三相电动机改成两相电动机接线图 单相电机正反转接线图

三相电动机改成两相电动机接线图 单相电机正反转接线图
三相电动机改成两相电动机接线图 单相电机正反转接线图

三相电动机改成两相电动机接线图单相电机正反转接线图

1 . 三相电动机改为两相电动机接线图

2 .电动机单相运行时的连接方式

(1)三相绕组的三角形连接

如图1所示。将电容器并接在三相绕组的任意一相两端(图中接在u相两端),然后220v市电加在电容c的一端和v2与w1的交点处。这样,电机就可旋转,如需改变电机旋转方向,则可按图2所示连接,将市电从电容器的一端调换到另一端即可。

(2)三相绕组的星形连接

将电容器接在任意两个端子上(如图3中接v1、u1),220v市电则加在余下的端子w1和电容c的任一端上。这样,电机就可旋转。如需改变电机转向,则将市电的一端从u1换接到v1端即可(如图4所示)。

3.电容器的容量选择

小型三相异步电动机作单相运行时,所选电容容量一定要合适,若太小则旋转无力,启动困难;太大则回路电流过大,导致电机过热。一般电容容量值选择如附表所示。

如果不查表,也可以按经验公式获得:当星形连接时,所需电容容量c(μf)

=p(w)/17,c的单位是μf,p的单位是w;当用作三角形连线时,所选电容容量c(μf)=p(w)/10。

4. 三相电动机改成单相电源供电启动电路

5. 单相电机正反转的详细接线图

其实是这样,主线圈的1(2)接副线圈的2(1),这样就正传,反过来

主线圈的1(2)接副线圈的1(2),这样就反转,

以上两个图,一般的常规单相电机都可以用,不论他的主线圈与副线圈的参数一样不一样,

另外还有一种单相电机,工作中需要他正反转,但是采用上面的办法,比较麻烦,实现自动控制,器件需要也多,所以就出现了,不分主副线圈的单相电机,就是主副线圈的参数一样,这种不分主副线圈的单相电机,除了用上面的这个办法外还可以这样

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/6f4410993.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

电机正反转电路图

电机正反转电路图

三相异步电动机接触器联锁的正反转控制的电气电子原理图如图3-4所示。线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。

220v单相电机正反原理 单相电机不同于三相电机,三相电进入电机后,由于存在120°电角度,所以产生N S N S旋转磁场,推动转子旋转。而单相电进入电机后,产生不了N S N S磁场,所以加了一个启动绕组,启动绕组在定子内与工作绕组错开90°电角度排列,外接离心开关和启动电容后与工作绕组并联接入电源,又因为电容有阻直通交的作用,交流电通过电容时又滞后一个电角度,这样就人为地把进入电机的单相电又分出来一相,产生旋转磁场,推动转子旋转。反转时,只要把工作绕组或者启动绕组的两个接线对调一下就行,产生S N S N的磁场,电机就反转了。 网友完善的答案好评率:75% 单相电机的接线方法,是在副绕组中串联(不是并联)电容,再与主绕组并联接入电源;只要调换一下主绕组与副绕组的头尾并联接线,电机即反转 如果电机是3条出线的,其中一条是公共点!(分别与另外2条线的测电阻其值较小)接电源零线!然后把剩下的两条线并联电容,在电容的一端接220V电源相(火)线,就可以了!若要改变电机转向只要把220V电源相(火)线接在电容的另一端就可以了!

笼型电动机正反转的控制线路(电路图) 发布: | 作者: | 来源: jiasonghu | 查看:775次 | 用户关注: 接通电源让KMF--线圈通电其主触点闭合三相电源ABC分别通入电机三相绕组UVW,电动机正转。KMF线圈断电,主触点打开,电机停。让KMR线圈通电----其主触点闭合三相电源ABC通入电机三相绕组变为A—U未变,但B—W,C—V。电动→笼型电动机正反转的控制线路要使电动机给够实现反转,只要把接到电源的任意两根联线对调一头即可。为此用两个接触器来实现这一要求。设KMF为实现电机正转的接触器,KMR为实现电机反转的接触器。合上--S 笼型电动机正反转的控制线路 要使电动机给够实现反转,只要把接到电源的任意两根联线对调一头即可。为此用两个接触器来实现这一要求。 设 KMF 为实现电机正转的接触器, KMR 为实现电机反转的接触器。 接通电源→合上--S 让 KMF--线圈通电其主触点闭合 三相电源 ABC 分别通入电机三相绕组 UVW ,电动机正转。 KMF 线圈断电,主触点打开,电机停。 让 KMR 线圈通电----其主触点闭合 三相电源 ABC 通入电机三相绕组变 为 A — U 未变,但 B — W ,C — V。电动机将反转

关于单相电机正反转的详细接线图讲解

看到部分吧友对这个感兴趣,所以花了点时间做了几个图,给大家分享,如果有兄弟感觉不错,就麻烦出手顶一下,以便让其他兄弟有机会看到。 其实是这样,主线圈的1(2)接副线圈的2(1),这样就正传,反过来 主线圈的1(2)接副线圈的1(2),这样就反转, 以上两个图,一般的常规单相电机都可以用,不论他的主线圈与副线圈的参数一样不一样,另外还有一种单相电机,工作中需要他正反转,但是采用上面的办法,比较麻烦,实现自动控制,器件需要也多,所以就出现了,不分主副线圈的单相电机,就是主副线圈的参数一样,

这种不分主副线圈的单相电机,除了用上面的这个办法外还可以这样 顺便说一下,洗衣机的电机就是不分主副的单相电机 第二个图还可以变形为这样,这样也可以实现反转

单相电机的画法还有一种 哦,再补充一点,5楼的图只适用于不分主副线圈的电机,各位看清楚了。如果单相电机两个线圈的外观上,明显不一样,就不能采用5楼的方法,切记切记 倒顺开关控制的单相电机正反转

落地扇电机接线图 图做的很漂亮,人也很热心. 我没修过电机,我想知道14楼的图上那个调速线圈在下线的时候是怎么做的. 是独立于主副绕组的另一组线圈单独下到线槽里,还是和主绕组或副绕组绕在一起的线圈抽的头. 是和主绕组或副绕组绕在一起的线圈抽的头 这个太专业了,我。。。。。。 不过我可以和你说点别的, 吊扇你拆过吗?他的主副线圈在定子上是按同心园排的,我想说的是。 我在搞维修时,如果发现主线圈其中的冒一个烧了,我就直接跨接,不管这个线圈是顺时针绕的,还是逆时针绕的,主线圈我直接跨接过两个线圈,副线圈也可以适当摘除,电扇还可照常运转,只不过会稍微发热,再多了就没试过了,这样做磁场肯定不均匀了,这个是经过长时间运行验证的,没问题,(当年就靠这个吃饭的,哈哈哈,莫笑,莫拍砖) 再说一个,单相电机的磁场本身就不均匀,他不同于三相电机的磁场, 三相电机的磁场是一个正旋园,理想的情况(排除损耗、涡流)转子在360度的空间上,得到的力是相同的, 而单相电机的磁场是一个类似椭圆的磁场,如果除去启动线圈光说主线圈形成的磁场,在空间上是水平方向的,在90度的地方是有死点的,因为电流交变要过零点的 所以单相电机要靠那个电容把电流移相,然后再加给启动线圈,启动线圈产生的磁场也是在空间上是水平方向的,只不过经过电容移相,这个水平方向的力和主线圈产生的力,有一个夹角,(如果理想这个夹角是90度,因为主线圈的刚好在90度的位置是0,电流过零点造

采用单相电源供电的三相异步电动机接线方法

采用单相电源供电的三相异步电动机接线方法 三相异步电动机由于构造简单、成本低、维修使用方便、运行可靠等优点,被广泛应用于工农业生产。三相电动机的电源应是三相电源,但实际上常会遇到只有单相电源的问题,特别是在家用电器上用的都是单相电动机,坏了以后想用三相电动机代替,就必须做适当的改接,以使三相电动机适应于单相电源而正常工作,下面具体谈其接线方法。 改接原理 三相异步电机是利用三相互隔120°角度的平衡电流,通过定子绕组时产生一个随时间变化的旋转磁场,以驱使电动机运转工作的。在谈到三相异步电机改单相使用之前,先要说明单相异步电动机旋转磁场建立问题,单相电动机只有在建立旋转磁场后才能够起动。它之所以没有初始起动转距,是因为在单相绕组中建立起的磁场不是旋转的,而是脉动的,换句话说,它对定子来讲是不动的。在这种情况下,定子的脉动磁场与转子导体内的电流相互作用是不能产生转矩的,因为没有旋转磁场,所以就不能使电机起动运转。但是电动机内部两个绕组的位置有空间角度差,若设法再产生一不同相的电流,使两相电流在时间上有一定的相位差,才能产生旋转磁场,使电机起动。因此单相电动机的定子除了有工作绕组外,还必须有起动绕组。根据此原理,可利用三相异步电机定子的三相绕组,将其中一相绕组线圈采用电容或电感移相的方法,使两相通过不同的电流,这样就能建立旋转磁场,使电动机起动运转。当三相异步电机改为单相电源使用时,其功率仅是原来的2/3。 改接方法 要把三相电机使用在单相电源上,可将三相异步电动机定子绕组中的任意二相绕组线圈首先串联,再与另一相绕组并联接入电源。这时,两个绕组里的磁通量在空间上虽然有相位差,但因工作绕组和起动绕组都是接在同一电源上,如按时间来讲,电流是相同的。因此,只有在起动绕组上串联一只电容器、电感线圈或电阻,才能使电流有相位差。在接法上为了增大起动转矩,可用一台自耦变压器将单相电源的电压由220v升到380V,示意图如图1所示。一般小型电动机均为Y接,对Y接的三相异步电动机用此种方法接线,应将串入电容c的绕组接线端子接在自耦变压器起头端子上,如需改变转轴转动方向,可按图2接线。 如果不升高电压,接在220V的电源也可用此图示。因为原来接三相380V电源电压的绕组,现在用于220V电源,电压太低了,所以转矩太低。 图3接线转矩太低,若增大力矩可将移相电容串入二相绕组连在一起的线圈中,用此绕组为起动绕组,单只线圈直接接在220V电源上,见图4。 图3、图4如果需要改变转轴转动方向,可将起动绕组或运转绕组的头尾换一下就可。 两个绕组串联后的磁矩(其中一相反串)是由两个夹角互为60°磁矩合成的(如图5),其磁矩远远大于由两个夹角互为120°合成的磁矩(如图6两绕组顺串),所以图5接线的起动转矩

单相电机正反转(参考)

一、单相电机的正反转接线原理 单相电机有两个绕组:主绕组又称工作绕组或运行绕组,副绕组又称启动绕组,有的小负载单相电机这两个绕组完全一样,互相可以交换,但多数单相电机(带较大负载的农用电机)为了增大启动力矩,副绕组线圈细、匝数多、阻值大;副绕组与主绕组之间有一启动电容;只要交换两个绕组中的一个绕组的首尾接线就可反转,交换电源L/N是 无效的。 当两绕组完全一样,电机可能是三端子接线,1,3为两绕组的公共接线端,接交流电源的L,2/4端子之间联有启动电容,如果交流电源的N端接端子2为正转,则N改接端子4为反转;如果是四端子, 见图四接线;

图3:三端子单相电机[两绕组相同] 图四:四端子单相电机[两绕组相同] 农用单相电机的主/副绕组不一样,不能采用上面交换主/副绕组的做法,否则,会烧坏电机,一般应有四个端子:1/2为主绕组,3/4为 副绕组,正转见图五: 图五

如果要反向转动,正确的做法是交换一个绕组的首尾接线,主副绕组的区分很简单,根据阻值就可判断出。 二、没有用接触器的是用电容的

三、给你找找,不知道你准备用什么控制的,给你个倒正开关的吧

四、 回复引用举报明理个人主页给TA发消息加TA为好友发表于:2008-09-26 20:57:18 5楼 非常典型的,请参考。 回复引用举报happy-1437个人主页给TA发消息加TA为好友发表于:2008-09-26 21:30:40 6楼

五、 路图,按此接线即可 其实很简单,和那个吊扇是以个原理,你只要看看吊扇的接线图就会接了,单相的上面只不过加了个电容。单相电机正反转接线图:其实就是用一个单刀双掷的开关就可以实现正反转。

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

单相异步电动机原理及正反转

单相异步电动机原理及正反转 单相异步电动机是指用单相交流电源供电的异步电动机。单相异步电动机具有结构简单、成本低廉、噪声小、使用方便、运行可靠等优点,因此广泛用于工业、农业、医疗和家用电器等方面,最常见于电风扇、洗衣机、电冰箱、空调等家用电器中。但是单相异步电动机与同容量的三相异步电动机相比,体积较大,运行性能较差。因此,单相异步电动机一般只制成小容量的电动机,功率从几瓦到几千瓦。单相异步电动机在家用电器中的应用特别广泛,与人们的生活密切相关。 单行异步电动机的结构如下图: 一、 单相异步电动机的工作原理和机械特性 当单相正弦交流电通入定子单相 绕组时,就会在绕组轴线方向上产生 一个大小和方向交变的磁场,如图1 所示。这种磁场的空间位置不变,其 幅值在时间上随交变电流按正弦规律 变化,具有脉动特性,因此称为脉动 磁场,如图2(a)所示。可见,单相异 步电动机中的磁场是一个脉动磁场,不同于三相异步电动机中的旋转磁场。 图1 单相交变磁场

图3 单相异步电动机的机械特性 (a)交变脉动磁场 (b)脉动磁场的分解 图2 脉动磁场分解成两个方向相反的旋转磁场 为了便于分析,这个脉动磁场可以分解为大小相等,方向相反的两个旋转磁场,如图2(b)所示。它们分别在转子中感应出大小相等,方向相反的电动势和电流。 两个旋转磁场作用于笼型转子的导体中将产生两个方向相反的电磁转矩T + 和 T - ,合成后得到单相异步电动机的机械特性,如图3所示。图中,T + 为正向转矩,由旋转磁场B m1产生;T - 为反向转矩,由反向旋转磁场B m2产生,而T 为单相异步电动机的合成转矩。 从图3可知,单相异步电动机一相绕组通电的机械特性有如下特点: 1.当n=0时, T + =T - ,合成转矩T=0。即单相异步电动机的启动转矩为零,不能自行启动。 2.当n >0时,T >0;n <0时,T <0 。 即转向取决于初速度的方向。当外力给转子 一个正向的初速度后,就会继续正向旋转; 而外力给转子一个反向的初速度时,电机就 会反转。 3.由于转子中存在着方向相反的两个 电磁转矩,因此理想空载转速n 0小于旋转磁 场的转速n 1;与同容量的三相异步电动机相 比,单相异步电动机额定转速略低,过载能 力、效率和功率因数也较低。 二、 单相异步电动机的启动 单相异步电动机由于启动转矩为零,所以不能自行启动。为了解决单相异步电动机的启动问题,可在电动机的定子中加装一个启动绕组。如果工作绕组与启动绕组对称,即匝数相

三相异步电动机结构图解

三相异步电动机结构图解 图1封闭式三相异步电动机的结构 1—端盖2—轴承3—机座4—定子绕组5—转子 6—轴承7—端盖8—风扇9—风罩10—接线盒 异步电动机的结构也可分为定子.转子两大部分。定子就是电机中固定不动的部分,转子是电机的旋转部分。由于异步电动机的定子产生励磁旋转磁场,同时从电源吸收电能,并产生且通过旋转磁场把电能转换成转子上的机械能,所以与直流电机不同,交流电机定子是电枢。另外,定.转子之间还必须有一定间隙(称为空气隙),以保证转子的自由转动。异步电动机的空气隙较其他类型的电动机气隙要小,一般为

0.2mm~2mm。 三相异步电动机外形有开启式.防护式.封闭式等多种形式,以适应不同的工作需要。在某些特殊场合,还有特殊的外形防护型式,如防爆式.潜水泵式等。不管外形如何电动机结构 基本上是相同的。现以封闭式电动机为例介绍三相异步电动机的结构。如图1所示是一台封闭式三相异步电动机解体后的零部件图。 1.定子部分 定子部分由机座.定子铁心.定子绕组及端盖.轴承等部件组成。 (1)机座。机座用来支承定子铁心和固定端盖。中.小型电动机机座一般用铸铁浇成,大型电动机多采用钢板焊接而成。 (2)定子铁心。定子铁心是电动机磁路的一部分。为了减小涡流和磁滞损耗,通常用0.5mm厚的硅钢片叠压成圆筒,硅钢片表面的氧化层(大型电动机要求涂绝缘漆)作为片间绝缘,在铁心的内圆上均匀分布有与轴平行的槽,用以嵌放定子绕组。

(a)直条形式(b)斜条形式 图2 笼型异步电动机的转子绕组形式 (3)定子绕组。定子绕组是电动机的电路部分,也是最重要的部分,一般是由绝缘铜(或铝)导线绕制的绕组联接而成。它的作用就是利用通入的三相交流电产生旋转磁场。通常,绕组是用高强度绝缘漆包线绕制成各种型式的绕组,按一定的排列方式嵌入定子槽内。槽口用槽楔(一般为竹制)塞紧。槽内绕组匝间.绕组与铁心之间都要有良好的绝缘。如果是双层绕组(就是一个槽内分上下两层嵌放两条绕组边),还要加放层间绝缘。 (4)轴承。轴承是电动机定.转子衔接的部位,轴承有滚动轴承和滑动轴承两类,滚动轴承又有滚珠轴承(也称为球轴承),目前多数电动机都采用滚动轴承。这种轴承的外部有贮存润滑油的油箱,轴承上还装有油环,轴转动时带动油环转动,把油箱中的润滑油带到轴与轴承的接触面上。为使润滑油能分布在整个接触面上,轴承上紧贴轴的一面一般开有油槽。

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)

单相电机的倒顺开关接线及原理 有不少电工对单相电机的接线搞不清。我先对单相电机的正反转原理讲一下。单机电机里面有二组线圈,一组是运转线圈(主线圈),一组是启动线圈(副线圈),大多的电机的启动线圈并不是只启动后就不用了,而是一直工作在电路中的。启动线圈电阻比运转线圈电阻大些,量下就知了。启动的线圈串了电容器的。也就是串了电容器的启动线圈与运转线圈并联,再接到220V电压上,这就是电机的接法。当这个串了电容器的启动线圈与运转线圈并联时,并联的二对接线头的头尾决定了正反转的。比起三相电动机的顺逆转控制,单相电动机要困难得多,一是因为单相电动机有启动电容、运行电容、离心开关等辅助装置,结构复杂;二是因为单相电动机运行绕组和启动绕组不一样,不能互为代用,增加了接线的难度,弄错就可能烧毁电动机。 有接线盒的单相电动机内部接线图

上图,是双电容单相电动机接线盒上的接线图,图上清晰的反映了电动机主绕组、副绕组和电容的接线位置,你只需要按图接进电源线,用连接片连接Z2和U2,UI和VI,电动机顺转,用连接片连接Z2和U1,U2和VI,电动机逆转。 单相电动机各个元件也好鉴别,电容都是装在外面,用肉眼就可以看清楚接线位置(如上图)启动电容接在V2—Z1位置,运行电容接在V1—Z1间,从里面引出的线也好鉴别,接在(如上图)UI—U2位置的是运行绕组,接在Z1—Z2位置的是启动绕组、接在V1—V2位置的是离心开关。用万用表也容易区分6根线,阻值最大的是启动绕组,阻值比较小的运行绕组,阻值为零的是离心开关。如果运行绕组和启动绕组阻值一样大,说明这两个绕组是完全相同的,可以互为代用。单相电动机的绕组两端和电容两端不分极性,任意接都可以,但启动绕组和运行绕组不能接反,启动电容和运行电容不能接反,否则容易烧启动绕组 以下是自己为了消化吸收而画的接线图,在此献给广大电工朋友,希望能给大家带来一些帮助。本人学识粗浅,特建立 QQ群:79694587 以便大家相互学习。

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

电机正反转控制电路及实际接线图(个人学习用)

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。 在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可

以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有自动复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点自动恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用电子式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

三相异步电动机的正确接线

三相异步电动机的正确接线 万里安徽省广德县供电局(242200) 大多数电工都知道,三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组 接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D 4、D 5 、D 6 三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即 将D 1、D 2 、D 3 分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第 一相绕组的首端D 1与第三相绕组的末端D 6 相连接,再接入一相电源;第二 相绕组的首端D 2与第一相绕组的末端D 4 相连接,再接入第二相电源;第三相绕 组的首端D 3与第二相绕组的末端D 5 相连接,再接入第三相电源。即在接线板上 将接线柱D 1和D 6 、D 2 和D 4 、D 3 和D 5 分别用铜片连接起来,再分别接入三相电源, 如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端 D 4、D 5 、D 6 倒过来作为首端,而将D 1 、D 2 、D 3 作为末端,但绝不可单独将一相绕组 的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。下面就绕组接线错误予以具体的分析。 1错将应接成星形运行的异步电动机接成三角形运行时的不良后果。 一台应接成星形动行的电动机,其定子每相绕组承受的电压(相电压)是电动机额定电压( 电源线电压)的1/倍(即0.58倍)。若误接成三角形运行,其

单相电机正反转接线图

单相电机电容接线图 220V交流单相电机起动方式大概分一下几种: 第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。 正反转控制: 图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。 图1 电容运转型接线电路

图2 电容起动型接线电路 图3 电容启动运转型接线电路(双值电容器) 图4 开关控制正反转接线

三相异步电动机接线图

三相异步电动机接线图 2010年02月25日星期 10:49 A.M. 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。 一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。

电机正反转控制电路及实际接线图

电机正反转控制电路及 实际接线图 Revised as of 23 November 2020

三相异步电动机正反转控制电路图原理及plc接线与编程 在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状。如果这种热断电器的常闭触点仍然接在PLC 的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

三相异步电机接线方法大全

三相异步电机接线方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 三相异步电动机的接线方法有两种,一种是三角形接线,用符号“△”表示;另一种是星形接线,用符号“Y”表示。 所谓三角形接线是把接线盒的六个接线柱中,上下两柱用金属片连接起来后,再分别接电源,如图3-3 (a)所示。所谓星形接线是把上面三个接线柱用金属片连接起来,下面三个接线柱再分别接电源,如图3-3 (b)所示。 图3-2 接线盒中六个线头排列示意图 图3-3 电动机绕组三角形或星形接线

电动机三相绕组究竟按何种方式连接,要看铭牌标明的电压和接线方式,如果铭牌上标着电压220/3 80V,接法△/Y,表明该台电动机有两种接线方式,适应两种不同的电压。如果电源电压是220V,就应接成三角形。如误接成星形,就会使接到每相绕组上的电压由220V下降到220/√3=127V,电动机就会因电压太低起动不起来,如仍承受额定负载,就容易造成过载烧毁。如果电源电压是380V,就应接成星形,如误接成三角形,每相绕组就会承受380V的电压而造成定子电流增大烧毁绕组。所以正确的接线方式,应能使电动机在正常工作时,所承受的电源电压必须等于或接近于电动机的额定电压。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

三相异步电机接线图及测量方法

三相异步电机接线图及测量方法 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。 一头叫做首端,另一头叫末端。规定 第一相绕组首端用D 1表示,末端用D 4表示; 第二相绕组首端用D2表示,末端用D5表示; 第三相绕组首末端分别用D3和D6来表示。 这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,。 三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将 第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源; 第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源; 第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。 即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。

一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。一台三相异步电动机,由于种种原因,接线盒里的端子全坏了,只有6个线头了,请问各位,如何区分这6个线头分别是U1、U2、V1、V2、W1、W2? 首先用万能表分出三相。 在三相电动机每个绕组的两引出线确定的情况下,可进一步判别三绕组引出线的首尾。 测量方法一: (一)万用表选档:直流50μ (二)测量过程: 1、将电动机三绕组中每一绕组的一根引出线接在一起,余下三根引出线(每个绕组一根)也接在一起。这样做成两组引出线。将两组引出线分别缠绕在万用表的两表笔上。用手转动电动机转子,同时观察万用表指针,如果指针不偏转(摆

电机正反转控制电路及实际接线图个人学习用

三相异步电动机正反转控制电路图原理及plc接线与编程 在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

相关文档
最新文档