世界四大内燃机设计咨询公司概况(AVL等)

世界四大内燃机设计咨询公司概况(AVL等)
世界四大内燃机设计咨询公司概况(AVL等)

奥地利AVL、德国FEV、英国Ricardo、美国Southwest Research Institute,并称内燃机设计咨询业内四巨头,他们对于发动机的设计都各有各的计算评价标准而且都为行业所认同。简介如下:

1 SwRI- Engine, Emission and Vehicle Research (美国西南研究院1947 年)

全名:Southwest Reserch Institute

中文名:美国西南研究院,发动机、排放和车辆研究所

成立年份:1947年

总部:得克萨斯州,圣安东尼奥San Antonio, Texas

美国西南研究院——SwRI成立于1947年,是一家独立的、非赢利性质的应用技术研发机构。研究院拥有3200多名员工,总部位于美国德克萨斯州圣安东尼奥市,占地1200多英亩,其中近200万英尺的最先进的实验室及各类试验设施、车间和办公用地。2009财年总收入为5.64亿美元。美国西南研究院在美国和世界多地设有办事处,以及时反映客户需求和更好地服务本地客户。

发动机、排放和车辆研究所(Engine, Emissions and Vehicle Research Division)是美国西南研究院的一个重要技术部门,具有当前行业顶级的研发能力、世界一流的设备及工程技术人员为客户提供各种技术服务。部门提供的服务包括:发动机、变速器和传动系统的设计和分析柴油和天然气发动机开发与研制传动控制系统的开发与研制摩托车和小型发动机技术的开发与研制变速器及车辆的开发与研制

2 AVL List(奥地利1948年)

全名: Anstalt fur Verbrennungskraftmaschinen List

中文名:AVL李斯特,李斯特内燃机及测试设备公司

全球总部:奥地利格拉茨Graz, Austria

创始人:Prof. Dr. h.c. Helmut List. 创立年份:1948年

李斯特内燃机及测试设备公司(AVL List GmbH)成立于1948年,3,100名员工。45个子公司及分支机构遍布世界各地,是全球规模最大的从事内燃机设计开发、动力总成研究分析以及有关测试系统和设备开发制造的私有公司。全世界所有的发动机制造商都在AVL的客户名单里,特别是内燃机领域。

3 FEV(德国FEV 1978 年)

全名:FEV Motorentechnik GmbH

Forschungsgesellschaft fur Energietechnik und Verbrennungsmotoren GmbH

中文名:FEV(虎威)发动机技术股份有限公司(能源工程与内燃机研发股份有限公司)

全球总部:德国亚琛市Aachen, Germany

创始人:Pro.Dr F.Pischinger 创立年份:1978

1978年由Franz.Pischinger(弗朗茨.匹辛格)教授创立,总部位于德国北威州亚琛Aachen,同时也是FEV欧洲技术中心的所在地。2003年由Franz.Pischinger教授之子,Stefan Pischinger教授接任集团总裁兼CEO。目前FEV

在全球由四个研发中心,分别是欧洲技术中心(European Technical Center,Aachen)、北美技术中心(The North

American Technical Center,Detroit)、中国技术中心(China Technical Center,Dalian)和印度技术中心(India Technical Center,Pune)。FEV中国2005年建成,坐落于中国大连市,总经理章文辉。

3 Ricardo(英国1915年)

当然,还有不能忽略的另外一家历史更悠久,名气丝毫不差的英国Ricardo (里卡多)。里卡多有限公司是世界著名汽车动力技术开发公司,也是世界上资格最老的发动机和变速箱设计制造公司,工程技术特长涵盖了发动机总成控制、电子和软件发展,以及最新的动力传动系统,尤其是在汽车和发动机研发技术方面有丰富经验和全球一流的水平。该公司在全球范围内提供创新工程解决方案和战略咨询服务。

这4家公司的设计业务涉及到国内外所有的OEM客户。根据客户的不同,有的项目他们只负责前期的概念设计。有的项目从头到尾负责。其实几乎所有车厂的发动机设计与提升定型都没离开过这4家研发机构。

这4家公司都是内燃机设计咨询公司,就和麦肯锡这样的商业咨询公司一样,咨询公司不经营企业,但是对企业的技术、商业问题提供咨询,指出问题所在,提出解决办法,但活儿还是要主机厂自己去干的。

他们一般三大业务分别是项目咨询、卖设备和卖软件。

·卖设备:即检测设备,还提供使用方法的培训,让主机厂工程师真正把设备融入到产品开发过程中去。

·卖软件:就是如AVL下的EXCITE、BOOST、CRUISE、FIRE等CAE软件,也提供使用培训,在产品开发阶段,完成各种设计方案的计算分析,也就是燃烧,水套流动,多体动力学,整车动力匹配,零件可靠性分析。

·项目咨询:如果说先进的软件和设备是砍柴的工具,那么项目咨询业务就是这些咨询公司手把手教你如何砍柴。以AVL为例,在奥地利AVL总部,可以看到很多主机厂的工程师前往AVL拜师学艺,AVL基于自己丰富的数据库和大量经验形成了一套内燃机开发流程,如果是一个初学者,它可以从头到尾把流程走一个遍,你只要提出产品设计需求,它就给你个解决方案,如果已经拥有一定的研发能力,只是某些细节问题搞不定,比如缸盖出现裂纹,如何改进设计,可以让AVL通过计算和试验的手段,比如对缸盖进行热机耦合、疲劳计算,结合热冲击试验指出问题所在,并给出优化设计方案。

所以这4家咨询公司本身并不致力于自己开发生产发动机。就像名师教你课程一样,你跟着名师能考上清华北大,然后毕业找工作,并不是说老师自己要上考场、上大学然后找工作。

这4家咨询公司掌握的大量各类机型开发的数据、经验是核心内容,他们对数据加以研究、整理、再设法解决其中的不足,这就不是单一的汽车生产厂商所能做到的了。他们利用许多具体厂商的发动机测试,积累了广博的数据,利用这些再加上现代其它科技手段的发展,研发出了许多开发发动机的软件,可用于在电脑上实景开发研究发动机,这些软件就是他们的专利,为许多发动机厂家应用。

在中国,由于商业运作的原因,现在奥地利AVL在中国的商业化最成功。相较而言,FEV和Ricardo则显得后知后觉,近年才开始进入中国市场,合作厂家也少于AVL。

AVL因为创始人老李斯特教授在1926年到1932年一直到在上海同济大学任教,在过去的几十年里,公司创始人老李斯特教授及AVL公司向同济大学、吉林工业大学等科研教育单位捐赠了技术及设备;设立了奖学金,资助中国优秀学生,开展学术互访活动;为中国的汽车、火车、船用及工业用发动机进行开发设计、改型优化,并邀请中方技术人员参与相关的重要技术工作,在实践中培养中国发动机领域的人材,扶植中国发动机行业的独立发展。

所以由于历史原因,可以说AVL像一位老者,是看着中国内燃机行业长大的。所以AVL在中国发动机行业一直保有良好声誉,并占有绝对的市场份额。目前,几乎人们所听说过的国内、国外汽车生产厂家都是AVL公司的合作伙伴。其中,AVL的两大核心业务——内燃机开发设计和测试设备均占中国市场70%以上的份额;AVL在中国已拥有200多家中国用户,与一汽锡柴、潍柴、上柴、大柴等许多发动机及汽车厂家都有合作。

FEV合作伙伴:奇瑞、陆风汽车(长安与江铃合资组成)、一汽大柴、玉柴、上汽、江淮、云内动力、北汽动力

Ricardo合作伙伴:中国重汽、江淮汽车、力帆、长城汽车、昌河汽车

世界石油工业发展与现状

世界石油工业发展与现状 1.石油起源与世界石油工业诞生 石油多生成于浅海的沉积岩中,见于内陆湖盆之沉积层甚少。其起源是由于海中含有大量微细浮游生物及海藻等类有机物,死亡之后埋藏在水底的厚层沉积物中,逐渐受到埋藏的压力和温度作用,使脂肪、碳水化合物等有机质分解转变而成。 人类在数千年前就已经知道石油,3000多年前的我国古书《易经》就记载了有关石油和天然气的情况,其中有“泽中有火”之说。到后汉时期,我国已开始使用石油。据后汉班固所著《汉书?地理志》记载,在今陕西北部延安、延长一带发现有石油,当地人民把它用作燃料和润滑剂。宋朝时期,我国历史上著名的科学家沈括在其名著《梦溪笔谈》中第一次正式提出“石油”这一名称。也就在这一时期,我国已开始对石油进行加工使用。我国最早的石油加工厂一一“猛火油作” 就是这一时期的产物,它已能炼制出称之为“猛火油”的石油产品。这期间我国已能用沥青作为控制火药燃烧速度的原料,并能用石油制作炭黑。明代,我国已能从石油中提炼灯油,在四川等地还发现了凝析油井进行有组织的开采和利用。 PETROLEUM & NATURAL GAS FORMATION 11世纪末,我国已在陕北的延安、延川和宜君等地钻了第一 批采油井,它比1859年美国正式大规模开采石油要早700多年。虽然我们的祖先很早就开始发现并使用石油,但是就世界范围来说,这些发现和使用只不过是人们一时一地的偶然所得,即使已进行了有组织Tiny we 护宙nd died and buried on the oceAn floor Ov^r itm^ they covered by layers of sand jtnd 审毗 禺縣莎耶 Plant & Animal Remains Over mill I ions of yriirs B the rrmrnin% were buried deeper and dee*p?r F The enormotn ^nd pre^ture turned them into oil and Today, we drill down through layer% o-f znd# 口九.ind rock the rock fc-FmaKioni that can旧爪eil gaf depotiu.

我国发布四项汽车排放标准(通用版)

( 安全常识 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 我国发布四项汽车排放标准(通 用版) Safety accidents can cause us great harm. Learn safety knowledge and stay away from safety accidents.

我国发布四项汽车排放标准(通用版) 我国正式发布四项汽车排放国家标准,并将于2000年1月1日起实施。至此,我国新车排放要求达到欧洲90年代初期水平,比现行国家标准尺度加严80%。 这四项标准分别是《汽车排放污染物限值及测试方法》(GB14761-1999)、《压燃式发动机和装用压燃式发动机的车辆排气污染物排放限值及测试方法》(GB17691-1999)、〈压燃式发动机和装用压燃式发动机的车辆排气可见污染物排放限值及测试方法》(GB3847—1999)、《汽车用发动机净功率测试方法》(GMW692-1999〉。 目前的轻型车排放污染物限值国家标准是在1989年首次提出的,1993年标准编号作了调整,限值末作改动。然而从1989年至今我国汽车的保有量增长了一倍半,在不少城市汽车的污

染已成为主要污染源之一,而且汽车污染所占的分担率正在逐年上升,首都北京的污染已严重影响到我国的国际声誉。 1998年7月1日国家机械工业局加严了新车的污染物排放限值,使排放比现行国标减少了20%左右,但仍然不能满足环境保护的箭要。大型柴油车的排放也未严格控制。近年来LPG(液化石磷气)、CNG(压缩天然气)汽车的开发改装发展迅速,由于对这类车未明确要达到的排放要求,致使LPG、CNG牟的生产、改装出现了混乱状况,亟待规范。 此次制、修订这四项标准,完善汽车排放标准体系,不仅是保护环境的需要,也是促进汽车工业提离技术水平的需要,是保证汽车工业持续健康发展的需要。 此次发布的四项标准均采用ECE法规。这四项标准制修订后,我国汽车排放标准体系就成为一个体系完整、标准数量和技术要求都与ECE法规协调的体系,为我国汽车排放标准今后的各项工作奠定了坚实的基础。 有关人士指出,严格的排放限值的实施需要两个基本条件:1、

内燃机发展简史

·1· 第1章 绪论 教学提示:绪论主要使学生概括地认识内燃机。 教学要求:本章主要了解常见的动力装置种类、内燃机的发展简史和应用领域。 1.1 热机 当今,机械设备运行的动力绝大多数来源于热机,热机全称热力发动机,是将热源的部分热能转化为机械能的机器。热源可以是烧煤的蒸汽炉,汽车发动机的燃烧室,也可以是太阳能的蒸汽炉,地热和核反应堆。 根据燃烧器位置的不同,热机分为内燃机和外燃机两类: (1)外燃机是燃料在发动机外部燃烧产生热,热能通过工质带入机内,再转变为机械能,如蒸汽机和汽轮机等,蒸汽机已淘汰,汽轮机用于火电厂与核电站驱动发电机; (2)内燃机是燃料在发动机内部燃烧,工质被加热并膨胀作功,热能转变为机械能,它是移动机械和小型电站的最主要动力。广义上的内燃机包括往复活塞式内燃机、旋转活塞式发动机、自由活塞式发动机和旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指往复活塞式内燃机,又以其中的汽油机、柴油机应用最为广泛,其保有量大大超过了任何其它种类热机,本书主要介绍汽油机、柴油机的构造。 与其它热机相比,内燃机有如下优点:内燃机的工质在循环中的平均吸热温度高,热效率一般达到30-46%,是热机中效率最高的一种;功率覆盖0.59kW ~4×104kW ,转速范围90r/min ~10000r/min ,故适用范围宽广;结构紧凑,比重量(内燃机重量与其标定功率的 (a )蒸汽机 (b)蒸汽轮机 锅炉(外热源) 飞轮 滑动阀 汽缸 活塞 水 蒸汽 A B 图1.1 外燃机

·2· ·2· 比值)较小,便于移动;起动迅速,操作简便,机动性强;运行维护比较简便。 但也存在缺点:对燃料要求高,主要燃用汽油或轻柴油,且品质要求高,不能直接燃用劣质燃料和固体燃料;由于间歇换气以及制造上的困难,单机功率的提高受到限制;低速运转时输出转矩较小,往往不能适应被带负荷的转矩特性;不能反转,故在许多场合下需设置离合器和变速机构;一般热力发动机都存在 “公害”,而内燃机的噪声和排气中的有害成分对环境污染尤其突出。 另外,相对于热机中燃料的燃烧,燃料还可直接转换为电能,即燃料电池,再用电动机驱动机械运转,这种方式高效、无污染,但成本很高。 1.2 内燃机发展简史 人类先是利用人力、蓄力、风车、水车等自然力,18世纪后热力发动机才逐步得到大规模工业应用。 1673年,荷兰的惠更斯设计出如图1.3所示的内燃机草图,少量的火药在气缸里燃烧,图1.2 内燃机 (b)三角转子发动机 (a )柴油机 (c)燃气轮机 燃烧室 (d) 喷气式发动机

数据结构课程设计AVL树实现及其分析实验报告

算法与数据结构 课程设计报告 题目: A VLree的实现及分析 班级: 12计算机1 学号: 1200303132 姓名: 熊成毅 成绩: 2013年12月31日

一、AVLree的实现及分析 AVL 树是平衡的二元查找树。一株平衡的二元查找树就是指对其每一个节点,其左子树和右子树的高度只差不超过1. 编写程序实现AVL树的判别;并实现AVL树的ADT,包括其上的基本操作;节点的加入和删除。BSt和AVL的差别就在平衡性上,所以AVL的操作关键要考虑如何在保持二元查找树定义条件下对二元树进行平衡化。 (1)编写AVL树的判别程序,并判别一个人元查找数是否为AVL树。二元查找树用其先序遍历结果表示,如:5,2,1,3,7,8. (2)实现AVL树的ADT,包括其上的基本操作:节点的加入和删除,另外包括将一般二元查找树转变为AVL树的操作。 二、设计思想(宋体,三号加粗) 任意给定一组数据,设计一个算法,建立一棵平衡二叉树,对它进行查找、插入、删除等操作。平衡二叉树ADT结构如下: typedef struct{ Status key; }ElemType; typedef struct BSTNode{ ElemType data; Status bf; struct BSTNode *lchild,*rchild; }BSTNode,*BSTree; 给出一组数据,通过 InsertAVL(BSTree &T, ElemType e, Status &taller)插入算法,构建平衡二叉树,若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。 在此算法中,利用到递归算法和 LeftBalance(BSTree &T)左平衡处理,RightBalance(BSTree &T)右平衡处理。进而实现构建平衡二叉树,使其左子树和右子树的高度之差不超过1. LeftBalance(BSTree &T)对以指针T所指结点为根的二叉树作左平衡旋转处理。本算法结束时,指针T指向新的根结点。 RightBalance(BSTree &T)// 对以指针T所指结点为根的二叉树作右平衡旋转处理。本算法结束时,指针T指向新的根结点。 R_Rotate(BSTree &p)对以*p为根的二叉排序树作右旋处理,处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点 L_Rotate(BSTree &p)对以p↑为根的二叉排序树作左旋处理,处理之后p指向新的树

数据结构查找习题及复习资料

第9章查找 一、单选题 1.对一棵二叉搜索树按()遍历,可得到结点值从小到大的排列序列。 A. 先序 B. 中序 C. 后序 D. 层次 2.从具有n个结点的二叉搜索树中查找一个元素时,在平均情况下的时间复杂度大致为()。 A. O(n) B. O(1) C. O(logn) D. O(n2) 3.从具有n个结点的二叉搜索树中查找一个元素时,在最坏情况下的时间复杂度为()。 A. O(n) B. O(1) C. O(logn) D. O(n2) 4.在二叉搜索树中插入一个结点的时间复杂度为()。 A. O(1) B. O(n) C. O(logn) D. O(n2) 5.分别以下列序列构造二叉搜索树,与用其它三个序列所构造的结果不同的是()。 A.(100,80,90,60,120,110,130) B.(100,120,110,130,80,60,90) C.(100,60,80,90,120,110,130) D.(100,80,60,90,120,130,110) 6.在一棵AVL树中,每个结点的平衡因子的取值范围是()。 A. -1~1 B. -2~2 C. 1~2 D. 0~1 7.根据一组关键字(56,42,50,64,48)依次插入结点生成一棵A VL树,当插入到值 为()的结点时需要进行旋转调整。 A. 42 B. 50 C. 64 D. 48 8.深度为4的A VL树至少有()个结点。 A.9 B. 8 C. 7 D. 6 9.一棵深度为k的A VL树,其每个分支结点的平衡因子均为0,则该平衡二叉树共有() 个结点。 A.2k-1-1 B.2k-1+1 C.2k-1 D.2k 10.在A VL树中插入一个结点后造成了不平衡,设最低的不平衡结点为A,并已知A的左 孩子的平衡因子为0,右孩子的平衡因子为1,则应作()型调整以使其平衡。 A. LL B. LR C. RL D. RR 二、判断题

发动机欧4排放标准

中国-柴油机欧4排放的基本技术路线 及相关问题 发动机排放污染物主要有HC(碳氢化合物)、NOx(氮氧合物)、CO(一氧化碳)、PM(微粒)等,它们主要通过车辆排气管排放,将近45%的HC和极小数的其它污染物质则由曲轴箱和燃油系统排放。 在上述汽车排放污染物中,CO是燃油不完全燃烧的产物,对人的健康危害较大。HC主要是燃油蒸发及不完全燃烧的产物,由200多种不同的成份构成,含有致癌物质。NOx是在燃烧室高温高压条件下,由氮和氧化合而成,排放到大气后变成NO2(二氧化碳),其毒性很强,对人及植物生长均有不良影响,是形成酸雨及光化学烟雾的主要物质之一。PM主要成份是碳烟,上面附有大量化学物质,包含致癌物质,吸入人体后会在肺部长期停留。 对于大功率柴油机而言: 基本上有两条路线 1 通过EGR把NOX 降下来, 然后通过颗粒捕集器或颗粒氧化器等后处理技术把PM降到欧4水平; 2 通过燃烧系统优化(主要采用高压喷射+合理的燃烧组织)把颗粒降下来,但同时允许NOX升高,然后,在排气后处理系统中,通过SCR催化器把NOX降到欧4水平.但在现在的中国,使用DPF以及SCR都存在很多客观限制因素,比如油品\ 基础设施等问题. 对于小功率柴油机而言: 比较现实的技术方案是: 直喷+增压中冷+冷却EGR+氧化催化器+电控燃油喷射系统(最好是共轨); 目前存在的问题 1、SCR:在商用车上应用的难点是加尿素问题,除非在国家政策的支持下加尿素站就像加油站一样普遍。在乘用车上应用还有安装空间问题,以及乘用车大部分使用工况排气温度对于SCR来说过低。低温结晶如何解决,在东北根本不能用,-11度就结晶;成本非常高,在国外一套合格的SCR系统要6000美圆,要防止NH3的逸出,需要进行精确的标定匹配,要加装氧化催化器以除去NH3,但有氧化催化器对硫又很敏感。 2、DPF:燃油的含硫量是应用的大问题,如果中国生产不了<50ppm的柴油,DPF的应用是空谈。DPF在中国的应用还存在发动机生产一致性问题,因为DPF 再生标定还不能完全闭环,如果发动机一致性差异大可能会发生堵塞或烧毁。当然发动机只采用EGR+DOC也有达到国4排放的可能的,方法是降低发动机功

(完整版)铁道机车发展史

世界机车发展史 1804年,英国人理查德·特里维希克改进瓦特的蒸汽机,造出了一台货运 蒸汽机车。这台蒸汽机车,在结构上初步具备了早期蒸汽机车的雏形。后来, 他又把这种蒸汽机装在铁路马车上,于是,出现了最早的蒸汽机车。他的这一 发明,被称作世界交通运输史上具有开创性意义的发明创造。 理查德·特里维希克 1810年,英国人乔治·斯蒂芬森开始自己动手制造蒸汽机车,到1814年 他的“布鲁克”号机车开始运行,这台机车有两个汽缸、一个 2.5米长的锅炉,装有凸缘的车轮可以拉着8节矿车载重30吨,以6.4千米/时的速度前进。在 以后的10年中,史蒂文生造了12辆与“布鲁克”号相似的火车头,虽然在设 计上没有突破前人的成就,但他以经预见到火车时代即将到来。 “布鲁克”号 1825年9月27日,乔治·斯蒂芬森亲自驾驶自己设计制造的“动力”1号 机车,拉着550名乘客,从达灵顿出发,以24千米/时的速度驶向斯托克顿, 这被认为是人类历史上第一列用蒸汽机车牵引,在铁路上行驶的旅客列车。 乔治·斯蒂芬森

1878年, 河北开滦煤矿开工, 为了运输煤炭, 清政府决定修建唐胥铁路, 并于1880年动工, 1881年通车, 铁路全长10千米, 后来, 有凭借英国人的几 分设计图纸, 利用矿厂的起重机锅炉﹑长井架等设备, 装配制成中国第一台蒸 汽机车──“龙”号机车。 “龙”号蒸汽机车 蒸汽机车虽然得到广泛应用, 但也存在着许多难以克服的缺点, 比如他运 送的煤的1/4被他自己“吃掉”了, 他每行驶80千米~100千米就要加水, 行 驶200千米~300千米就要加煤, 行驶5000千米~7000千米还要洗炉;他在行驶中要排放黑烟, 污染环境, 尤其是在过山洞时, 浓烟难以散出去, 影响旅客和 车上工作人员的健康…… 正是由于这些原因, 曾经辉煌一时的蒸汽机车开始退出历史舞台, 逐渐被新一代的电力机车和内燃机车所取代。 1879年, 德国人西门子制造出一台小型电力机车, 由150负直流发电机供电,能运载20名乘客,时速12千米,同年在柏林贸易展览会上,西门子驾驶 这辆电力机车首次成功运行。这台“不冒烟”的机车引起人们极大的兴趣, 电 力机车从此发展起来。1890年, 英国的电力机车正式用于营业; 美国于1895 年开始将电力机车应用于干线运输; 以后德国、日被相继研制出了实用的电力 机车。 1879年西门子在柏林展示第一辆小型电动机车 1903年7月8日,德国首先运行了由钢轨供电的动车组,由4节动车和2 节拖车编成。同年8月14日,又运行了由接触网供电的动车组,这是世界上第一列由接触网供电的单相交流电动车组。 1904年, 瑞士又架设了单向交流电压1.5万伏的高压电线, 为500马力的BB型电力机车供电, 从此, 电气化铁路迅速发展起来。 20世纪出,美国通用电气公司组装了一辆汽油机车,用内燃机带动发电机,在通过发电机带动电动机,推动机车前进。柴油机发明后,由于它的经济性好,很快在铁路上得到广泛应用。1925年,美国新泽西州的中央铁路使用了第一辆

内燃机车发展史及机车结构原理

内燃机车发展史及机车的结构原理 内燃机车(diesel locomotive)以内燃机作为原动力,通过传动装置驱动车轮的机车。根据机车上内燃机的种类,可分为柴油机车和燃气轮机车。由于燃气轮机车的效率低于柴油机车以及耐高温材料成本高、噪声大等原因,所以其发展落后于柴油机车。在中国,内燃机车的概念习惯上指的是柴油机。 发展 20世纪初,国外开始探索试制内燃机车。1924年,苏联制成一台电力传动内燃机车,并交付铁路便用。同年,德国用柴油机和空压缩机配接,利用柴油机排气余热加热压缩空气代替蒸汽,将蒸汽机车改装成为空气传动内燃机车。1925年,美国将一台220 kW电传动内燃机车投入运用,从事调车作业。30年代,内燃机车进入试用阶段,直流电力传动液力变扭器等广泛采用,并开始在内燃机车上采用液力耦合器和液力变扭器等热力传动装置的元件,但内燃机车仍以调车机车为主。30年代后期,出现了一些由功率为900~1 000 kW单节机车多节连挂的干线客运内燃机车。

第二次世界大战以后,因柴油机的性能和制造技术迅速提高,内燃机车多数配装了废气涡轮增压系统,功率比战前提高约50%,配置直流电力传动装置和液力传动装置的内燃机车的发展加快了,到了20世纪50年代,内燃机车数量急骤增长。60年代期,大功率硅整流器研制成功,并应用于机车制进,出现了交-直流电力传动的2 940 kw内燃机车。在70年代,单柴油机内燃机车功率已达到4 410kW.随着电子技术的发展,联邦德国在1971年试制出1 840 kW的交一直一交电力传动内燃机车,从而为内燃机车和电力机车的技术发展提供了新的途径。内燃机车随后的发展,表现为在提高机车的可靠性、耐久性和经济性,以及防止污染、降低噪声等方面不断取得新的进展. 中国从1958年开始制造内燃机车,先后有东风型等3种型号机车最早投入批量生产。1969年后相继批量生产了东风4等15种新机型,同第一代内燃机车相比较,在功率、结构、柴油机热效率和传动装置效率上,都有显著提高;而且还分别增设了电阻制或液力制动和液力换向、机车各系统保护和故障诊断显示、微机控制的功能;采用了承载式车体、静液压驱动等一系列新技术;机车可靠性和使用寿命方面,性能有很大提高。东风11客运机车的速度达到了160km/h.在生产内燃机车的同时,中国还先后从罗马尼亚、法国、美国、德

数据结构课程设计题目

《数据结构》课程设计题目 1. 排序算法的性能分析 问题描述 设计一个测试程序,比较几种内部排序算法的关键字比较次数和移动次数以取得直观感受。 基本要求 (1)对冒泡排序、直接排序、选择排序、箱子排序、堆排序、快速排序及归并排序算法进行比较。 (2)待排序表的表长不小于100,表中数据随机产生,至少用5组不同数据作比较,比较指标:关键字参加比较次数和关键字的移动次数(关键字交换记为3次移动)。 (3)输出比较结果。 选做内容 (1)对不同表长进行比较。 (2)验证各算法的稳定性。 (3)输出界面的优化。 2. 排序算法思想的可视化演示—1 基本要求 排序数据随机产生,针对随机案例,对冒泡排序、箱子排序、堆排序、归并算法,提供排序执行过程的动态图形演示。 3. 排序算法思想的可视化演示—2 基本要求 排序数据随机产生,针对随机案例,,对插入排序、选择排序、基数排序、快速排序算法,提供排序执行过程的动态图形演示。 4. 线性表的实现与分析 基本要求 ①设计并实现线性表。 ②线性表分别采取数组(公式化描述)、单链表、双向链表、间接寻址存储方 式 ③针对随机产生的线性表实例,实现线性表的插入、删除、搜索操作动态演示(图 形演示)。 5. 等价类实现及其应用 问题描述:某工厂有一台机器能够执行n个任务,任务i的释放时间为r i(是一个整数),最后期限为d i(也是整数)。在该机上完成每个任务都需要一个单元的时间。一种可行的调

度方案是为每个任务分配相应的时间段,使得任务i的时间段正好位于释放时间和最后期限之间。一个时间段不允许分配给多个任务。 基本要求: 使用等价类实现以上机器调度问题。 等价类分别采取两种数据结构实现。 6. 一元稀疏多项式计算器 问题描述 设计一个一元稀疏多项式简单计算器。 基本要求 一元稀疏多项式简单计算器的基本功能是: (1)输入并建立多项式; (2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2,…,c n,e n,其中n是多项式的项数,c i,e i,分别是第i项的系数和指数,序列按指数降序排序; (3)多项式a和b相加,建立多项式a+b; (4)多项式a和b相减,建立多项式a-b; (5)计算多项式在x处的值; (6)计算器的仿真界面(选做) 7. 长整数的代数计算 问题描述 应用线性数据结构解决长整数的计算问题。设计数据结构完成长整数的表示和存储,并编写算法来实现两长整数的加、减、乘、除等基本代数运算。 基本要求 ①长整数长度在一百位以上。 ②实现两长整数在取余操作下的加、减、乘、除操作,即实现算法来求解a+b mod n, a-b mod n, a?b mod n, a÷b mod n。 ③输入输出均在文件中。 ④分析算法的时空复杂性。 8. 敢死队问题。 有M个敢死队员要炸掉敌人的一碉堡,谁都不想去,排长决定用轮回数数的办法来决定哪个战士去执行任务。如果前一个战士没完成任务,则要再派一个战士上去。现给每个战士编一个号,大家围坐成一圈,随便从某一个战士开始计数,当数到5时,对应的战士就去执行任务,且此战士不再参加下一轮计数。如果此战士没完成任务,再从下一个战士开始数数,被数到第5时,此战士接着去执行任务。以此类推,直到任务完成为止。排长是不愿意去的,假设排长为1号,请你设计一程序,求出从第几号战士开始计数才能让排长最后一个留下来而不去执行任务。 要求:至少采用两种不同的数据结构的方法实现。 9. 简单计算器

达到国家机动车排放标准第四阶段型式核准排放限值的新机动车型和发动机型(第39批)

— 10 — 附件二: 达到国家机动车排放标准第四阶段型式核准 排放限值的新机动车型和发动机型(第39批) 序号 企 业 名 称 车辆型号名称 型式核准号 一、轻型汽油车 MC1026QD 轻型载货汽车 CN QQ G4 Z2 0B230009-001 安徽安驰汽车工业有限公司 MC1026QS 轻型载货汽车 CN QQ G4 Z2 0B230010-00YZK1022E1轻型载货汽车 CN QQ G4 Z2 00280006-01YZK1022E1A 轻型载货汽车 CN QQ G4 Z2 00280007-01YZK1022E1AS 轻型载货汽车 CN QQ G4 Z2 00280005-01YZK1022E1ASY 轻型载货汽车 CN QQ G4 Z2 00280008-01YZK1022E1AY 轻型载货汽车 CN QQ G4 Z2 00280009-01YZK1022E1L 轻型载货汽车 CN QQ G4 Z2 00280010-01YZK1022E1Y 轻型载货汽车 CN QQ G4 Z2 00280011-012 安徽长丰扬子汽车制造有限责任公司 YZK1030E 轻型载货汽车 CN QQ G4 Z2 00280002-013 安徽江淮汽车股份有限公司 HFC5036XJHH3LF 救护车 CN QQ G4 Z2 00890086-0026E 轿车 CN QQ G4 Z2 0C840006-0030E 轿车 CN QQ G4 Z2 0C840007-004 巴博斯股份有限公司 45GW 越野乘用车 CN QQ G4 Z2 0C840008-00BH7141GMY 轿车 CN QQ G4 Z2 01810061-00BH7160BAY 轿车 CN QQ G4 Z2 01810062-00BH7182AY 轿车 CN QQ G4 Z2 01810021-025 北京现代汽车有限公司 BH7182MY 轿车 CN QQ G4 Z2 01810022-02

Python数据结构——AVL树的实现_光环大数据Python培训

https://www.360docs.net/doc/6e3833484.html, Python数据结构——AVL树的实现_光环大数据Python培训 我们已经证明,保持 AVL 树的平衡将会使性能得到很大的提升,那我们看看如何在程序中向树插入一个新的键值。因为所有的新键是作为叶节点插入树的,而新叶子的平衡因子为零,所以我们对新插入的节点不作调整。不过一旦有新叶子的插入我们必须更新其父节点的平衡因子。新叶子会如何影响父节点的平衡因子取决于叶节点是左子节点还是右子节点。如果新节点是右子节点,父节点的平衡因子减 1。如果新节点是左子节点,父节点的平衡因子将加 1。这种关系可以递归地应用于新节点的前两个节点,并有可能影响到之前的每一个甚至是根节点。由于这是一个递归的过程,我们看看更新平衡因子的两个基本条件: 递归调用已到达树的根。 父节点的平衡因子已调整为零。一旦子树平衡因子为零,那么父节点的平衡因子不会发生改变。 我们将实现 AVL 树的子类BinarySearchTree。首先,我们将重写_put方法,并写一个新的辅助方法updateBalance。这些方法如Listing 1 所示。除了第 7 行和第 13 行对 updateBalance的调用,你会注意到_put和简单的二叉搜索树的定义完全相同。 Listing 1 updateBalance方法完成了大部分功能,实现了我们刚提到的递归过程。这个再平衡方法首先检查当前节点是否完全不平衡,以至于需要重新平衡(第 16 行)。如果当前节点需要再平衡,那么只需要对当前节点进行再平衡,而不需要

https://www.360docs.net/doc/6e3833484.html, 进一步更新父节点。如果当前节点不需要再平衡,那么父节点的平衡因子就需要调整。如果父节点的平衡因子不为零,算法通过父节点递归调用updateBalance 方法继续递归到树的根。 当对一棵树进行再平衡是必要的,我们该怎么做呢?高效的再平衡是使 AVL 树能够很好地执行而不牺牲性能的关键。为了让 AVL 树恢复平衡,我们会在树上执行一个或多个“旋转”(rotation)。 为了了解什么是旋转,让我们看一个很简单的例子。思考一下图 3 的左边的树。这棵树是不平衡的,平衡因子为 -2。为了让这棵树平衡我们将根的子树节点 A 进行左旋转。 图 3:使用左旋转变换不平衡树 执行左旋转我们需要做到以下几点: 使右节点(B)成为子树的根。 移动旧的根节点(A)到新根的左节点。 如果新根(B)原来有左节点,那么让原来B的左节点成为新根左节点(A)的右节点。 注:由于新根(B)是 A 的右节点,在这种情况下,移动后的 A 的右节点一定是空的。我们不用多想就可以给移动后的 A 直接添加右节点。 虽然这个过程概念上看起来简单,但实现时的细节有点棘手,因为要保持二叉搜索树的所有性质,必须以绝对正确的顺序把节点移来移去。此外,我们需要确保更新了所有的父节点。让我们看一个稍微复杂的树来说明右旋转。图 4 的左侧展现了一棵“左重”的树,根的平衡因子为 2。执行一个正确的右旋转,我

欧洲III号排放标准

欧洲III号排放标准- 1.何谓欧洲环保标准 有关环保的话题灸手可热,其中不可避免的涉及到欧洲环保标准,尤其以欧I、欧Ⅱ标准出现的频率最高,那什么是欧I、欧Ⅱ标准呢?以设计乘员数不超过6人包括司机,且最大总质量不超过2.5吨这类车辆为例,在1999年1月至2003年12月31日这个阶段,必须达到排放标准的限值为:一氧化碳不得超过3.16克/公里,碳氢化合物不得超过1.13克/公里,其中柴油车的颗粒物不得超过0.18克/公里,耐久性要求为5万公里,以上便是我们平常所提到的欧洲I号标准。到2004年1月1日后,这个标准又有所提高,汽油车一氧化碳不超过2.2克/公里,碳氢化合物不得超过0.5克/公里,柴油车一氧化碳不超过1.0克/公里,碳氢化合物不得超过0.7克/公里,颗粒物标准不得超过0.08克/公里,这便是我们所说的欧洲II号标准。如果仅考虑排放量,执行欧Ⅱ标准的机动车污染物排放量将比欧I标准减少30%到50%。而欧洲Ⅲ标准是目前欧洲、美国正在实施的真正意义上的低污染排放标准。据专家介绍,我国实行欧洲标准的影响:7辆执行欧Ⅱ标准的汽车,就相当于1辆化油器车的污染物排放量;14辆执行欧Ⅲ标准的汽车,才相当于1辆化油器车的污染物排放量。汽车排放从欧Ⅱ到欧Ⅲ,不是像欧Ⅰ到欧Ⅱ那样简单,提升幅度大了很多。欧Ⅲ排放标准比欧Ⅱ在NEDC和燃油蒸发排放检测项目上的内容有所变化,欧Ⅲ标准中增加了低温HC/CO排放检测、车载诊断系统检测和在用车排放检测。从欧Ⅱ到欧Ⅲ执行不同的排放控制技术,欧Ⅱ排放标准只要求三元催化器及发动机改进措施两项,而欧Ⅲ排放则还包括改进的催化转化器涂层、催化剂加热及二次空气喷射。可以看出,欧Ⅲ排放控制技术要比欧Ⅱ复杂和困难得多。欧洲汽车排放标准见表1。 表1欧洲汽车排放标准

火车的发展历程

火车的发展历程 梁政 我们进行远距离旅行,往往会乘坐火车,车上有座位、床铺、餐桌、洗手间等,简直就是一座流动的旅馆。坐在平稳的车厢里遥望车外的青山绿水、田园景色,令人心旷神怡。除此之外,火车还担负着运送工农业生产和国防建设物资的重任,真不愧为国民经济的大动脉!从火车的发明到现在已走过了207年,这个对推动世界工业化革命发挥了巨大作用的火车是怎样发生、发展、变化的呢?现在就让我们一起去回顾这一段闪烁着人类智慧的光辉历史吧。 火车和所有其他的发明一样,都是为了满足社会需要而问世的。18世纪初,随着社会生产力的发展,人们急需一种比马车装得多、跑得快的新型车辆。在这种情况下,英国人瓦特发明了蒸汽机。这种机器比马的力气可大多了,它一问世就引起了人们的关注。 在那时,一些具有改革创新激情的人萌发了将蒸汽机装在车上,以代替人力或者畜力来拖动车辆。这个设想首先在军事上得到了应用。那时,欧洲各国的军队为了满足作战需要,把大炮的口径和射程做得越来越大。这就导致了炮的重量不断增加,用人推马拉的办法很难保证大炮能及时跟随部队转战。法国一位名叫居尼奥的炮兵军官,针对这一问题研制成了用蒸汽机推动的“蒸汽车”来拉炮,从而开辟了以机器为动力的现代车辆发展的道路,也为火车的诞生打下了基础。

这种将蒸汽机装在车子上的机械车是怎样推动车辆行驶的呢?我们从它的外形上可以看到,蒸汽机有一个大锅炉,装在车架的前端。在锅炉下面烧着煤火,用来将锅炉里面的水加热成蒸汽。由锅炉上的一根管子将蒸汽引入车子前轮上方的汽缸里,蒸汽的力气很大,便推着汽缸里的活塞向前移动,而活塞通过连杆和曲轴与前轮连在一起,于是随着曲轴的转动,车轮就跟着转起来,这就是蒸汽机车行走的基本原理。 此后不久,这种冒着黑烟、喘着粗气的车子先后在英国和德国出现了。英国人于1804年制成了蒸汽机车。不过,它的模样和先前不大一样了:有的将锅炉移到车子的中间,并罩上罩子,两头还装上几排座位;有的把锅炉移到车后部,而在前面坐人的地方装了一个车厢,等等。这种蒸汽车已经颇有点近代车的气派了。但提醒大家注意的是,当时这种蒸汽机车是在公路上行驶的,因为那时世界上还没有铁路。 世界上第一台行驶于轨道上的蒸汽机车是“新城堡号”蒸汽机车。它是由英国一位出身贫寒、到处漂泊的发明家理查德〃特里维西克设计制造的。1804年2月29日,这台机车(自重5吨)首次在南威尔士的麦瑟尔提德维尔到阿巴台之间的轨道上作运行试验,车速为每小时8公里,只能牵引十几吨重,比马车好不了多少。但它却开辟了世界铁路史上第一台蒸汽机车的光辉行程。

数据结构-实验4-建立AVL树

哈尔滨工业大学计算机科学与技术学院 实验报告 课程名称:数据结构与算法 课程类型:必修 实验项目名称:查找结构与排序算法实验题目:建立A VL树

目录 目录 (2) 一、实验目的 (3) 二、实验要求及实验环境 (3) 1.实验要求: (3) 2.实验环境: (3) 三、设计思想 (3) 1.逻辑设计 (3) (1)平衡查找二叉树 (3) (2)平衡因子 (4) (3)失衡情况与修正操作 (4) 2.物理设计 (5) (1)存储结构 (5) (2)建立平衡二叉查找树 (6) (3)插入新结点 (6) (4)删除结点 (11) 四、测试结果 (15) 五、系统不足与经验体会 (15) 六、附录:源代码(带注释) (16)

一、实验目的 通过实现A VL树的建立、插入与删除,掌握A VL树结构。 二、实验要求及实验环境 1.实验要求: 要求: 1.具有插入(建立)、删除和查找功能 2.插入操作应包括四种类型的平衡化处理 3.删除操作应包括四种类型的平衡化处理并且包括多次平衡化处理 4.能体现操作前后二叉树的形态及其变化 2.实验环境: Microsoft Windows7, Code::Blocks 10.05 三、设计思想 1.逻辑设计 (1)平衡查找二叉树 平衡二叉树的定义是: 平衡二叉树或为空树,或满足下列特征: A若其左子树非空,则左子树上所有结点的关键字值都小于根节点关键字值B若其右子树非空,则右子树上所有结点的关键字值都大于根节点关键字值C根节点的左右子树高度之差的绝对值不超过1 D根节点的左子树和右子树仍为A VL树 平衡查找二叉树不会退化为线性链表,因此时间复杂度比较稳定。

柴油机达到欧5排放标准的新技术

柴油机达到欧5排放标准的新技术 【法】 IFP公司 / Valeo公司 和 2008~2010年生效的柴油机欧5排放标准的最大挑战在于要大大降低NO X 颗粒物排放。为了达到这个目标,IFP公司和Valeo公司共同合作开发出了新的NADI燃烧方式。这种被称为“窄油束锥角直接喷射”(“Narrow Angle Direct Injection”)的燃烧方式采用了油束锥角非常小的直接喷射和创新的进气系统模 排放,而且并没有因此使燃油耗增加。这种燃烧方式基于应块,显著降低了NO X 用冷却EGR降低燃烧温度。 1 前言 为了开发出能以汽车工业认可的代价达到未来排放标准的系统, IFP公司和Valeo公司共同合作,确定了有关燃气成分、燃气温度和 压力等方面对进气系统的切实可行的要求,并已用Valeo公司创新设 计的进气系统和合适的调节策略达到了这些开发要求。 IFP公司采用很窄的油束锥角开发出的直接喷射方案(NADI),在 和颗粒排放方面获得了许多企盼的结果,并在一台 2.2 L-TDI发NO X 动机上采用Valeo公司创新设计的进气系统继续进行进一步的开发 工作。这种极限冷却进气系统(Ultimate-Cooling-Ansaugsystem) 基于一个带有EGR冷却器的液冷式低温回路,和一个液冷式增压空气 冷却器,并以较小的结构空间达到了很高的冷却效率。 2 欧5排放标准的要求 根据欧5排放标准的要求,柴油机的NO 和颗粒排放限值几乎只 X 有欧4排放标准的一半(图1),确实是一个比较棘手的难题。 排放量较少,因此只要能进一由于柴油机的热效率高,而且CO 2 步降低其NO 和颗粒排放,柴油机的市场份额还能进一步增长。虽然X 的后处理装置能有所减少,但是即使这些废气中的有害成分通过NO X 如此,后处理装置仍存在着一些需要进一步解决的重要问题,诸如负 载能力尚不令人满意,对硫很敏感,并且成本又较高等。 为此,研究了一些新的燃烧方式,例如均质充量压缩点火(HCCI)

中国铁路机车发展史

中国铁路机车发展史 蒸汽机车&内燃机车人民型蒸汽机车人民型蒸汽机车,现用代号RM。机车全长23252毫米,构造速度每小时110公里。模数牵引力177千牛,轴式2-3-1。1958年起由四方工厂试制生产,1966年停止生产,共制造258台。上游型蒸汽机车上游型蒸汽机车又称为上游型工矿用小型蒸汽机车。1960年在唐山诞生,代号SY。机车全长21519毫米,构造速度每小时80公里,模数牵引力204千牛,轴式1—4—1。前进型蒸汽机车前进型蒸汽机车是中国第一种自主设计的 干线货运机车。1956年9月诞生于大连,当时各项技术指标均达到蒸汽机车的先进水平。机车全长26063毫米,构造速度每小时80公里,模数牵引力324千牛,轴式1—5—1。原称和平型(代号HP),后定名为前进型,现用代号QJ。1988年停止生产,共制造4708台。建设型蒸汽机车1956年,大连机车车辆厂对解放型蒸汽机车改进设计,于1957年7月试制成功,机车出厂时,毛泽东主席曾亲自登乘。经改进后的蒸汽机车命名为“建设型”,车型代号JS,并于同年9月投入批量生产,成为中国铁路干线货运用主型机车。胜利型蒸汽机车国产胜利型蒸汽机车是四方厂于1956年制成的客运机车,于1959年停产,期间共计生产了151台。国产胜利型干线客运蒸汽机车投人运用后,使长途直达旅客列车扩

大了编组,客车数量由9辆增至13辆,取得了很好的社会经济效益。和平型蒸汽机车代号HP的和平型蒸汽机车,是我国自行设计制造的大功率蒸汽机车。轴式为1-5-1,机车与煤水车全长26023毫米(联挂4轴煤水车),机车空重119.29吨,轮周功率2191.8千瓦,构造时速80公里每小时。反帝型蒸汽机车1961年,前苏联无偿援助我国的反帝型蒸汽货运机车,车名由苏联语“佛得”音译而来,诞生于捷尔仁斯基机车制造厂,经由满州里入境配属给武汉江岸机务段。该机车的最大特点是五动轮、汽缸直径大、牵引力大,适合干线运行。工建型蒸汽机车工建型蒸汽机车又称工建型工矿及调车用蒸汽机车,多用于调车,由大连机车厂设计,太原、成都机车厂于1958年开始生产,1961年停产,共制造122台。机车全长9735毫米,构造速度每小时35公里,模数牵引力144千牛,轴式0—3—0。跃进型蒸汽机车1958年济南机车厂在PR2(ㄆㄌ2)型机车的基础上改进设计并制造,命名为跃进型,代号YJ。1961年停产,唐山、牡丹江、武昌、济南等工厂共制造202台。机车全长18326毫米,构造速度每小时60公里,模数牵引力137千牛,轴式1—3—1。星火型蒸汽机车星火型蒸汽机车由大同工厂1960年设计,长春工厂试制成功,代号XH。1961年停产,长春、牡丹江工厂共制造48台。机车全长13480毫米,构造速度每小时25公里,模数牵引力75千牛,轴式0—4—0。“巨龙”号电传动

Java中AVL平衡二叉树实现Map (仿照TreeMap和TreeSet)

Java中A VL平衡二叉树实现Map (仿照TreeMap和TreeSet) 1、下面是AVLTreeMap的实现 package com; import java.io.IOException; import java.util.*; public class AVLTreeMap extends AbstractMap implements NavigableMap, java.io.Serializable { private static final long serialVersionUID = 1731396135957583906L; private final Comparator comparator; private transient Entry root = null; private transient int size = 0; private transient int modCount = 0; public AVLTreeMap() { comparator = null; } public AVLTreeMap(Comparator comparator) { https://www.360docs.net/doc/6e3833484.html,parator = comparator; } public AVLTreeMap(Map m) { comparator = null; putAll(m); } public AVLTreeMap(SortedMap m) { comparator = https://www.360docs.net/doc/6e3833484.html,parator(); try { buildFromSorted(m.size(), m.entrySet().iterator(), null, null); } catch (IOException e) { } catch (ClassNotFoundException e) { } } public int size() { return size; }

内燃机车发展史及机车的结构原理

内燃机车发展史及机车的结构原理 内燃机车(diesel locomotive)以内燃机作为原动力,通过传动装置驱动车轮的机车。根据机车上内燃机的种类,可分为柴油机车和燃气轮机车。由于燃气轮机车的效率低于柴油机车以及耐高温材料成本高、噪声大等原因,所以其发展落后于柴油机车。在中国,内燃机车的概念习惯上指的是柴油机。 发展 20世纪初,国外开始探索试制内燃机车。1924年,苏联制成一台电力传动内燃机车,并交付铁路便用。同年,德国用柴油机和空压缩机配接,利用柴油机排气余热加热压缩空气代替蒸汽,将蒸汽机车改装成为空气传动内燃机车。1925年,美国将一台220 kW电传动内燃机车投入运用,从事调车作业。30年代,内燃机车进入试用阶段,直流电力传动液力变扭器等广泛采用,并开始在内燃机车上采用液力耦合器和液力变扭器等热力传动装置的元件,但内燃机车仍以调车机车为主。30年代后期,出现了一些由功率为900~1 000 kW单节机车多节连挂的干线客运内燃机车。

第二次世界大战以后,因柴油机的性能和制造技术迅速提高,内燃机车多数配装了废气涡轮增压系统,功率比战前提高约50%,配置直流电力传动装置和液力传动装置的内燃机车的发展加快了,到了20世纪50年代,内燃机车数量急骤增长。60年代期,大功率硅整流器研制成功,并应用于机车制进,出现了交—直流电力传动的2 940 kw内燃机车。在70年代,单柴油机内燃机车功率已达到4 410kW。随着电子技术的发展,联邦德国在1971年试制出1 840 kW的交一直一交电力传动内燃机车,从而为内燃机车和电力机车的技术发展提供了新的途径。内燃机车随后的发展,表现为在提高机车的可靠性、耐久性和经济性,以及防止污染、降低噪声等方面不断取得新的进展。 中国从1958年开始制造内燃机车,先后有东风型等3种型号机车最早投入批量生产。1969年后相继批量生产了东风4等15种新机型,同第一代内燃机车相比较,在功率、结构、柴油机热效率和传动装置效率上,都有显着提高;而且还分别增设了电阻制或液力制动和液力换向、机车各系统保护和故障诊断显示、微机控制的功能;采用了承载式车体、静液压驱动等一系列新技术;机车可靠性和使用寿命方面,性能有很大提高。东风11客运机车的速度达到了160km/h。在生产内燃机车的同时,中国还先后从罗马尼亚、法国、美国、

相关文档
最新文档