电动势相等,内阻应相近。 所以当具有并联电池的设备换电池的时候,要全部同时换新的,而不要一新一旧。 思考:若将例1中的电动势E2、I2极性互换,列出用支路电流法求解I、I1、和I2所需的方程。 从前面的例子可以看出:支路电流法就是通过联立n-1个节点电流方程,L个网孔电压方程(n为节点数,L为网孔数)。但所需方程的数量取决于需要解决的未知量的多少。原则上,要求B条支路电流就设B个未知数。那么有没有特例呢?

节点电压法matlab

%利用matlab编写的节点电压法解电路电压NUM=5; %the number of the nodes R=ones(NUM,NUM);%存储电阻的矩阵 I=zeros(NUM,1);%存储电流源的矩阵 for a=1:NUM for b=1:NUM R(a,b)=realmax;%令矩阵中的值等于浮点数最大值end end para=1; while para==1%选择输入 type=menu('要输入的选项','电阻','电流源','结束'); switch type case 1 node1=input('元件的第一个节点: '); node2=input('元件的第二个节点: '); parameter=input('输入电阻/欧姆: '); R(node1,node2)=parameter; R(node2,node1)=parameter; case 2 node1=input('元件的第一个节点: '); node2=input('元件的第二个节点: '); parameter=input('电流源/毫安: '); I(node1,1)=parameter; I(node2,1)=-parameter; case 3 para=0; %退出 end end A=zeros(NUM,NUM); %电导矩阵 B=zeros(NUM,1); %电流源矩阵 tracer=1; for a=1:NUM for b=1:NUM if a~=b A(a,a)=A(a,a)+1/R(a,b); %节点的总跨导 end if b~=a A(a,b)=-1/R(a,b); %互导 end end end for a=1:NUM if I(a,1)~=0

节点电压法

§ 3-3 节点电压法 一 节点电压 任意选择电路中某一节点作为参考节点,其余节点与此参考节点间的电压分别称为对应的节点电压,节点电压的参考极性均以所对应节点为正极性端,以参考节点为负极性端。如图3-7所示的电路,选节点4为参考节点,则其余三个节点电压分别为U n1、U n2、U n3。节点电压有两个特点: 独立性:节点电压自动满足KVL ,而且相互独立。 完备性:电路中所有支路电压都可以用节点电压表示。 二 节点电压法 以独立节点的节点电压作为独立变量,根据KCL 列出关于节点电压的电路方程,进行求解的过程。 建立方程的过程(如图3-7) 图3-7 第一步,适当选取参考点。 第二步,根据KCL 列出关于节点电压的电路方程。 节点1:0)()(315211=--+-s n n n n I U U G U U G 节点2:0)()(32322211=-++--n n n n n U U G U G U U G 节点3:0)()(31534323=--+--n n n n n U U G U G U U G ?? ?? ??????=????????????????????++---++---+003215433 5 3 3 2115 1 51s n n n I U U U G G G G G G G G G G G G G G 第三步,具有三个独立节点的电路的节点电压方程的一般形式

???? ? ?????=????????????????????332211321333231232221131211s s s n n n I I I U U U G G G G G G G G G 式中,)(j i G ij =称为自由导,为连接到第i 个节点各支路电导之和,值恒正。 )(j i G ij ≠称为互电导,为连接于节点i 与j 之间支路上的电导之和,值恒为负。 sii I 流入第i 个节点的各支路电流源电流值代数和,流入取正,流出取负。 三 仅含电流源时的节点法 第一步,适当选取参考点; 第二步,利用直接观察法形成方程; 第三步,求解。 四 含电压源的节点法 第一类情况:含实际电压源:作一次等效变换。 第二类情况:含理想电压源。 ① 仅含一条理想电压源支路,如图3-8。 图3-8 a.取电压源负极性端为参考点:则s n U U =1 b.对不含有电压源支路的节点利用直接观察法列方程: )(0)(3543231533232111=+++--=-+++-n n n n n n U G G G U G U G U G U G G G U G c.求解 ② 含多条不具有公共端点的理想电压源支路,如图3-9。 U

《实验分析报告》受控源

《实验报告》受控源

————————————————————————————————作者:————————————————————————————————日期:

大连东软信息学院 学生实验报告 课程名称:_电路分析_________ 专业班级:_微电子14001班 _ 姓名:___刘盛意_,殷俊______ _ 学号:_14160600105,14160600119_____ 2014--2015 学年第 2 学期

实验报告注意事项 1. 课前必须认真预习实验,认真书写预习报告,了解实验步骤,未预习或预习 达不到要求的学生不准参加实验; 2. 实验完毕,必须将结果交实验指导教师进行检查,并将计算机正常关机、将 仪器设备、用具及椅子等整理好,方可离开实验室; 3. 按照实验要求书写实验报告,条理清晰,数据准确; 4. 当实验报告写错后,不能撕毁,请在相连的实验报告纸上重写; 5.实验报告严禁抄袭,如发现抄袭实验报告的情况,则抄袭者与被抄袭者该次 实验以0分计; 6. 无故缺实验者,按学院学籍管理制度进行处理; 7. 课程结束后实验报告册上交实验指导教师,并进行考核与存档。

实验项目(受控源VCVS、VCCS、CCVS、CCCS的实验) —预习报告 项目 名称实验一受控源VCVS、VCCS、CCVS、CCCS的实验 实验 目的 及 要求 l.学习使用基本电学仪器及线路连接方法。 2.掌握测量电学元件伏安特性曲线的基本方法及一种消除线路误差的方法。 3.学习根据仪表等级正确记录有效数字及计算仪表误差。 100mA量程,0.5级电流表最大允许误差mA 5 . % 5 . mA 100= ? = ? m x,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差V 015 . % 5 . V 3= ? = ? m V,应读到小数点后2位,如2.36(V) 4.了解用运算放大器组成四种类型受控源的线路原理。 5.测试受控源转移特性及负载特性。 实验 内容 及 原理 1、运算放大器(简称运放)的电路符号及其等效电路如图A所示。运算放大 器是一个有源三端器件,它有两个输入端和一个输出端,若信号从“+”端输入, 则输出信号与输入信号相位相同,故称为同相输入端,若信号从“-”端输入,则 输出信号与输入信号相位相反,故称为反相输入端。运算放大器的输出电压为: U O =A O (U P -U n ) 其中A O 是运放的开环电压放大倍数,在理想情况下,A O 与运放的输入电阻R 1均为无穷大,因此有 U P =U n i P =U P /R iP =0 i n =U n /R in =0 这说明理想运放具有下列三大特征: (1)运放的“+”端与“-”端电位相等,通常称为“虚短路”。 (2)运放输入端电流为零,即其输入电阻为无穷大。 (3)运放的输出电阻为零。 以上三个重要的性质是分析所有具有运放网络的重要依据,要使运放工作,还须接有正、负直流工作电源(称双电源),有的运放也可用单电源工作。

节点电压分析法

3.2.2 节点电压法 这种方法是在具有N 个节点的电路中,选取一个节点为参考点,其余各节点到参考点的电压(电位)称为该节点的节点电压,以节点电压为未知量列写除参考点外的N -1个节点的KCL 方程,连立求解该方程组求出节点电压,进而求出各支路电流。 1.节点电压法 现通过图3-22 所示电路求解各支路电流来阐述节点电压法。 在图3-22所示电路中,选0节点为参考点,1、2节点的节点电压分别为Un 1、Un 2,则各条支路的电流分别用节点电压表示为 11111n n U G R U I == 22222n n U G R U I == )(2133 213n n n n U U G R U U I -=-= )(2144214n n n n U U G R U U I -=-= )(2155215n S n S U U G R U U I -=-= 根据KCL 列1、2节点的电流方程: 节点1: 03211=---I I I I S 5S1图3-22 节点电压法

节点2: 022543=--++S I I I I I (3-24) 将支路电流用对应的节点电压代入上面的两节点1、2的电流方程式式(3-24),整理得: 11 2254321431 2431431)()()()(R U I U G G G G U G G I U G G U G G G S S n n S n n +-=+++++-=+-++ (3-25) 解式(3-25)方程组,求出节点电压21,n n U U ,便求出各支路电流。 观察与分析上题有如下特点: 1)式(3-25)中节点1的电流方程中,1n U 前面的系数是431G G G ++是连到节点1的所有电导之和,称为节点1的自电导,用11G 表示,即。43111G G G G ++=;同理在节点2的方程中2n U 前面的系数是5432G G G G +++,是连到节点2所有电导之和,称为节点的自电导,可用22G 表示,即543222G G G G G +++=,自电导总取正值。 2)在式(3-25)中,节点1的电流方程中2n U 前面的系数是)(31G G +-;在节点2的方程中,1n U 前面的系数 也是)(31G G +-,它们是节点1和节点2之间相连接的各支路的所有电导之和,称为互电导,互电导总取负值。 3)式(3-25)等式右边分别为流入节点1和节点2的电流源电流的代数和(流入为正,流出为负);若是电压源与电阻相串联的支路,则相当于变换成电流源与电导相并联的支路,分别用21,Sn Sn I I 表示,则 11S Sn I I =,1122R U I I S S Sn + -= 这样,式(3-25)可写成: ∑∑=+-=-22221121 212111Sn n n Sn n n I U G U G I U G U G (3-26) 这就是具有两个独立节点电路的节点电压方程得一般形式。 将式(3-26 )推广,对具有n -1个独立节点的电路,若将第n 个节点指定

节点电压法

节点电压法的计算机编程实现 学院: 专业: 班级: 学号:

目录 1.问题与假设 (2) 1.1课题研究价值 (2) 1.2问题的简化与假设 (2) 1.3节点电压法求解过程 (2) 2.建模过程 (2) 2.1节点电压法的简介 (2) 2.2模型的建立 (3) 2.3节点电压法线性方程组的原理与求解 (3) 3.算法实现 (4) 3.1MATLAB源代码 (4) 3.2实例演示 (6) 4.心得体会 (7) 5.参考文献 (8)

1.问题与假设 1.1课题研究价值 节点电压是一种求解对象的电路计算方法。节点电压是在为电路任选一个节点作为参考点(此点通常编号为“0”),并令其电位为零后,其余节点对该参考点的电位。在一个拥有多个电子元器件且物理拓扑结构确定的电路中,当电路中各处的电压电流均处于稳定状态时,如何求出加载在各个元器件上的电压?实际生活中,比较复杂的电路运用电脑程序求解为解决问题提供了方便。 1.2问题的简化与假设 假设电路属于集总电路,即电路中电压电流的效应不受电路线度的影响并且在接通瞬间完成。同时电路中的电子元器件仪限于电阻,电容,电感以及容性和感性器件。电路中只有独立的稳定电压源,不含受控电压源或电流源。 1.3节点电压法求解过程 第一步:把电压源与阻抗的串联形式化为电流源与阻抗的并联形式 第二步:标出结点,并把其中一个结点选为参考结点(一般为0电位点) 第三步:列出结点电压方程。 列方程方法:自电导乘以该结点电压+∑与该结点相邻的互电导乘以相邻结点的电压=流入该结点的电流源的电流-流出该结点电流源的电流 [注:这里的“+”是考虑了互导纳是电导的相反数,如果不考虑相反数的话,这个“+”就得写为“-”] 第四步:联立求解出上面所有的结点电压方程。 2.建模过程 2.1节点电压法的简介 电路中各个器件两端接入电路并且与其他器件相连接,相连接处构成了节点,因此加载在电路元件上的电压即为元器件两端的电势差,因此我们可以将把求器件上的电势差的问题化为求元器件两端的电势。这种方法称为节点电压法,是电路分析中最常用的方法。使用节点电压法首先选择一个结点作为参考结点,其余结点与参考结点之间的电压称为结点电压。结点电压的方向均由结点指向参考结点。 2.2模型的建立

[电路分析]含受控源二端网络的等效

含受控源二端网络的等效 一、含受控源和电阻的二端网络的等效 思路 当电路中含有受控源时,可以将受控源当作独立源看待,列写二端网络的伏安关系表达式,再补充一个受控源的受控关系表达式,联立求解这两个方程式,得到最简的端钮伏安关系表达式,最后,依据这个伏安表达式画出该二端网络的最简等效电路。 结论 含有受控源和电阻的二端网络可以等效为一个电阻,其等效电阻为 二、含受控源、电阻和独立源的二端网络的等效 结论 电路中含有受控源、电阻和独立源的二端网络,可以等效成有伴电压源或有伴电流源。 例 2.5-1 求图 2.5-1 ( a )所示二端网络的最简等效电路。 解:由图 2.5-2 ( a )可知, 则 ( 1 ) ( 2 )

( 3 ) 由( 3 )又可得到 ( 4 ) 由( 3 )、( 4 )式得到最简等效电路,如图 2.5-1 ( b )、( c )所示。 例 2.5-2 电路如图 2.5-2 ( a )所示,求 4A 电流源发出的功率。 解:欲求 4A 电流源发出的功率,只要求得 4A 电流源两端的电压即可。对电路作分解,如图 2.5-2 ( b )。 在图 2.5-2 ( b )中,回路①的 KVL 方程为 6I + 4I1=10 ( 1 ) 又 I1=I + I0 ( 2 ) 把( 2 )式代入( 1 )式,得 10I + 4I0=10 所以, I=1 - 0.4I0 ( 3 ) 又 U= - 10I - 6I + 10= - 16I + 10 ( 4 )

U= - 16 + 6.4I0 + 10=6.4I0 - 6 (5) 由 (5) 式画出等效电路,如图 2.5-2 ( c )所示。所以,6 - 6.4 × 4 + U=0 4A 电流源两端的电压为 U=19.6V 4A 电流源发出的功率为 P=4U=4 × 19.6=78.4W

[电路分析]节点电压法

节点电压法 .一、节点电压方程出发点 进一步减少方程数,用未知的节点电压代替未知的支路电压来建立方程。 图3.2-1电路共有4个节点、 6条支路(把电流源和电导并联的电路看成是一条支路)。用支路电流法计算,需列写6个独立的方程 选取节点d为参考点,d点的电位为,则节点a、b、c为独立的节点,它们与d 点之间的电压称为各节点的节点电压(node voltage),实际上就是各点的电位。这样 a、b、c的节点电压是。 各电导支路的支路电流也就可用节点电压来表示 结论:用3个节点电压表示了6个支路电压。进一步减少了方程数。 1、节点电压方程 根据KCL,可得图3.2-1电路的节点电压方程

节点电压方程的一般形式 自电导×本节点电压-Σ(互电导×相邻节点电压)= 流入本节点的所有电流源的电流的代数和 自电导(self conductance)是指与每个节点相连的所有电导之和,互电导(mutual conductance)是指连接两个节点之间的支路电导。 节点电压法分析电路的一般步骤 确定参考节点,并给其他独立节点编号。列写节点电压方程,并求解方程,求得各节点电压。由求得的节点电压,再求其他的电路变量,如支路电流、电压等。 例3.2-1 图3.2-1所示电路中,G1=G2=G3=2S,G4=G5=G6=1S,, ,求各支路电流。 解:1. 电路共有4个节点,选取d为参考点,。其他三个独立节点的节点电压分别为。 2. 列写节点电压方程 节点a: 节点b: 节点c: 代入参数,并整理,得到 解方程,得

3. 求各支路电流 特别注意:节点电压方程的本质是KCL,即Σ(流出电流) =Σ(流入电流),在节点电压方程中,方程的左边是与节点相连的电导上流出的电流之和,方程的右边则是与节点相连的电流源流入该节点的电流之和。如果某个电流源上还串联有一个电导,那么该电导就不应再计入自电导和互电导之中,因为该电导上的电流(与它串联的电流源的电流)已经计入方程右边了。 例3.2-2 图3.2-2所示电路,试列出它的节点电压方程。 解:对于节点a,流入的电流源的支路上还串联了一个电阻R1,在计算a点的自电导时,不应再把R1计算进去,所以a点的节点电压方程为 b点的节点电压方程为 2、弥尔曼定理 当电路只有两个节点时,这种电路称为单节偶电路(single node-pair circuit)。对于单节偶电路,有弥尔曼定理。 弥尔曼定理:对于只有两个节点的单节偶电路,节偶电压等于流入独立节点的所有电流源电流的代数和除以节偶中所有电导之和。

线性电路分析中受控电源的等效方法

线性电路分析中受控电源的等效方法 摘要:利用等效变换把受控源支路等效为电阻或电阻与独立电压源串联组合求解含有受控源的现行电路。 关键词 :受控电源;等效变换;独立电源 前言: 在求解含有受控源的线性电路中,存在着很大的局限性.下面就此问题作进一步的探讨. 受控源支路的电压或电流受其他支路电压、电流的控制.受控源又间接地影响着电路中的响应.因此,不同支路的网络变量间除了拓扑关系外,又增加了新的约束关系,从而使分析计算复杂化.如何揭示受控源隐藏的电路性质,这对简化受控源的计算是非常重要的.本文在对受控源的电路性质进行系统分析的基础上,给出了含受控源的线性电路的等效计算方法. 正文:根据受控源的控制量所在支路的位置不同,分别采取如下3种等效变换法. 1. 1.当电流控制型的受控电压源的控制电流就是该受控电压源支路的电流、 或当电压控制型的受控电流源的控制电压就是该受控电流源支路两端的电压时,该受控源的端电压与电流之间就成线性比例关系,其比值就是该受控源的控制系数.因此,可采用置换定理,将受控源置换为一电阻,再进一步等效化简. 例1-1:如图求解图a中所示电路的入端电阻R AB. - B a + 解:首先,将电压控制型的受控电流源gu 1与R 1 并联的诺顿支路等效变化成电压 控制型的受控电压源gu 1R 1 与电阻R 1 串联的等效戴维南支路,如图b所示.在电 阻R 1与电阻R 2 串联化简之前,应将受控电压源的控制电压转换为端口电流i,即 u 1=-R 2 i.然后,将由电压u 1 控制的电压控制型受控电压源gu 1 R 1 转化为电流控 制型的受控电压源-gR 1R 2 i,如图c所示.由图c可知,由于该电流控制型的受 控电压源的控制电流i就是该受控电压源支路的电流,因此,可最终将该电流控 制型的受控电压源简化成一个电阻,其阻值为-gR 1R 2 .这样,该一端口网络的入 端电阻R AB=R 1+R 2 -gR 1 R 2 .

关于节点电压法几种方法的讨论

关于节点电压法几种方法的讨论 许胜虎 <摘要>讨论在电路分析中常用的节点电压法的几种处理方法,可以看出处理无伴电压源电路时简化的节点电压法具有诱人的优越性。 关键词:电路分析、节点电压、无伴电压源 :在中央电大电气专业的<<电路及磁路>>教材中,节点电压法是电路分析的重点[1]它是分析处理线性电路的基本方法和常用手段,得到广泛的应用。 节点电压法是电路中任一节点对参考节点的电位为独立的变量的一种分析方法,若电路中有几个节点利用KCL方程列出(n-1)个独立方程求出相应节点对参考节点的电位,然后求出各支路元件的电压及电流等电量。 在电路中常有一个或多个无伴电压源和无伴受控源时,又如何应用节点电压法呢?本文利用文献[1][2]可以把节点电压法进行简化处理。 1.含有无伴电压源的电路情况: a.在一个电路中含有一个无伴电压源或虽有多个无伴电压源但它们的一端接在同一节点上,那末常选择电压源的一端(公共端)为参考节点,则另一端的节点电压为电压源的电压,则不必再对该节点列出节点方程,方程数目为(n-1)节点数减少无伴电压源的数目。 b.无伴电压源接在两个非参数接节点之间情况如图1。可以把无伴电压源接在两个非参考节点看作广义节点[3],他们看作一个包含电压源及其两个节点的一个封闭区,对含有广义节点的电路分析也可以用两种常见方法进行处理: 1)通常的节点电压法:即把无伴电压源中的电流作为未知量列入节点方程,同 时增加一个节点电压与该无伴电压源之间的约束关系,列出一个补充方程,使未知量个数仍然与方程数相等,可解出所有的未知量[1] 2)在广义节点处作为一个闭合区列出KCL方程同时再对含电压源的回路列出 KCL方程,如此处理独立方程数与未知量仍为相等,同样可解出未知量[1][3] 对图(1)

第2节 节点电压法

第2节节点电压法 一、节点电压方程出发点 进一步减少方程数, 用未知的节点电压代替未知的支路电压来建立方程。 图3.2-1电路共有4个节点、 6条支路(把电流源和电导并联的电路看成是一条支路)。用支路电流法计算,需列写6个独立的方程 选取节点d为参考点,d点的电位为,则节点a、b、c为独立的节点,它们与d点之间的电压称为各节点的节点电压(node voltage),实际上就是各点的电位。这样a、b、c的节点 电压是。 各电导支路的支路电流也就可用节点电压来表示 结论 用3个节点电压表示了6个支路电压。进一步减少了方程数。 1、节点电压方程

根据KCL,可得图3.2-1电路的节点电压方程 节点电压方程的一般形式 自电导×本节点电压-Σ(互电导×相邻节点电压) = 流入本节点的所有电流源的电流的代数和 自电导(self conductance)是指与每个节点相连的所有电导之和, 互电导(mutual conductance)是指连接两个节点之间的支路电导。 节点电压法分析电路的一般步骤 确定参考节点,并给其他独立节点编号。 列写节点电压方程,并求解方程,求得各节点电压。 3、由求得的节点电压,再求其他的电路变量,如支路电流、电压等。 例3.2-1 图3.2-1所示电路中,G1=G2=G3=2S,G4=G5=G6=1S,,,求各支路电流。 解:1. 电路共有4个节点,选取d为参考点,。其他三个独立节点的节点电压分别为 。 2. 列写节点电压方程 节点a: 节点b: 节点c: 代入参数,并整理,得到 解方程,得

3. 求各支路电流 特别注意 节点电压方程的本质是KCL,即Σ(流出电流) =Σ(流入电流) 在节点电压方程中,方程的左边是与节点相连的电导上流出的电流之和,方程的右边则是与节点相连的电流源流入该节点的电流之和。如果某个电流源上还串联有一个电导,那么该电导就不应再计入自电导和互电导之中,因为该电导上的电流(与它串联的电流源的电流)已经计入方程右边了。 例3.2-2 图3.2-2所示电路,试列出它的节点电压方程。 解:对于节点a,流入的电流源的支路上还串联了一个电阻R1,在计算a点的自电导时,不应再把R1计算进去,所以a点的节点电压方程为 b点的节点电压方程为 2、弥尔曼定理 当电路只有两个节点时,这种电路称为单节偶电路(single node-pair circuit)。对于单节偶电路,有弥尔曼定理。 弥尔曼定理 对于只有两个节点的单节偶电路,节偶电压等于流入独立节点的所有电流源电流的代数和除以节

受控源的电路分析

受控源的电路分析 电信132班33张世东【实验目的】 1.了解用运算放大器组成四种类型受控源(VCVS、VCCS、CCVS、CCCS)的线路原理 2.测试受控源转移特性及负载特性 【实验设备和材料】 1.计算机及Mulitisim7.0电子仿真软件。 2.KHDL-1型电路实验箱。 3.MF-500型万用表,数字万用表。 【实验原理】 VCVS U1 + _ U2 + _ μu1 _ + U1 VCCS g m u1 (a) (b) CCVS r m i1_ + U2 CCCS ai1 (c) (d) (1)压控电压源(VCVS)如图1所示

Un Up U1 R 1 R 2 R U 2 10K 10K + _ + _ 图1 由于运放的输入“虚短”路特性,即 1u u u n p == 所以有 2 122R u R u i n == 又因运放内阻为∞,有21i i = 因此12 1212121222112)1()()(u R R R R R u R R i R i R i u +=+= +=+= 即运放的输出电压2u 只受输入电压1u 的控制而与负载L R 大小无关,电路模型如图(a )所示。 转移电压比 2 1121R R u u +== μ μ为无量纲,又称为电压放大系数。这里的输入、输出有公共接地点,这种联接方式称为 共地联接。 (2)压控电流源(VCCS ) 将图2的1R 看成一个负载电阻L R ,如图2所示,即成为压控电流源VCCS 。 U p U n U 1 R 1K R L U 2I L I R +_ + _ 图2

此时,运放的输出电流 R u R u i i n R L 1 == =。即运放的输出电流L i 只受输入电压1u 的控制,与负载L R 大小无关。电路模型如图(b )所示。 转移电导 )(11s R u i g L m == 这里的输入、输出无公共接地点,这种联接方式称为浮地联接 (3) 流控电压源(CCVS ) 如图3所示 由于运放的“+”端接地,所以0=p u ,“—”端电压n u 也为零,此时运放的“—”端称为虚接地点。显然,流过电阻R 的电流1i 就等于网络的输入电流S i 。 此时,运放的输出电压R i i u S R -=-=12,即输出电压2u 只受输入电流S i 的控制,与负载L R 大小无关,电路模型如图(c )所示。 转移电阻 )(2 Ω-== R i u r s m ,此电路为共地联接。 R R L U 2i s Un Up +_ i 1i L 图3 (4) 流控电流源(CCCS ) 如图4所示

节点电压(电流)法

电路中的节点法网址:https://www.360docs.net/doc/683023699.html,/question/161705921.h tml?qbl=relate_question_1&word=%BD%DA%B5%E3%B5%E7%C1%F7%B7%A8 提问:这个方法,也就是电路作图题技巧,我们初二老师讲的,他说节点法就是导线上若没有用电器,可看作一个点,缩成一个点。但是我不明白,可以详细跟我讲一下吗? 提问者采纳 我详细地讲一下吧。 节点法是最基本的电路分析法之一,另一个是网孔分析,一般的电路书籍都会讲到(初中电路为什么没讲到我就不知道了)。应该将这是一个最基本方法,不是技巧(我们的教材往往喜欢故弄玄虚,讲这技巧那技巧的)。 应用此法,可以很方便地直接求出各元件的端电压,进而就出各支路电流。 节点法,全称节点电压法,此法的应用本身是十分简单的,但要先知道一个定律,就是基尔霍夫电流定律(英文KCL),即对于电路中的任何节点,流入其中的总电流等于流出它的总电流。这个都是简单的代数关系,不用害怕,就是A+B=C+D这么简单,要轻松地接受它。至于什么是节点,也很简单,就是两个和两个以上的元件相连接的点(看图,a,b,c,d点)。 有了这些知识,应用节点法就很简单,其步骤如下(看图): 1)找出公共节点,设其电压为0。公共节点的选取一般选连接的元件最多的那个点,初中的话,一般就是电源负极了,如图中的d点。2)选了公共节点后,就设其他的节点电压依次为v1,v2,v3,...。

3)标出电路中各个元件的电流方向。这个是可以任意去标的,想怎么标就怎么标,但是要注意了,标了之后,如果最后计算的结果是正值,那么实际电流方向就是你标的那个方向;如果是负值,那就是反方向。所以,一般习惯性的是从电源正极往负极方向标箭头(你不这样标,也没关系的,反正要看最后的计算结果)。图中我按习惯标了I1,I2,I3,I4,I5 4)标了电流方向,就用KCL定律了,对每一个节点应用KCL,图中有三个节点a,b,c要用,d点不用,它是公共节点。 对节点a:V1=12V 对节点b:(v1-v2)/2=(v2-v3)/2+v2/2 对节点c: (v2-v3)/2+(v1-v3)/2=v3/2 三个方程,三个未知数,正好可以解出v1,v2,v3。 解出来之后,你就可以计算各个电流了,这个根据需要了,但你直接得出的是各个节点的电压值。 数学上是很简单的,但要真正理解这种方法,是需要花点心思想一想的。这种方法应付初中的任何电路难题,都搓搓有余了。 PS-关于公共点:公共点设的电压为0,这并不意味着其实际电压为0,只是为了计算方便。聪明的你,也许看出了,解出来的各个点的电压值是相对于公共节点d的差值,是个相对值,这是数学上的处理方法。假如你解出来v2=6V(我没有去解方程,只是假设),而公共节点实际电压为10V,那么b点实际电压就是16V,明白了吧(这种情况是可能的,因为这个电路可能是一个大电路的一部分,而d点可能是大电路

关于含受控源电路的分析方法与总结

关于含受控源电路的分析方法的研究与创新 摘要:本文介绍了有关受控源的基本概念,分析了实际电子器件与受控源之间的关系,通过实例,阐述受控源电路的特点及基本分析原则以及方法,并根据它的双重特性即电阻性和电源性,分析含受控源电路中应注意的问题。 关键词:电路基础;受控源电路;独立源 一、受控源的概念 受控源:受控源是一种用来表示一条支路和另一条支路之间存在耦合关系的电路模型。受控源根据控制量的不同分为四种:V C C S (电压控制电流源),CCCS (电流控制电流源),VCVS (电压控制电压源),CCVS (电流控制电压源)。受控源在线性电路分析中不同于独立电源,受控源具有双重特性:电源特性、电阻特性。当受控源两端电压与流经受控源的电流成非关联方向时,表现电源特性;而当当受控源两端电压与流经受控源的电流成关联方向时,则表现出了电阻性质。 二、受控源的两种性质 I 、受控源的电源性 对于一个元件是否具有电源的性质,可从该元件在电路中是吸收功率还是提供功率来确定。现取四种受控源中的一种- VCCS 来论述。 如图所示,进入受控源电路入口端和出口端的瞬时功率分别为: )()()()(2211t i t u P t i t u P o i *=*= 故因此进入受控源两端的总功率为: )()()()(2211t i t u t i t u P t *+*= 对于任何一种理想受控源的输入端而言, i P 恒为零,所以: L t R t i t i t u P *-=*+=)()()(2 222 上式可以说明任何瞬时进入受控源的功率恒为负值,所以受控源具有电源的特性。 II 、受控源的电阻性 由文献[1],用下列数学方程表述受控源的特征:

含受控源的电路分析

2-5 含受控源的电路分析 在电子电路中广泛使用各种晶体管、运算放大器等多端器件。这些多端器件的某些端钮的电压或电流受到另一些端钮电压或电流的控制。为了模拟多端器件各电压、电流间的这种耦合关系,需要定义一些多端电路元件(模型)。 本节介绍的受控源是一种非常有用的电路元件,常用 来模拟含晶体管、运算放大器等多端器件的电子电路。从 事电子、通信类专业的工作人员,应掌握含受控源的电路 分析。

、受控源 受控源又称为非独立源。一般来说,一条支路的电压或电流受本支路以外的其它因素控制时统称为受控源。受控源由两条支路组成,其第一条支路是控制支路,呈开路或短路状态;第二条支路是受控支路,它是一个电压源或电流源,其电压或电流的量值受第一条支路电压或电流的控制。 受控源可以分成四种类型,分别称为电流控制的电压源(CCVS),电压控制的电流源(VCCS),电流控制的电流源(CCCS)和电压控制的电压源(VCVS),如下图所示。

)312( 01 21-???==ri u u ) 322( 0121-???==gu i i ) 332( 0121-???==i i u α)342( 01 21-???==u u i μ每种受控源由两个线性代数方程来描述: CCVS :VCCS :CCCS :VCVS :r 具有电阻量纲,称为转移电阻。g 具有电导量纲,称为转移电导。 α无量纲,称为转移电流比。 μ亦无量纲,称为转移电压比。

r、g、α和μ为常量时,它们是时不变双口电阻元件。本书只研究线性时不变受控源,并采用菱形符号来表示受控源(不画出控制支路),以便与独立电源相区别。 受控源与独立电源的特性完全不同,它们在电路中所起的作用也完全不同。

受控源的研究实验报告

受控源的研究实验报告 一、实验目的: 1. 获得运算放大器的感性认识,了解由运算放大器组成各类受控源的原理和方法,理解受控源的实际意义。 2. 掌握受控源特性的测量方法。通过测试受控源的外特性及其转移参数,进一步理解受控源的物理概念,加深对受控源的认识和理解。 二、实验原理: 1、运算放大器的基本原理(在上一次实验中已经介绍了,本次再补充说明一下) 运算放大器是一种有源二端口元件,图3-1是理想运算放大器的模型及其电路符号。它有两个输入端,一个输出端和一个对输入、输出信号的参考地线端。信号从“-”端输入时,其输出信号U0与输入信号反相,故称“-”端为反相输入端;信号从“+” 端输入时,其输出信号U0 与输入信号同相,故称“+”端为同相输入端。U0 为输出端的对地电压,AO 是运放的开环电压放大倍数,在理想情况下,AO 和输入电阻Ri 均为无穷大,而输出电阻RO为零。 理想运算放大器的电路模型为一个受控源,它具有以下重要的性质:当输出端与反相输入端“-”之间接入电阻等元件时,形成负反馈。这时,“-”端和“+”端是等电位的,称为“虚短”,若其中一个输入端接地,另一输入端虽然未接地,但其电位也为0 ,称它为“虚地”;理想运算放大器的输入端电流约等于0 。上述性质是简化分析含有运算放大器电路的重要依据。 本实验将研究由运算放大器组成的4种受控源电路的特性,选用LM741型或LM324 型的集成运算放大器。LM741 运算放大器的引脚功能如图3-2 所示。

2、由运算放大器构成四种受控源的原理 (1)电压控制电压源(VCVS) 上图电路是由运算放大器构成的电压控制电压源,图中是反馈电阻,是负载电阻。因为 ,且 所以, 又因为

相关文档
最新文档