高考数学递推数列求通项专题

高考数学递推数列求通项专题
高考数学递推数列求通项专题

高考递推数列求通项题型分类归纳解析

包钢一中 郝丽丽

通过一轮,二轮紧张而有序的高考复习,在大量的练习讲解中不断归纳充实,特将数列这个专题中的一类,即已知递推关系求数列通项总结分类,对学生手中的练习题目综合整理,使其考察方向及应考方法更清晰,学生更易掌握。 类型1 )(1n f a a n n +=+

解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足2

11=a ,n n

a a n n ++

=+2

11,求n a 。

解:由条件知:1

11)

1(1

1

2

1+-

=

+=

+=-+n n n n n n

a a n n

分别令

)

1(,,3,2,1-??????=n n ,代入上式得

)

1(-n 个等式累加之,即

)()()()(1342312--+??????+-+-+-n n a a a a a a a a

)11

1()4

13

1()3

12

1(

)2

11(n

n -

-+??????+-

+-

+-= 所以n

a a n 111-

=-

2

11=

a ,n

n

a n 123112

1-=-

+=

类型2 n n a n f a )(1=+ 解法:把原递推公式转化为

)(1n f a a n

n =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足3

21=a ,n n a n n a 1

1+=

+,求n a 。

解:由条件知

11+=

+n n a a n

n ,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累乘之,即

1

3

42

31

2-?????????

?

n n a a a a a a a a n

n 14

33

22

1-?

????????

?

=

n

a a n 11

=

?

又3

21=

a ,n

a n 32=

例3:已知31=a ,n n a n n a 2

3131+-=+ )1(≥n ,求n a 。

解:12

3132

231232

)2(31)2(32

)1(31)1(3a n n n n a n +-?

+?-??????+---?

+---=

3437526

331348531n n n n n --=

????=

--- 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),

则{a n }的通项1___

n a ?=?

?

1

2

n n =≥

解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32,用此式减去已知式,得 当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,

n a a a a a a a a a n n =???====∴-1

3

42

31

21,

,4,

3,

1,

1,将以上n 个式子相乘,得2

!n a n =

)2(≥n

类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1λλ+=++n n a p a ,其中1

-=p q λ,再利用换元法转

化为等比数列求解。

例4:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .

解:设递推公式321+=+n n a a 可以转化为)(21λλ+=++n n a a 即321=?+=+λλn n a a .故递推公式为

)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且

23

311=++=

++n n n

n a a b b .所以{}n b 是以41=b 为首

项,2为公比的等比数列,则11224+-=?=n n n b ,所以32

1

-=+n n a . 变式:(2006,重庆,文,14)

在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________

(key:32

1

-=+n n a ) 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n

n n a p a r q +=+,

其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1

+n q

,得:

q

q

a q

p q

a n

n n n 11

1+

?

=

++引入辅助数列{}n b (其中

n

n n q

a b =

),得:q

b q

p b n n 11+

=

+再待定系数法解决。

例5:已知数列{}n a 中,6

51=a ,1

1)

2

1(

3

1+++=

n n n a a ,求n a 。

解:在1

1)

21(

31+++=

n n n a a 两边乘以1

2+n 得:1)2(3

22

11

+?=?++n n

n n a a

令n n

n a b ?=2,则13

21+=

+n n b b ,解之得:n

n b )3

2(

23-=

所以n n

n

n n b a )3

1(2)21

(

32

-==

变式:(见二模第22题):n n n a a 3521?=++,n

n n a a )2(531-?=-+

变式:(08年高考全国卷2 20)*

11,3,N n S a a a n n n ∈+==+

解:,32,3111n n n n n n n n S S S S S a +=+=-=+++两边同除以 1

3+n ,得

3

13

3

23

1

1+

?

=

++n

n n n S S ,

令1

1

111)

3

2)(

13

(

)

3

2)(

1(1),1(3

21,3

13

2,3

--++-=-=--=

-+

=

=

n n n n n n n n

n n a b b b b b b S b 则;

n

n n a S 32

)3(1

+?-=∴-

类型5 递推公式为n n n qa pa

a +=++1

2(其中p ,q 均为常数)。

解法:把原递推公式转化为)(112n n n n a a k a a λλ+=++++,令??

?==-q

k p k λλ,解得k ,λ的值,借助数列

{}n n a a λ++1为等比数列,求得{}n a 通项。

例6:(2006,福建,文,22)

已知数列{}n a 满足*

12211,3,32().n n n a a a a a n N ++===-∈求数列{}n a 的通项公式;

(I )解:n n n n n n n n a a a a k k k k a a k a a 22,21,1223

),(112112-=-???=-=?

?

????=?-==-+=+++++++λλλλλλ=-

n

n n n n n n n n n n a a a a a a a a a a a a 22

)(),(2;11)2(21

1211121

121=?-=--=-=?-=--++++-+又;由

122

1211-=????=-=-++n

n n

n n n n a a a a a 练习:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3

13

212+

=

++,求n a 。

1

731:()

443n n k e y a -=

--。

类型6 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:利用???≥???????-=????????????????=-)2()1(11n S S n S a n n

n

与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。

例7:数列{}n a 前n 项和2

2

14---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .

解:(1)由2

2

14--

-=n n n a S 得:1

112

14-++-

-=n n n a S

于是)212

1()(1

2

11--++-

+-=-n n n n n n a a S S 所以1

112

1-+++

-=n n n n a a a n

n n a a 2

12

11+

=?+.

(2)应用类型4(n

n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ))的方法,上式两边

同乘以12+n 得:222

11

+=++n n

n n a a

由12

1412

1111=?-

-==-a a S a .于是数列{}n n

a 2是以2为首项,2为公差的等差数列,所以

n n a n n

2)1(222=-+=1

2

-=

?n n n a

变式:(一轮复习示范卷7)数列{}n a 中,)2(1

22,12

1≥-==n S S a a n n

n ,求数列的前n 项和n S 。

Key:1

21-=

n S n

类型7 r n

n pa a =+1)0,0(>>n a p

解法:这种类型一般是等式两边取对数后转化为p a

a a

a a

n n r log

log

log

1+=+,再利用待定系数法求解。

例8:(二轮复习示范卷3)已知数列{n a }中,3

11,2n n a a a ==+,求数列{}.的通项公式

n a

解:由两边取以2为底的对数得n n a a 2

2

log

3log 1=+,

令n a n b 2

log

=,则1

3

122

23log -=??=-n n n n a b

类型8周期型

解法:由递推式计算出前几项,寻找周期。

例9:若数列{}n a 满足???

????

<≤-≤≤=+)

121(,12)210(,21

n

n n n n a a a a a ,若761=a ,则20a 的值为_____75______。

变式:(2005,湖南,文,5) 已知数列}{n a 满足)(1

33

,0*

11N n a a a a n n n ∈+-

=

=+,则20a = ( )

A .0

B .3-

C .3

D .

2

3 Key: ( B )

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法 高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。是一类考查思维能力的好题。要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。 类型一:1()n n a a f n +=+(()f n 可以求和) ????→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。 解析:121(2)n n a a n n --=-≥Q ∴21324311 3 521 n n a a a a a a a a n --=??-=?? -=???-=-??M 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴= 评注:一般情况下,累加法里只有n-1个等式相加。 【类型一专项练习题】 1、已知11a =,1n n a a n -=+(2≥n ),求n a 。 2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。 3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。 5、已知112a =,112n n n a a +??=+ ??? * ()n N ∈,求数列{}n a 通项公式. 6、 已知数列{}n a 满足11,a =()1 132,n n n a a n --=+≥求通项公式n a ? 7、若数列的递推公式为1* 113,23()n n n a a a n N ++==-?∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 9、已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =L ,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值; (II )求{}n a 的通项公式. 11、设平面内有n 条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法例1 在数列{n a }中,31=a ,) 1(1 1++=+n n a a n n ,求通项公式n a . 解:原递推式可化为:1111+- + =+n n a a n n 则,211112-+=a a 3 1 2123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故n a n 1 4-=. 二、作商求和法 例2 设数列{n a }是首项为1的正项数列,且0)1(12 2 1=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为: )]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n 1 . 三、换元法 例3 已知数列{n a },其中913,3421== a a ,且当n ≥3时,)(3 1 211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编). 解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31 .故 n n n n b b )31()31(91)31(2211==?=---.故n n n a a )31(1=--.由逐差法可得:n n a )3 1 (2123-=. 例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。解 由1221=+---n n n a a a 得:1)()(211=------n n n n a a a a ,令11---=n n n a a b ,则上式为 121=---n n b b ,因此}{n b 是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b 又2 ) 1(121-=+++-n n b b b n 所以)1(211-= -n n a n ,即)2(2 1 2+-=n n a n

常见递推数列通项公式的求法

数列复习课(3)———常见递推数列通项公式的求法 主备人:刘莉苹 组长:李英 时间:2013-9-16 教学目标: 1.通过求出数列前几项,了解递推公式是给出数列的一种方法,并能根据特殊的递推公式求出数列的通项公式. 2.掌握把一些简单的数列变形转化为等差数列、等比数列的方法,体验解决数列问题的基本方法及理解运用的过程. 教学重点:处理递推关系的基本方法. 教学难点:通过变形转化成等差、等比数列的有关问题. 研讨互助 问题生成 引入新课: 由递推公式求数列的通项公式的类型: (1) (2) (3) (4)()n f pa a n n +=+1型数列(p 为常数) (5)n n n qa pa a +=++12(其中p ,q 均为常数)。 (6)递推公式为n S 与n a 的关系式()n n S f a = 即n a 与n s 的关系11(1)(2)n n n s n a s s n -=?=?-≥? (7)r n n pa a =+1)0,0(>>n a p (8)) ()()(1n h a n g a n f a n n n +=+ (9)周期型 思考:各类型通项公式的求法? 合作探究 问题解决 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 1() n n a a f n +=+1() n n a a f n +=?1(0,1) n n a pa q p p +=+≠≠

变式: 1. 已知数列{}n a 满足211=a ,112 n n a a +=+,求n a . 2.若数列{}n b 满足11b =,112n n n b b +??-= ???(1)n ≥,求数列{}n b 的通项公式. 3.已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 变式: 1. 已知31=a ,132n n a a += ,求n a 。 2.已知31=a ,n n a n n a 23131 +-=+ )1(≥n ,求n a 。

九类常见递推数列求通项公式方法

递推数列通项求解方法举隅 类型一:1n n a pa q +=+(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ……121(1n p a q p p -=++++…211)11n n q q p a p p p --??+=+ ?+ ? --??。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--?? ,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=??…… 1223(122n -=++++ (211) 332)12232112n n n --+??+=+?+=- ? --?? 。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则1 1342 2n n n a -++=?=,即123n n a +=-。 类型二:1()n n a a f n +=+ 思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+ ∑。

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

常见线性递推数列通项的求法

常见线性递推数列通项的求法 对于由递推式所确定的数列通项公式问题,往往将递推关系式变形转化为我们熟知的等差数列或等比数列,从而使问题简单明了。这类问题是高考数列命题的热点题型,下面介绍常见线性递推数列求通项的基本求法。 一、一阶递推数列 1、q pa a n n +=+1型 形如q pa a n n +=+1(q p 且1≠为不等于0的常数)的数列,可令)(1x a p x a n n +=++ 即x p pa a n n )1(1-+=+与q pa a n n +=+1比较得1-=p q x ,从而构造一个以1 1-+p q a 为首项以p 为公比的等比数列? ????? -+1p q a n 例1.在数列{a n }中,,13,111-?==+n n a a a 求n a . 解:在131-?=+n n a a 的两边同加待定数λ,得n n n a a a (3131?=+-?=++λλ+(λ-1)/3),令,3)1(-=λλ得).21(321.211-?=-∴-=+n n a a λ数列{}2 1-n a 是公比为3的等比数列, ∴a n 21-=).13(21,32 111+=∴?--n n n a 2、 ()n g a c a n n +?=+1型 (1)1=c 时:解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a . 例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a . 解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n Λ,把以上各式相加,得 【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用 2,3,4,,2,1Λ--n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。 (2)1≠c 时: 例3.在数列{}n a 中,,3,1211n a a a n n +==+求通项n a . 解:作新数列}{n b ,使),(2C Bn An a b n n ++-=即),(2C Bn An b a n n +++=(A ,B ,C 为待定 常数)。由213n a a n n +=+可得:C n B n A b n ++++++)1()1(21=,)(322n C Bn An b n ++++ 所以,B A C n A B n A b b n n --+-+++=+2)22()12(321,设2A+1=0,2B-2A=0,2C-A-B=0,可

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

常见递推数列通项公式的求法典型例题及习题

.. . 常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -= ---n n a a n n ……

.. . 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-1 1)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n

考点20 递推公式求通项(第2课时)——2021年高考数学专题复习真题练习

考点20 递推公式求通项(第二课时) 【题组一 构造等差数列】 1.在数列中,若,,则 。 {}n a 12a =()*121 n n n a a n a += ∈+N n a = 2.若数列中,,则这个数列的 。 {}n a 11113n n n a a a a ,+== +n a = 3.已知数列满足 ,则数列的通项公式_______. {}n a ()* 112,222,n n n a a a n n N -==+≥ò{}n a n a =

4.在数列中,,且满足,则=________ {}n a 13 2a = 11 3(2)32n n n a a n a --=≥+n a 【题组二 构造等比数列】 1.已知数列中,,则数列通项公式为_____. {}n a () * 111,34,2n n a a a n N n -==+∈≥且{}n a

2.在数列{a n}中,a1=3,且点P n(a n,a n+1)(n∈N*)在直线4x-y+1=0上,则数列{a n}的通项公式为________. 3.在数列{a n}中,a1=3,a n+1=2a n﹣1(n∈N*),则数列{a n}的通项公式为。

4.已知数列满足,,则等于 。 {}n a 1a 1=n 1n a 3a 4+=+n a 【题组三 周期数列】 1.已知数列中,, (),则等于 。 {}n a 12a =11 1n n a a -=- 2n ≥2018a

2.已知数列满足,且 ,则 。 {}n a 1(1)1n n a a +?-=11 2a =- 2020a = 3.设数列满足:,,则______. {}n a 112a = ()1 111n n n a a n a ++=≥-2016a = 4.数列中,,,(),则______. {}n a 11a =25a =21n n n a a a ++=-N n *∈2012a =

几种分式型递推数列的通项求法

几种分式型递推数列的通项求法 李云皓 (湖北省宜昌市夷陵中学,湖北宜昌 443000) 1.1 引言 数列是高中数学中的重要内容之一,是高考的热点,而递推数列又是数列的重要内容。数列中蕴含着丰富的数学思想,递推数列的通项问题也具有很强的逻辑性和一定的技巧性,因此此类问题也经常渗透在高考试题和数学竞赛中。本文对分式型递推数列求通项问题作一些探求,希望对大家有所启发。 2.1 基本概念 设数列的首项为,且 其中为常数,同时,我们称这个递推公式为 分式递推式,而数列称为由分式递推式给定的数列。显然,该数列的递推式也可写成 2.2 递推式的特征方程与特征根 我们先来看一个引例: 首项为,由递推式给定的数列的通项公式我们是会求的: 即 为常系数等比差数列(由递推式给定的数列,其中为常数),

该数列的通项是熟知的,为 于是考虑能不能变型后让②中的没有,即让①中的没有。我们可以利用 递推式的特征方程来解决这个问题。 下面给出特征方程推导过程: 数列的递推式为 两边同时减去得 通分后得 令 即 方程③保留了原递推式的特征,故称为该递推式的特征方程,为特征根。 3.1 例题(第一部分) 下面我们通过几个例题来说明特征方程的应用。

两式相除得 故当方程③有两不等实根时,可用此方法求出通项公式。 两边同乘3得 两边取倒数 故当方程③有两相等实根时,也可用此方法求出通项公式。

两式相除得 由此,当方程③有两虚数根时,用此方法求通项公式也是正确的。 3.2 例题(第二部分) 下面我们来看另一类型的分式递推式。

还要两边再取倒数还原,请读者自己完成化简 令 令 下面的递推请读者自己完成 4.1 练习

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

求数列通项公式的11种方法

求数列通项公式的11种方法方法 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用) 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=

两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 例2 已知数列{}n a 满足11231 3n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13) 2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3 n +,得 111 21 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+,故

求数列通项公式的十种方法-例题答案详解

< 求数列通项公式的十一种方法(方法全,例子全,归纳细) 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 ~ 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法、 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 ] 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=

两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 ! 所以数列{}n a 的通项公式为2 n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3n +,得 111 21 3333n n n n n a a +++=++ , 则 11121 3333 n n n n n a a +++-=+,故 因此1 1(13) 2(1)2113133133223 n n n n n a n n ---=++=+--?, 则211 33.322 n n n a n = ??+?- < 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数 函数、分式函数,求通项 n a .

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

常见递推数列通项的求解方法

6常见递推数列通项的求解方法 高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。是一类考查思维能力的好题。要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。 类型一:)(1n f a a n n +=+()(n f 可以求和)???? →解决方法 累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列 的通项公式。 解析:121(2)n n a a n n --=-≥Q ∴213243113 521 n n a a a a a a a a n --=??-=?? -=???-=-??M 上述1n -个等式相加可得: 211n a a n -=- 2n a n ∴= 评注:一般情况下,累加法里只有n-1个等式相加。 类型二:1()n n a f n a +=? (()f n 可以求积)???? →解决方法 累积法 例2、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。 解析:1232 112321 n n n n n n n a a a a a a a a a a a a -----= ????L 123211143n n n n n n --=????+-L 2 1 n = + 又1a Q 也满足上式;21 n a n ∴=+ * ()n N ∈ 评注:一般情况下,累积法里的第一步都是一样的。 类型三:1(n n a Aa B +=+≠其中A,B 为常数A 0,1)???? →解决方法 待定常数法 可将其转化为1()n n a t A a t ++=+,其中1 B t A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。 例3 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。 解析:设()13n n a t a t -+=+,则132n n a a t -=+ 1t ∴=,于是()1131n n a a -+=+ {}1n a ∴+是以112a +=为首项,以3为公比的等比数列。 1231n n a -∴=?- 类型四:() 110n n n Aa Ba Ca +-++=??≠;其中A,B,C 为常数,且A B C 0 可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组 A B C αββα?-=?? -?=?,解出,;αβ还原到(*)式,则数列{}1n n a a α++是以21a a α+为首项, A β 为公比的等比数列,然后再结合其它方法,就可以求出n a 。

相关文档
最新文档