2016高考数学二轮复习第2部分大专题综合测1函数与导数(含解析)

2016高考数学二轮复习第2部分大专题综合测1函数与导数(含解析)
2016高考数学二轮复习第2部分大专题综合测1函数与导数(含解析)

第二部分 大专题综合测

1 函数与导数

时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.(文)设集合M ={-1},N ={1+cos m π

4

,log 0.2(|m |+1)},若M ?N ,则集合N 等于( ) A .{2} B .{-2,2} C .{0} D .{-1,0}

[答案] D

[解析] 因为M ?N 且1+cos

m π

4

≥0,log 0.2(|m |+1)<0,所以log 0.2(|m |+1)=-1,

可得|m |+1=5,故m =±4,N ={-1,0}.

(理)(2015·福建理,1)若集合A ={i ,i 2

,i 3

,i 4

}(i 是虚数单位),B ={1,-1},则A ∩B 等于( )

A .{-1}

B .{1}

C .{1,-1}

D .?

[答案] C

[解析] 考查:(1)复数的概念;(2)集合的运算.

由已知得A ={i ,-1,-i,1},故A ∩B ={1,-1},故选C. 2.(文)(2015·福建理,2)下列函数为奇函数的是( ) A .y =x B .y =|sin x | C .y =cos x D .y =e x

-e -x

[答案] D

[解析] 考查函数的奇偶性.

函数y =x 是非奇非偶函数;y =|sin x |和y =cos x 是偶函数;y =e x -e -x

是奇函数,故选D .

(理)下列函数中,定义域是R 且为增函数的是( ) A .y =e -x

B .y =x 3

C .y =ln x

D .y =|x |

[答案] B

[解析] A 为减函数,C 定义域为(0,+∞),D 中函数在(-∞,0)上递减,在(0,+∞)上递增.

3.(文)已知y =f (x )为R 上的连续可导函数,当x ≠0时,f ′(x )+

f x

x

>0,则函数g (x )=f (x )+1

x

的零点个数为( )

A .1

B .2

C .0

D .0或2

[答案] C

[解析] 由条件知,f ′(x )+

f x x =[xf x

x

>0.

令h (x )=xf (x ),则当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,∴h (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,且h (0)=0.,则h (x )≥0对任意实数恒成立.函数

g (x )的零点即为y =h (x )与y =-1的图象的交点个数,所以函数g (x )的零点个数为0.

(理)(2014·浙江理,6)已知函数f (x )=x 3

+ax 2

+bx +c ,且0≤f (-1)=f (-2)=f (-3)≤3,则( )

A .c ≤3

B .3

C .6

D .c >9

[答案] C

[解析] ∵f (-1)=f (-2)=f (-3)

?????

-1+a -b +c =-8+4a -2b +c ,

-1+a -b +c =-27+9a -3b +c ,

解得???

??

a =6,

b =11.

∴f (x )=x 3+6x 2

+11x +c ,

又∵0

4.(文)(2015·浙江理,4)命题“?n ∈N *

,f (n )∈N *

且f (n )≤n ”的否定形式是( ) A .?n ∈N *,

f (n )?N *

且f (n )>n B .?n ∈N *,

f (n )?N *

或f (n )>n C .?n 0∈N *,

f (n 0)?N *

且f (n 0)>n 0 D .?n 0∈N *,

f (n 0)?N *

或f (n 0)>n 0 [答案] D

[解析] 全称命题的否定为特称命题,“≤”的否定为“>”.

(理)(2015·浙江理,6)设A ,B 是有限集,定义:d (A ,B )=card(A ∪B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.

命题①:对任意有限集A ,B ,“A ≠B ”是“ d (A ,B )>0”的充分必要条件; 命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ). A .命题①和命题②都成立 B .命题①和命题②都不成立

函数与导数知识点总结

函数与导数 1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性; ⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数分解为基本函数:内函数与外函数; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 注意:外函数的定义域是内函数的值域。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件; ⑵是奇函数; ⑶是偶函数; ⑷奇函数在原点有定义,则; ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义: ①在区间上是增函数当时有; ②在区间上是减函数当时有; ⑵单调性的判定 1 定义法: 注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分); ③复合函数法(见2 (2)); ④图像法。 注:证明单调性主要用定义法和导数法。 7.函数的周期性 (1)周期性的定义: 对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。 所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周(2)三角函数的周期: ⑶函数周期的判定 ①定义法(试值)②图像法③公式法(利用(2)中结论) ⑷与周期有关的结论

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

(完整版)导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

高考复习文科函数与导数知识点总结

函数与导数知识点复习测试卷(文) 一、映射与函数 1、映射 f :A →B 概念 (1)A 中元素必须都有________且唯一; (2)B 中元素不一定都有原象,且原象不一定唯一。 2、函数 f :A →B 是特殊的映射 (1)、特殊在定义域 A 和值域 B 都是非空数集。函数 y=f(x)是“y 是x 的函数”这句话的数学 表示,其中 x 是自变量,y 是自变量 x 的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象, 也有只能用文字语言叙述.由此可知函数图像与垂直x 轴的直线________公共点,但与垂直 y 轴的直线公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素, 因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 在函数f (x )的定义域内的一个________上,如果对于任意两数x 1,x 2∈A 。当x 1

2019衡水名师原创理科数学专题卷:专题五《导数及其应用》

2019届高三一轮复习理科数学专题卷 专题五 导数及其应用 考点13:导数的概念及运算(1,2题) 考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是最符合题目要求的。) 1.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 函数()2sin f x x =的导数是( ) A.2sin x B.22sin x C.2cos x D.sin 2x 2.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 已知()21cos 4 f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( ) 3.【2017课标II ,理11】 考点14 易 若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 4.【来源】2017届湖北孝感市高三理上学期第一次统考 考点14 中难 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2e a b + +的取值范围是( ) A.2,2e e ??++∞ ??? B.[),e +∞ C.[)2,+∞ D.[)2,e 5.【来源】2017届福建闽侯县三中高三上期中 考点14 难 已知函数2x y =的图象在点),(2 00x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象 相切,则0x 必满足( )

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

函数与导数知识点

函数与导数知识点 【重点知识整合】 1.导数的定义:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数()y f x =相 应地有增量)()(00x f x x f y -?+=?, 如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在 0x x →处的导数,记作0 x x y =',即 0000 ()() ()lim x f x x f x f x x ?→+?-'=?. 注意:在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义式可写 成 000000 ()()()() ()lim lim x o x x f x x f x f x f x f x x x x ?→→+?--'==?-. 2.导数的几何意义: 导数 0000 ()() ()lim x f x x f x f x x ?→+?-'=?是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处 变化的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00 x f x )处的切线的斜率.因此,如果)(x f y =在点0 x 可导,则曲线)(x f y =在点()(,00 x f x )处的切线方程为 000()()()y f x f x x x -='- 注意:“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不相同的,后者A 必为切点,前者未必是切点. 3.导数的物理意义: 函数()s s t =在点 0t 处的导数0(),s t '就是物体的运动方程()s s t =在点0t 时刻的瞬时速度v ,即0().v s t '= 4.几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=; 1(ln )x x '= ; 1 (log )log a a x e x '=; ()x x e e '= ; ()ln x x a a a '=. 5.求导法则: 法则1: [()()]()()u x v x u x v x ±'='±'; 法则2: [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=; 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ???.

高中数学导数的应用——极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题 1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和1 3,则() A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析y′=3ax2+2bx,据题意, 0、1 3是方程3ax 2+2bx=0的两根 ∴-2b 3a= 1 3,∴a+2b=0. 2.当函数y=x·2x取极小值时,x=() A. 1 ln2B.- 1 ln2 C.-ln2 D.ln2 答案 B 解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 1 ln2 3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b<1 2 答案 A 解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0, ∴b>0,f′(1)=3-3b>0,∴b<1 综上,b的范围为0<b<1 4.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是() A.x=-1一定是函数f(x)的极大值点 B.x=-1一定是函数f(x)的极小值点 C.x=-1不是函数f(x)的极值点 D.x=-1不一定是函数f(x)的极值点 答案 B 解析x>-1时,f′(x)>0 x<-1时,f′(x)<0 ∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.

5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ) A .-173 B .-103 C .-4 D .-643 答案 A 解析 y ′=x 2+2x -3. 令y ′=x 2+2x -3=0,x =-3或x =1为极值点. 当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值. ∴当x =1时,y min =-173. 6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( ) A .x =1是最小值点 B .x =0是极小值点 C .x =2是极小值点 D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C. 7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)

2022年高考数学总复习:导数与函数的综合问题

第 1 页 共 15 页 2022年高考数学总复习:导数与函数的综合问题 命题点1 证明不等式 典例 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1; (2)证明:(x -ln x )f (x )>1-1e 2. 证明 (1)由题意得g ′(x )= x -1x (x >0), 当01时,g ′(x )>0, 即g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1e x ,得f ′(x )=x -2e x , 所以当02时,f ′(x )>0, 即f (x )在(0,2)上为减函数,在(2,+∞)上为增函数, 所以f (x )≥f (2)=1-1e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e 2. 命题点2 不等式恒成立或有解问题 典例 已知函数f (x )=1+ln x x . (1)若函数f (x )在区间? ???a ,a +12上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围. 解 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln x x 2, 令f ′(x )=0,得x =1. 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

导数及其应用大题精选

导数及其应用大题精选 姓名____________班级___________学号____________分数______________ 1 .已知函数)0()(>++ =a c x b ax x f 的图象在点(1,)1(f )处的切线方程为1-=x y . (1)用a 表示出c b ,; (2)若x x f ln )(≥在[1,+∞)上恒成立,求a 的取值范围. 2 .已知2 ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间; (Ⅲ)若()f x 的最小值为1,求a 的取值范围 . 4 .已知函数 ()ln f x x x =. (Ⅰ)求()f x 的单调区间; (Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 5 .已知函数()ln a f x x x =- ,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

6 .已知函数 2()4ln f x ax x =-,a ∈R . (Ⅰ)当1 2 a = 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性. 7 .已知函数 ()e (1)x f x x =+. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若对于任意的(,0)x ∈-∞,都有()f x k >,求k 的取值范围. 8 .已知函数 a ax x x f 23)(3+-=,)(R a ∈. (Ⅰ) 求)(x f 的单调区间; (Ⅱ)曲线)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 9 .已知函数 22()2ln (0)f x x a x a =->. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若()f x 在[1]e , 上没有零点,求实数a 的取值范围. 10.已知曲线 ()x f x ax e =-(0)a >. (Ⅰ)求曲线在点(0,(0)f )处的切线; (Ⅱ)若存在实数0x 使得0()0f x ≥,求a 的取值范围.

高三数学重点知识:导数及其应用

2019年高三数学重点知识:导数及其应用查字典数学网高中频道收集和整理了2019年高三数学重点知识:导数及其应用,以便高中生在高考备考过程中更好的梳理知识,轻松备战。祝大家暑假快乐。 一基础再现 考点87简单复合函数的导数 1.曲线在点处的切线方程为____________。 2.已知函数和的图象在处的切线互相平行,则=________. 3.(宁夏、海南卷)设函数 (Ⅰ)讨论的单调性;(Ⅱ)求在区间的最大值和最小值. 考点88定积分 4.计算 5.(1);(2) 6. 计算= 7.___________ 8.求由曲线y=x3,直线x=1,x=2及y=0所围成的曲边梯形的面积. 二感悟解答 1.答案: 2.答案:6 3.解:的定义域为. 当时,;当时,;当时,.

从而,分别在区间,单调增,在区间单调减. (Ⅱ)由(Ⅰ)知在区间的最小值为. 又. 所以在区间的最大值为. 4.答案:6 5.答案:(1) 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 (2)利用导数的几何意义:与x=0,x=2所围图形是以(0,0)为圆心,2为半径的四分之一个圆,其面积即为(图略) 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重

高中数学函数与导数章节知识点总结

高中数学导数章节知识点总结 考点1:与导数定义式有关的求值问题 1:已知 等于 A. 1 B. C. 3 D. 1.已知 ,则 的值是______ . 考点2:导数的四则运算问题 1:下列求导运算正确的是 A. B. C. D. 2:已知函数,为 的导函数,则 的值为______. 考点3:复合函数的导数计算问题 1:设 ,则 A. B. C. D. 2:函数的导函数 ______ 考点4:含)('a f 的导数计算问题 1:已知定义在R 上的函数 ,则 A. B. C. D. 2:设函数满足,则 ______. 考点5:求在某点处的切线方程问题 1:曲线在点处的切线方程为 A. B. C. D. 2:曲线在处的切线方程为_________________. 考点6:求过某点的切线方程问题 1:已知直线过原点且与曲线相切,则直线斜率 A. B. C. D. 2:若直线过点)1,0(-且与曲线x y ln =相切,则直线方程为:

考点7:根据相切求参数值问题 1:已知直线与曲线相切,则a 的值为 A. 1 B. 2 C. D. 2:若曲线在点处的切线平行于x 轴,则 ________. 考点8:求切线斜率或倾斜角范围问题 1:点P 在曲线3 2)(3 +-=x x x f 上移动,设P 点处的切线的倾斜角为α,则α的取值范围是 ( ) A. ?? ????2,0π B. ),4 3[)2,0[πππY C.),43[ ππ D. ]4 3,2(π π 2:在曲线的所有切线中,斜率最小的切线方程为_______ 考点9:求曲线上点到直线距离的最值问题 1:已知P 为曲线x y C ln :=上的动点,则P 到直线03:=+-y x l 距离的最小值为( ) A. 2 B. 22 C.2 D. 3 考点10:求具体函数的单调区间问题 1:函数x e x x f )1()(+=的单调递增区间是 A. ),2[+∞- B. ),1[+∞- C. D. 2:函数x x x f ln )(=的单调减区间为 考点11:已知单调性,求参数范围问题 1:已知函数 在区间 上是增函数,则实数m 的取值范围为 A. B. C. D. 2:若函数在区间上单调递增,则实数a 的取值范围是______. 考点12:解抽象不等式问题 1:已知函数是函数 的导函数, ,对任意实数都有,则不等 式 的解集为 A. B. C. D. 2:函数的定义域为R ,且 , ,则不等式 的解集为______ . 考点13:求具体函数的极值问题 1:函数 ,则 A. 为函数的极大值点 B. 为函数的极小值点 C. 为函数 的极大值点 D. 为函数 的极小值点

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

函数与导数解题方法知识点技巧总结

函数与导数解题方法知识点技巧总结 1. 高考试题中,关于函数与导数的解答题(从宏观上)有以下题型: (1)求曲线()y f x =在某点出的切线的方程 (2)求函数的解析式 (3)讨论函数的单调性,求单调区间 (4)求函数的极值点和极值 (5)求函数的最值或值域 (6)求参数的取值范围 (7)证明不等式 (8)函数应用问题 2. 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+。 (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之不成立。 (3)对于可导函数()f x ,不等式()0(0)f x '><的解是函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:,()0(0)x I f x '?∈≥≤恒成立(()f x '不恒为0). (5)若函数()f x 在区间I 上有极值,则方程()0f x '=在区间I 上有实根且非二重根。(若()f x '为二次 函数且I R =,则有0?>)。 (6)若函数()f x 在区间I 上不单调且不为常量函数,则()f x 在I 上有极值。 (7)若,()0x I f x ?∈>恒成立,则min ()0f x >;若,()0x I f x ?∈<恒成立,则max ()0f x < (8)若0x I ?∈使得0()0f x >,则max ()0f x >;若0x I ?∈使得0()0f x <,则min ()0f x <. (9)设()f x 与()g x 的定义域的交集为I ,若,()()x I f x g x ?∈>恒成立,则有min [()()]0f x g x ->. (10)若对112212,,()()x I x I f x g x ?∈∈>恒成立,则min max ()()f x g x >. 若对1122,x I x I ?∈?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对1122,x I x I ?∈?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A ,()g x 在区间2I 上值域为B ,若对1122,x I x I ?∈?∈使得 12()()f x g x =成立,则A B ?。 (12)若三次函数()f x 有三个零点,则方程()0f x '=有两个不等实根12,x x 且12()()0f x f x < (13)证题中常用的不等式: ①ln 1(0)x x x ≤->(仅当1x =时取“=”)

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

相关文档
最新文档