孔老师—山洪灾害预警指标及阈值计算方法

孔老师—山洪灾害预警指标及阈值计算方法
孔老师—山洪灾害预警指标及阈值计算方法

山洪灾害预警指标确定存在问题与建议

山洪灾害预警指标确定存在问题与建议 发表时间:2019-03-01T09:57:48.477Z 来源:《基层建设》2018年第36期作者:张婧[导读] 摘要:本文结合山洪地质灾害的特征,在国内外山洪灾害预警指标确定方法的基础上,以云南省为例,提出山洪灾害预警指标确定存在问题与建议。 云南省丽江市永胜县防汛抗旱指挥部办公室云南丽江 674200摘要:本文结合山洪地质灾害的特征,在国内外山洪灾害预警指标确定方法的基础上,以云南省为例,提出山洪灾害预警指标确定存在问题与建议。 关键词:山洪灾害;预警指标;建议前言:山洪灾害预警指标主要包括临界水位和临界雨量两种指标,前者是以某一特征水位作为控制指标,较易确定;后者考虑流域或区域内的降雨分布及雨强情况。针对山洪灾害预警指标的研究,国内外学者已开展了大量的工作,下面笔者将对此命题展开分析。 1山洪地质灾害的特征一是山洪地质灾害的成因。山洪地质灾害是由降水引发的山洪、地面塌陷、滑坡等对人民生命财产造成损失的灾害。它的形成与发展主要受地形地质、大气降水、人类经济社会活动等的影响。 二是地形地质影响。云南某城地处盆地边缘,属丘陵、U型河谷地貌。区内广泛分布的红层中、浅丘地区的坡度在20°左右的土质斜坡,前缘产生临空面,在暴雨的作用下容易引发崩塌、滑坡等灾害。 三是大气降水影响。云南某城地属亚热带季风气候区,夏季受南方暖湿季风活动影响常发生暴雨。暴雨具有雨强大、历时短、降水集中的暴雨特点。大气降水对地质灾害的影响主要是对滑坡、崩塌和不稳定斜坡的影响。大气降水引发的洪灾也是该地区的主要自然灾害。 四是人类经济活动影响。由于当地人们的防灾减灾意识不强,大面积的开矿、采石、筑路、等活动会影响山体稳定,再加上开发建设造成大量的水土流失,也是造成灾害的主要原因。 2国内外预警指标确定方法确定山洪灾害预警指标是山洪灾害预警的前提条件。美国山洪预警指标的确定是基于山洪预警指导系统(FFGS),根据实时土壤含水量,运用水文模型计算临界流量的时段雨量作为预警指标;欧洲的山洪预警指标为基于气象的雨量预警指标(EPIC),即运用欧洲洪水预警系统(EFAS)统计分析近30a不同时段数值天气预报的降雨数据,根据降雨的重现期设定预警指标,一般设定2a一遇降雨量为中级预警 指标值,5a一遇降雨量为高级预警指标值,20a一遇降雨量为最高级预警指标值;日本运用以降雨量为指标的地质灾害警戒系统对山洪进行预警,把短期雨量指标(雨强)作为纵坐标,长期雨量指标(土壤雨量指数)作为横坐标,以历史山洪灾害为基础,绘制地质灾害预警临界线(蛇形曲线),并以此线作为判断地质灾害是否发生的依据。我国台湾的预警指标与日本预警指标的设定类似,分别以短期、长期雨量指标作为纵、横轴,采用降雨驱动指标划定山洪灾害预警临界值。我国大陆在2013年以前山洪灾害预警指标的确定以经验法为主。自2013年开始全国范围的山洪灾害调查以来,中国水利水电科学研究院编制《全国山洪灾害分析评价指南》,在全国推行设计暴雨洪水反推法计算预警指标,运用成灾水位反推成灾流量,设定不同的土壤含水量条件(较干、一般、较湿三种情况),运用推理公式法或水文模型法反推时段雨量,作为预警指标。对比国内外几种预警指标发现,我国与美国预警指标确定方法都是基于流域的产汇流机制,设定时段雨量为预警指标,在一定程度上反映了流域的物理特性。欧洲的预警指标确定方法都是基于历史灾害资料的统计分析,只根据数值天气预报降雨信息确定预警指标,下垫面条件及土壤含水量状况等均未考虑。美国、日本、我国台湾及我国现行水位流量反推法都考虑或部分考虑了土壤含水量对预警指标的影响,美国考虑随时间变化的土壤含水量对预警指标的影响,称为动态预警指标;我国台湾把前期土壤含水量与场次累计雨量并称为有效累计雨量,用来确定预警指标。研究发现考虑前期雨量、雨强、有效累计雨量等降雨要素,能够较为准确地反映引发山洪的降雨条件,提高预警指标的精准度。 3山洪灾害预警指标确定存在的问题一是云南省与全国其他省市一样,在进行山洪灾害预警指标的计算时,均采用了水利工程设计时的设计洪水计算方法和暴雨洪水相关关系。由于工程设计的思路偏于安全,预警值的临界雨量值偏小。利用计算分析的指标进行预警,常会给山区人民一种“狼来了”的感觉,没有真正起到山洪灾害准确预警的效果,为此全国各省市都在提出并开始研究山洪灾害精准预警问题。 二是云南省现行的设计洪水计算中设计雨型的确定是基于对工程偏不利的雨型过程,其主雨位在后,同样的设计暴雨,其设计洪峰流量偏大,反之当临界流量一定时,反推的暴雨量就偏小,造成雨量预警指标偏低。 三是云南省目前洪水分析计算中所采用的暴雨径流关系是1992年提出的成果,其资料系列采用建国后至1979年至今流域面积在200~1000km2之间的较大流域,绘制暴雨径流关系线时,其目标是在合理的基础上使成果偏于安全,在关系线定线的走向上,基本上沿暴雨洪水点子的外包线,其成果必然偏大。 四是云南省目前洪水分析计算中所采用的暴雨径流关系省设计洪水的汇流计算多采用推理公式法和瞬时单位线法,两者均是在径流形成的物理概念基础上,对某些条件做出假设和概化后建立的一种比较简单的数学模型,其可靠程度取决于汇流参数的选取是否符合客观实际。目前所采用的的汇流参数也是利用较大的流域且建国初期实测资料综合的成果,现在用于较小的流域面积(多数在50km2以内)山洪灾害的预警预报,肯定存在一定的误差。 五是流域土壤含水量(前期影响雨量)对流域产流有着重要的影响,也是雨量预警的重要基础信息。现行的设计洪水计算是将前期影响雨量按最大考虑,而用于实际情况下的山洪灾害预警工作,显然缺乏合理性。 4解决问题的对策与建议一是为了提高山洪灾害预警的准确性、时效性,开展山区中小流域产汇流的研究,寻找山区中小流域降雨径流的变化规律,特别是改革开放多年来,流域下垫面发生变化情况下产流研究,提出一套适合云南省山洪灾害防治工作的预警指标的确定方法、参数及阈值,不再借用工程设计的理念和有关参数。使山洪灾害的预警预报更加准确、及时,更好地服务于山区人民。 二是重新研究暴雨雨型。根据云南省山丘区历年实测的历次暴雨分配过程,按照统计学原理,研究不同区域最大1h暴雨和最大6h(小流域汇流历时多在6h以内)暴雨出现频次最多的位置,同理确定其他不同时段暴雨位置,最终提出适合的山洪灾害预警指标分析的出现频次最多的雨型。

山洪灾害监测预警系统设计方案

山洪灾害监测预警系统 设计方案

1概述 我国是一个多山的国家,山丘区面积约占全国陆地面积的三分之二。我国主要位于东亚季风区,暴雨分布范围广;季风气候决定了我国降雨在年内分布不均,汛期高度集中,以强降雨引发的山洪灾害发生最为频繁,危害大。 路路通山洪灾害监测预警系统以山洪灾害防治坚持“以防为主,防治结合”、“以非工程措施为主,非工程措施与工程措施相结合”的原则为指导,运用当代信息监测技术、通信技术、网络技术、计算机技术、系统集成技术在山洪灾害防治区建立以信息采集、预报分析、视频会商决策为基础的预警平台,通过手机群发、传真群发、无线广播、高音喇叭、手摇警报器、锣等预警程序和方式,将预警信息及时准确地传送到山洪可能危及的区域,使接收预警区域人员能根据山洪灾害防御预案及时采取预防措施,最大限度地减少人员伤亡。 2系统总体结构 2.1系统组成 路路通山洪灾害监测预警系统主要包括水雨情监测系统和预警系统。为更好地发挥系统的防灾减灾作用,还需建立群测群防的组织体系,加强宣传培训。 水雨情监测系统及时将简易监测站、人工监测站、自动监测站的监测信息汇入预警平台。 预警系统由基于平台的山洪灾害防御预警系统和山洪灾害群测群防预警系统组成。基于平台的山洪灾害防御预警系统主要由信息汇集子系统、信息查询子系统、预报决策子系统和预警子系统组成。群测群防预警系统包括预警发布程序、预警方式、警报传输和信息反馈通信网、警报器设置等。

2.2系统建设模式 由于山洪预见期短、致灾快,因此为有效防御山洪灾害,提出在县级行政区建立基于平台的山洪灾害预警系统建设模式,省、市、县、乡(镇)、村等各方面的山洪灾害防治相关信息汇集于平台,县级防汛部门根据系统信息,及时发布预报、警报。同时县、乡(镇)、村、组建立群测群防的组织体系,开展监测、预警工作。 3系统特点 (1)软硬件一体化集成 公司提供完善的系统的集成方案,自主开发山洪监测预警软件。 (2)多层次水、雨情决策分析 可查询时段、日、旬、月显示区域内的雨量值、平均雨量值、最大雨量值、

【案例分享】智慧城市山洪灾害预警系统平台建设

【案例分享】智慧城市山洪灾害预警系统平台建设2015-03-17海峰智慧城市中国

智慧城市中国的小调查显示,大数据在安全类事件预警当中的应用首推公共安全类事件,其次,依次为食品安全、信息安全、环境安全、交通安全和经济安全。 由此可见,利用大数据挖掘技术构建智慧城市的安全预警系统有着广泛的切入点,值得全行业关注。 智慧城市运营从安全事件预警开始! 海峰 微信号:linkglobalmedia 电邮:smartcitychina@https://www.360docs.net/doc/664739205.html, 下面是针对山洪进行预警的案例。 一 项目概述 1、项目名称:韶关市山洪灾害预警系统平台建设项目。 2、项目用途:山洪灾害监测预警预报(含防汛信息管理)。 3、项目预算:人民币贰佰玖拾贰万元整(¥2,920,000.00元)。

4. 主要建设内容:项目为纯软件,共有两个分部工程,即韶关市山洪灾害预警系统平台软件开发建设(分部工程1)、和乳源、仁化、翁源、新丰、始兴、乐昌、南雄、武江、浈江、曲江共十个县(市、区)的县级预警系统平台软件建设(分部工程2),以及服务器操作系统、数据库、GIS平台的购置(详见通用软件要求),含SWORD数据交换平台。(韶关市区的矢量图、影像图、DEM数据由用户负责提供,不需另外购置) 5.建设目标和总体要求 建设目标:利用自动化监测和计算机技术来实现山洪灾害预警,达到减少人民群众生命财产损失的核心目标,真正发挥山洪防治非工程措施的重要作用。 总体要求:功能更加全面、技术更加先进、操作更加人性和预警更加准确,建成以山洪灾害监测为主要功能、兼备防汛决策支持基本模块功能的防汛系统平台。能够在市级平台集中展示所有县级平台的山洪灾害预警预报、预案和责任人管理系统等情况,县级平台具备提供乡镇级用户修改和管理预案和责任人的功能;能够汇聚和分析水文、气象、国土以及新建站点的监测信息;能够兼容各类工程实时图像、视频接入;能够嵌入展示卫星云图、雷达回波、台风路径图、雨量等值面线图、地质灾害预报图;能够完全兼容省级三防决策支持系统(ArcGIS)和数字韶关地理信息公共平台提供的GIS服务接口(Newmap平台),并且有完备的用户分级标绘管理功能;能够接入韶关市气象、国土信息共享系统(提供接口,但不在本项目开发建设范围),能够接入广东省山洪灾害预警系统平台,确保省市县三级平台的顺利集成与共享。 二、项目实施概况 1.施工和验收安排:根据粤防办电[2011]59号文和韶防办[2011]21号文的要求,该项目采取统招统签的招标方式。由韶关市水务局统一组织招投标,由韶关市水务局为项目法人,中标签订合同后,完成《系统需求详细设计书》,先完成市级预警系统平台的建设,再完成县级预警系统平台的部署,先安排县级平台分部工程验收,再安排市级平台分部工程验收和终验,由市水务局按照合同约定的施工进度支付工程款。 2.工期要求: 按照省防总的要求,需要在2012年4月10日前上线运行。中标方不得因为政府财政支付部门审查导致付款进度的原因,延误工程施工进度。 3. 信息化监理:已按照市政府信息中心的要求对该信息化项目进行施工监理,力图规范整个项目的进程和质量。 4. 试运行和维护要求:按照省防总的要求,试运行期不能少于一个汛期,中标单位承担至少三年免费运行维护工作及相关费用。 5.付款方式(分四期付款):

电厂烟气环境监测常用计算公式

1.1.1 烟气流量的计算 s s V F Q ??=3600 (式 4-1) 式中:s Q -湿烟气排放量,m 3/h ; F -测定断面面积,m 2; s V -测定断面的平均烟气流速,m/s 。 1.1.2 标态下干烟气排放量的计算 )1() 273(101325273 sw s s a s m X t )P (B Q Q -?+??+?= (式4-2) 式中:m Q -标准状态下干烟气的排放量,Nm 3/h ; sw X -烟气中水分含量体积百份数,%; a B -大气压力,Pa ; s p -测点处烟气静压,Pa ; s t -烟气温度,℃。 1.1.3 采样体积的计算 s t P B V V s a m snd ++? =2730027.0 (式4-3) 式中:snd V -标准状态下的干烟气采样体积,L ; m V -实际工况下的干烟气采样体积,L ; s P -烟气静压,Pa ; s t -烟气温度,℃。 1.1.4 烟气含尘浓度计算 3 10?= snd V g C (式4-4) 式中:C -标准状态下干燥烟气的含尘浓度,mg/Nm 3; g -所采得的粉尘量,mg ;

21g g g -=; 1g -采样前滤筒质量,mg ; 2g -采样后滤筒质量,mg 。 1.1.5 烟尘排放量的计算 6 10m m Q C q ?= (式 4-5) 式中:m q -烟尘排放量 kg/h 。 1.1.6 漏风率的计算 % 100222?--= ?out in out O K O O α (式4-6) 式中:α?-除尘器漏风率,%; out O 2-除尘器出口断面烟气平均氧量,%; in O 2-除尘器入口断面烟气平均氧量,%; K -大气中的含氧量,%。 1.1.7 除尘效率的计算 % 100) 1(??+-= in out in C C C αη (式4-7) 式中:η-除尘效率,%; in C -进口烟尘浓度(标态干烟气),mg/m 3; out C -出口烟尘浓度(标态干烟气),mg/m 3。 1.1.8 除尘器本体压力降计算 H out in p p p p +-=? (式 4-8) 式中:p ?-除尘器压力降,Pa ; in p -除尘器入口全压平均值,Pa ; out p -除尘器出口全压平均值,Pa ; H p -高温气体浮力的校正值,Pa 。

(完整版)烟气量计算公式

燃料空气需要量及燃烧产物量的计算 所有理论计算均按燃料中可燃物质化学当量反应式,在标准状态下进行,1kmol 反 应物质或生成物质的体积按22.4m 3计,空气中氧和氮的容积比为21:79,空气密度为 1.293kg/m 3。 理论计算中空气量按干空气计算。燃料按单位燃料量计算,即固体、液体燃料以1kg 计算,气体燃料以标准状态下的1m 3计算。 单位燃料燃烧需要理论干空气量表示为L 0 g ,实际燃烧过程中供应干空气量表示为 Ln g ; 单位燃料燃烧理论烟气量表示为V 0,实际燃烧过程中产生烟气量表示为Vn; 单位燃料燃烧理论干烟气量表示为V 0g ,实际燃烧过程中产生干烟气量表示为Vn g ; 一、通过已知燃料成分计算 1. 单位质量固体燃料和液体燃料的理论空气需要量(m 3/kg ) L 0=(8.89C +26.67H +3.33S -3.33O )×10﹣2式中的C 、H 、O 、S ——燃料中收到基 碳、氢、氧、硫的质量分数%。 2. 标态下单位体积气体燃料的理论空气需要量(m 3/m 3) L 0=4.76?? ????-+??? ??+++∑2222342121 O S H?CmHn n m H CO ×10﹣2式中CO 、H 2、H 2O 、H 2S 、CmHn 、O 2——燃料中气体相应成分体积分数(%). 3. 空气过剩系数及单位燃料实际空气供应量 空气消耗系数а=0 L 量单位燃料理论空气需要量单位燃料实际空气需要?L 在理想情况下,а=1即能达到完全燃烧,实际情况下,а必须大于1才能完全燃烧。а<1显然属不完全燃烧。 а值确定后,则单位实际空气需要量L а可由下式求得: L 0g =аgL 0 以上计算未考虑空气中所含水分 4. 燃烧产物量 a.单位质量固体和液体燃料理论燃烧产物量(m 3/kg) 当а=1时, V 0=0.7L 0+0.01(1.867C+11.2H+0.7S+1.244M+0.8N)式中 M ——燃料中水分(%)。 b.单位燃料实际燃烧产物量(m 3/kg ) 当a >1时,按下式计算: 干空气时,V a =V 0+(a-1)L 0 气体燃料 (2)单位燃料生成湿气量 ?V =1+α0L -[0.5H 2+0.5C O -(4 n -1) C m H n ] (标米3/公斤) (2-14) (3)单位干燃料生成气量 g V ?=1+α0L -[1.5H 2+0.5C O -( 4n -1) C m H n +2 n C m H n ) (标米3/公斤) (2-15)

山洪灾害防治县级监测预警系统建设技术要求

山洪灾害防治县级监测预警系统建设 技术要求 国家防汛抗旱总指挥部办公室 二○一○年八月

目录 1 山洪灾害普查 (1) 2 危险区的划定 (1) 3 预警指标的确定 (1) 4 监测系统 (1) 4.1站网布设 (1) 4.2监测信息流程 (3) 4.3监测站点管理 (3) 4.4监测站环境 (4) 4.5监测站设备 (5) 5县级监测预警平台 (11) 5.1平台硬件设备配置和机房及会商环境 (11) 5.1.1平台硬件设备配置 (11) 5.1.2 机房及会商环境 (13) 5.2县级平台系统及应用软件配置 (14) 5.2.1 系统总体技术原则 (14) 5.2.2 系统总体性能要求 (15) 5.2.3 平台支撑系统软件 (16)

5.2.4 数据库系统 (16) 5.2.5 应用系统功能要求 (17) 6预警系统 (24) 6.1预警方式要求 (24) 6.2主要预警设备技术要求 (25) 7 群测群防体系 (26) 7.1责任制内容要求 (26) 7.2预案内容要求 (26) 7.3宣传培训演练方式和内容要求 (26) 附件1:山洪灾害普查表(15张) 附件2:山洪灾害专题数据库表结构(16张)

1 山洪灾害普查 普查的内容包括:小流域自然和经济社会基本情况、人口分布情况、山洪灾害类型、历史山洪灾害损失情况、受山洪灾害威胁的人口及主要经济设施分布情况等。各省按照编制大纲的要求,参照附件1制定普查表。 2 危险区的划定 根据普查的结果,划定山洪灾害防治区内危险区、安全区。要求所受山洪灾害影响范围内,有人居住的区域均必须划定。有条件,可以划定不同等级的危险区域。并以自然村或小流域为单位,标绘在预案中的图件上。 3 预警指标的确定 根据历史降雨及山洪灾害情况,结合地形、地貌、植被、土壤类型等,确定每个小流域或乡村各级临界雨量和水位等预警指标,并在实际运用中修订完善。 预警指标一般分准备转移、立即转移两级指标。 4 监测系统 4.1站网布设 监测站网主要布设在流域面积为200km2以下易遭受山洪灾害的小流域。通过山洪灾害易发程度降雨分区和区域历史洪水、社会经济调查,在充分利用现有监测站点的基础上,布设监测站

山洪灾害防治监测预警系统软件产品说明

山洪灾害监测预警软件产品说明 北京燕禹水务科技有限公司 二〇一〇年三月

目录 1软件产品总体结构 (1) 2软件产品逻辑结构 (2) 3软件产品运行环境 (4) 3.1软件服务端运行环境 (4) 3.2软件客户端运行环境 (4) 4软件产品性能 (4) 5防洪综合数据库说明 (5) 5.1数据库总体构成 (5) 5.2数据库分类说明 (5) 5.2.1空间数据库 (5) 5.2.2属性数据库 (6) 6数据接收处理软件功能说明 (8) 7山洪灾害监测预警系统应用软件功能说明 (8) 7.1决策支持软件功能 (8) 7.1.1基础信息管理 (9) 7.1.2实时汛情监视 (13) 7.1.3山洪灾害信息服务 (17) 7.1.4洪水预报分析 (19) 7.1.5预警发布 (22) 7.1.6预案管理 (24)

7.1.7报表管理 (25) 7.1.8系统管理 (25) 7.2乡镇灾情上报软件功能 (29) 7.2.1灾情填报 (29) 7.2.2灾情统计分析 (29) 7.3山洪灾害专用图形编辑软件功能 (30) 7.3.1添加要素 (31) 7.3.2移动要素 (31) 7.3.3删除要素 (31) 7.3.4专题图输出 (32) 8防洪综合数据库软件功能说明 (32) 8.1查询检索 (32) 8.2数据编辑 (32) 8.3数据导入导出 (33)

1软件产品总体结构 防办通过通信网络、计算机网络与雨量监测点、水位监测点、上下级防汛机构及水文、气象、国土等其它相关单位相连;需从外部获取的山洪灾害相关信息通过网络传输后经过接收处理进入防洪综合数据库。在防洪综合数据库的基础上建设基于山洪灾害监测预警系统应用软件(包括决策支持软件、乡镇灾情上报软件和专用图形编辑软件),实现基础信息查询、水雨情监测查询、气象国土信息服务、水情预报服务、预警发布服务、预警响应服务、系统管理等应用。防洪综合数据库软件实现防洪综合数据库的综合管理维护。

山洪灾害预警系统设计报告

富县山洪灾害预警系统设计报告 北京圣世信通科技发展有限公司 2012年5月

目录1 综合说明错误!未定义书签。 现状错误!未定义书签。 设计依据错误!未定义书签。 设计目标错误!未定义书签。 设计原则错误!未定义书签。 设计范围错误!未定义书签。 建设内容错误!未定义书签。 工程实施错误!未定义书签。 工程管理错误!未定义书签。 工程投资错误!未定义书签。 2 暴雨山洪监测系统错误!未定义书签。 站网布设错误!未定义书签。 站网布设原则错误!未定义书签。 监测站类型错误!未定义书签。 监测站网确定错误!未定义书签。 设施设备配置错误!未定义书签。 测验设施设备错误!未定义书签。 通信设施设备错误!未定义书签。 市、县信息传输集成错误!未定义书签。 市水情接收中心错误!未定义书签。 县防办信息接收中心错误!未定义书签。 3 山洪灾害通信计算机网络系统错误!未定义书签。 建设内容错误!未定义书签。 设备配置错误!未定义书签。 设备投资错误!未定义书签。 4 预警响应体系建设错误!未定义书签。 山洪灾害预警指标错误!未定义书签。 监测站(乡镇)预警指标错误!未定义书签。 县防汛指挥部门预警指标错误!未定义书签。 4. 2 预警子系统错误!未定义书签。 预警信息传输及发布方式错误!未定义书签。 基于无线广播系统的信息发布方式错误!未定义书签。 5 信息服务系统错误!未定义书签。 主要内容及体系结构错误!未定义书签。 短信预警发布错误!未定义书签。 应急响应错误!未定义书签。 山洪灾害新闻发布平台错误!未定义书签。 6 一期工程功能扩充错误!未定义书签。 7 工程建设主要技术错误!未定义书签。 暴雨山洪监测系统错误!未定义书签。 信息服务系统错误!未定义书签。 8 工程实施错误!未定义书签。

山洪灾害监测预警系统设计方案模板

山洪灾害监测预警系统设计方案

山洪灾害监测预警系统 设计方案

1概述 中国是一个多山的国家,山丘区面积约占全国陆地面积的三分之二。中国主要位于东亚季风区,暴雨分布范围广;季风气候决定了中国降雨在年内分布不均,汛期高度集中,以强降雨引发的山洪灾害发生最为频繁,危害大。 路路通山洪灾害监测预警系统以山洪灾害防治坚持“以防为主,防治结合”、“以非工程措施为主,非工程措施与工程措施相结合”的原则为指导,运用当代信息监测技术、通信技术、网络技术、计算机技术、系统集成技术在山洪灾害防治区建立以信息采集、预报分析、视频会商决策为基础的预警平台,经过手机群发、传真群发、无线广播、高音喇叭、手摇警报器、锣等预警程序和方式,将预警信息及时准确地传送到山洪可能危及的区域,使接收预警区域人员能根据山洪灾害防御预案及时采取预防措施,最大限度地减少人员伤亡。 2系统总体结构 2.1系统组成 路路通山洪灾害监测预警系统主要包括水雨情监测系统和预警系统。为更好地发挥系统的防灾减灾作用,还需建立群测群防的组织体系,加强宣传培训。 水雨情监测系统及时将简易监测站、人工监测站、自动监测站的监测信息汇入预警平台。

预警系统由基于平台的山洪灾害防御预警系统和山洪灾害群测群防预警系统组成。基于平台的山洪灾害防御预警系统主要由信息汇集子系统、信息查询子系统、预报决策子系统和预警子系统组成。群测群防预警系统包括预警发布程序、预警方式、警报传输和信息反馈通信网、警报器设置等。

2.2系统建设模式 由于山洪预见期短、致灾快,因此为有效防御山洪灾害,提出在县级行政区建立基于平台的山洪灾害预警系统建设模式,省、市、县、乡(镇)、村等各方面的山洪灾害防治相关信息汇集于平台,县级防汛部门根据系统信息,及时发布预报、警报。同时县、乡(镇)、村、组建立群测群防的组织体系,开展监测、预警工作。

烟气监测系统计算公式

烟气监测系统计算公式: 1. 流量 1.1原烟气流量(湿态) 【未用】 1.2净烟气流量 1.2.1工况下的湿烟气流量s Q : s s V F Q ??=3600 s Q ――工况下的湿烟气流量,h m 3; F ――监测孔处烟道截面积,2m ; s V ――监测孔处湿烟气平均流速,s m /。 1.2.2监测孔处湿烟气平均流速s V : s V = 流速仪输出值 1.2.3标准状态下干烟气流量sn Q : )1(273273101325sw s s a s sn X t P B Q Q -+?+?= sn Q ――标准状态下干烟气流量,m 3; sw X ――烟气湿度。 1.2.4烟气排放量 ∑=?=n i sni h Q n Q 1)1( ∑==24 1i hi d Q Q ∑==31 1i di m Q Q ∑==121i mi y Q Q 式中, Q h ——标准状况下干烟气小时排放量,m 3;

Q d ——标准状况下干烟气天排放量,m 3; Q m ——标准状况下干烟气月排放量,m 3; Q y ——标准状况下干烟气年排放量,m 3; Q sni ——标准状况下,第i 次采样测得的干烟气流量,m 3/h ; Q hi ——标准状况下,第i 个小时的干烟气小时排放量,m 3/h ; Q di ——标准状况下,第i 天的干烟气天排放量,m 3/h ; Q mi ——标准状况下,第i 个月的干烟气月排放量,m 3/h ; n ——每小时内的采样次数。 2.烟气湿度sw X : 222O O O sw X X X X '-'= 2O X ――湿烟气氧量,%; 2O X '――干烟气氧量,%。 3.过量空气系数α': 2 2121O X -='α 4.烟尘 4.1.1标准状态下干烟气的烟尘排放浓度 程截距烟尘方程斜率+烟尘方.dust dust C C ''=' 式中, dust C ''——实测的烟尘排放浓度,mg/m 3; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3。 4.1.2折算的烟尘排放浓度 α α'?'=dust dust C C 式中, dust C ——折算成过量空气系数为α时的烟尘排放浓度; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3; α' ——实测的过量空气系数;

山洪灾害监测预警系统研究

山洪灾害监测预警系统研究 摘要:山洪灾害对于人们的生命财产安全有着严重威胁,通过开发设计山洪灾 害监测预警系统,可以实时监测各个地区的水文环境情况,密切关注山洪灾害隐患,及时做好山洪灾害监测预警,采取科学有效的安全防护措施,保障人们的安 居乐业。本文分析了构建山洪灾害监测预警系统的必要性,阐述了山洪灾害监测 预警系统开发设计,以供参考。 关键词:山洪灾害;监测预警系统 近年来,我国经济快速发展,而与此同时粗放式的经济发展模式给自然生态环境造成严 重损害,大范围的植被被乱砍乱伐,受到地形地貌、降雨等情况的影响,山洪灾害频繁发生,造成较大范围的破坏。山洪灾害监测预警系统的构建通过运用各种先进的计算机科学技术, 合理设计山洪灾害监测预警系统的各个模块,优化和完善山洪灾害监测预警系统,实时监测 当地的水文环境变化,充分发挥山洪灾害监测预警系统的应用优势。 一、构建山洪灾害监测预警系统的必要性 我国幅员辽阔,各个地区的水文、地形地貌情况存在较大差异,并且山丘区域容易受到 地质地形的影响,山洪灾害的监控和防治范围很大,再加上很多地区水文情况非常复杂,局 部区域小气候变化明显,这对于山洪灾害监测预警系统的开发设计要求非常高。但是目前很 多地区的山洪灾害监测预警系统网点覆盖率相对较低,网点布设比较少,雨量监测网点的自 动化水平较低,无法实时有效地采集暴雨洪水来临之前的征兆信息,水文站网点主要位于一 些宽大河流上,中小型河流上的水文站点比较少,并且相关观测设备和监测技术比较落后。 当前,我国很多地区缺少科学有效的滑坡和泥石流监测设备,特别是对于山洪灾害频发的地区,监测点设置不足,一些水文情数据采集还依靠人工报汛、人工观测,技术手段落后,通 信设施陈旧,水文情况信息传递速度较慢,时效性很差,自动化程度相对较低[1]。同时,我 国山丘地区的山洪灾害预警预报比较薄弱,降雨水文预报精度较低,山洪灾害的科学预测不 准确,山丘地区的很多小河流没有设置洪水预警和预报系统,即使设置了报汛站点,但是报 讯段次数比较少,再加上山洪灾害的预见预报间隔比较短,无法发挥有效的参考决策作用。 另外,村间、乡镇和县市的警报分布主要是依靠移动电话终端、通信网络来传递传真信息和 语音信息,而没有设置专门的警报发布系统,村、镇和乡级的移动通信网和固定通信网基站 之间主要是通过电缆线路进行信息传输,这些电缆线路在恶劣环境下容易出现各种通信故障,山丘地区的固定电话终端容易遭受雷击损害,因此构建科学有效的山洪灾害监测预警系统势 在必行。 二、山洪灾害监测预警系统开发设计 1、系统组成 (1)预警系统 山洪灾害监测预警系统主要包括群测群防预警系统和防御预警系统,山洪灾害预警平台 和防治信息采集是整个预警系统的核心,提供全面的山洪灾害数据信息,包含数据库子系统、计算机网络系统、信息查询系统、信息汇集系统等,山洪灾害防御预警系统包括预警系统、 预报决策系统、信息查询系统、信息汇集系统等,建立县级以上的山洪防汛指挥体系,对于 山洪灾害发生频繁的地区,应建设山洪灾害防御预警系统,实时获取水雨情信息,实时发布 山洪灾害警报预报。山洪灾害监测预警系统必须具有水雨情和气象信息查询、水雨情报汛、 预报决策、水文信息预警等功能[2]。 (2)监测系统 山洪灾害监测系统建设,应配置合理的设备设施,构建信息传输通信组网,科学布设监 测站网,村、乡的山洪灾害监测系统应尽量采用简易的监测设备,县级的山洪灾害检测系统 应结合山洪灾害特点和经济状况,引进自动化程度高、先进、实用的监测设备和检测技术。 我国山洪灾害发生的原因比较复杂,破坏范围广,应适当加密各个地区的水文气象监测站点,及时发布山洪灾害的预警信息,有效控制水雨情[3]。 2、系统设计

烟气流量计算公式

锅炉烟尘测试方法 1991—09—14发布1992—08—01实施 国家技术监督局 国家环境保护局发布 1、主题内容与适用范围 本标准规定了锅炉出口原始烟尘浓度、锅炉烟尘排放浓度、烟气黑度及有关参数的测试方法。 本标准适用于GBl3271有关参数的测试。 2、引用标准 GB l0180 工业锅炉热工测试规范 GB l327l 工业锅炉排放标准 3、测定的基本要求 3.1 新设计、研制的锅炉在按GBl0180标准进行热工试验的同时,测定锅炉出口原始烟尘浓度和锅炉烟尘排放浓度。 3.2 新锅炉安装后,锅炉出口原始烟尘浓度和烟尘排放浓度的验收测试,应在设计出力下进行。 3.3 在用锅炉烟尘排放浓度的测试,必须在锅炉设计出力70%以上的情况下进行,并按锅炉运行三年内和锅炉运行三年以上两种情况,将不同出力下实测的烟尘排放浓度乘以表l中所列出力影响系数K,作为该锅炉额定出力情况下的烟尘排放浓度,对于手烧炉应在不低于两个加煤周期的时间内测定。 表1 锅炉实测出力占锅炉设计出力的百分数,% 70-《75 75-《80 80-《85 85-《90 9 0-《95 》=95 运行三年内的出力影响系数K 1.6 1.4 1.2 1.1 1.05 1 运行三年以上的出力影响系数K 1.3 1.2 1.1 1 1 1 3.4 测定位置: 测定位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测定位置应距弯头、接头、阀门和其他变径管的下游方向大于6倍直径处,和距上述部位的上游方向大于3倍直径处。 3.5 测孔规格: 在选定的测定位置上开测孔,在孔口接上直径dn为75mm,长度为30mm左右的短管,并装上丝堵。 3.6 测点位置、数目: 3.6.1 圆形断面:将管道断面划分为适当数量的等面积同心圆环,各测点均在环的等面积中心线上,所分的等面积圆环数由管道直径大小而定,并按表2确定环数和测点数。 表2 圆形管道分环及测点数的确定 管道直径D,mm 环数测点数 《200 1 2 200-400 1-2 2-4 400-600 2-3 4-6 600-800 3-4 6-8 800以上4-5 8-10

山洪灾害监测预警系统设计

山洪灾害监测预警系统设计 1.建设目标 根据防汛形势和现状,全面吸收其他地市先进的应用经验,建设一个满足防汛值班人员及领导会商决策、指挥调度的信息化系统。将现有的多个系统进行数据及技术整合,完善前端防汛感知层面,实现数据标准化、信息采集自动化、管理规范化、决策科学化,满足我区防汛工作需求。进一步提高重点区域的监测预警技术水平与保障能力,特别是提高监测站点监测数据的可靠性、稳定性,增强监测预警社会化服务能力;不断提高山丘区群众主动防灾避险意识,为实现2020-2021年山洪灾害防治总体目标夯实基础。 2.建设内容 1、视频监测站点补充完善 2、水雨情监测站点补充完善 3、山洪灾害监测预警平台建设 3.山洪灾害预警平台 监测预警平台实现对雨量的关注,当雨量变化时,需要关注水位的变化,同时查看气象信息,包括主要影响雨量水位的台风信息及长期气象预测的卫星云图和短期预测气象信息的气象雷达图。当情况紧急时,需要根据情况调用预案,同时通过责任人信息管理、抢险队伍等,调派相关责任人按照预案调度防汛物资进行抢险。 (一)综合数据库 综合数据库是系统的信息支撑层,存储和管理各应用子系统所需

的公共数据,为应用系统提供信息支持服务。 ?数据采集平台建设 数据汇集平台主要完成实时数据的自动汇集,系统通过对各种数据进行分析,按照不同数据来源设计相应的汇集录入工作流程,最大程度的实现数据汇总录入的自动化,减少数据入库的工作量。 ?数据接口开发 数据接口开发主要实现与市级山洪系统、区山洪系统等平台数据对接。 (二)应用支撑平台GIS平台 系统将设计和开发统一的GIS系统,本期GIS平台以电子地图,将业务与GIS技术相结合,实现对空间与属性数据管理。 ?平台概述 地理信息系统能够为环境治理工作提供空间信息支持。地理信息系统建设包括地理信息系统平台的选择、地理数据收集与处理和地理信息系统应用开发等。 ?平台功能 系统将设计和开发统一的GIS系统,能提供支持谷歌地图和Bing 地图,支持显示高分辨率的数字地图,并提供灵活的业务应用配置功能,并对外提供丰富的应用接口供业务系统调用,包括: 1)平台具备漫游,缩放,图元点的选取,图元矩形、圆形、多边 形选择,距离测量,面积测量,鹰眼图,属性数据查找图元, 圆饼图/直方图专题图显示,比例尺显示和图例显示等通用的

山洪灾害防御预案编制大纲

山洪灾害防御预案编制大纲 目录 1 总则 1.1 编制目的 山洪灾害是指山丘区由于降雨引发的山洪,泥石流,滑坡等对人民生命,财产造成损失的灾害.为规范和指导县,乡(镇)编制山洪灾害防御预案,以有效防御山洪灾害,最大限度地减少人员伤亡和财产损失,避免群死群伤事件的发生,特制定本大纲. 1.2 编制依据 1.2.1 《中华人民共和国防洪法》,《中华人民共和国水土保持法》,《地质灾害防治条例》,《中华人民共和国气象法》等国家颁布的有关法律,法规,各级地方人民政府颁布的有关地方性法规,条例及规定; 1.2.2 经过批准的国家,省,市,县山洪灾害防治规划报告和地质灾害防治规划报告等; 1.2.3 有关规程,规范和技术标准. 1.3 编制原则 1.3.1 坚持科学发展观,体现以人为本,以保障人民群众生命安全为首要目标;

1.3.2 贯彻安全第一,常备不懈,以防为主,防,抢,救相结合; 1.3.3 落实行政首长负责制,分级管理责任制,分部门责任制,技术人员责任制和岗位责任制; 1.3.4 因地制宜,具有实用性和可操作性. 1.4 适用范围 本大纲适用于有山洪灾害防治任务的县级,乡(镇)级行政区山洪灾害防御预案的编制. 1.5 预案编制 1.5.1 县级山洪灾害防御预案的编制内容包括:调查了解县域自然和经济社会基本情况,山洪灾害类型,历史山洪灾害损失情况,分析山洪灾害的成因及特点;确定县级山洪灾害防御部门职责及责任人员;明确区域内有山洪灾害防治任务的乡(镇)及山洪灾害防御措施;建立监测通信和预警系统,确定预警程序和方式,根据预报及时发布山洪灾害预警信息;规定转移安置要求,拟定抢险救灾,灾后重建等各项措施,安排日常的宣传,演练等工作. 1.5.2 乡(镇)山洪灾害防御预案的编制内容包括:调查了解区域内的自然和经济社会基本情况,历年山洪灾害的类型及损失情况,分析山洪灾害的成因及特点,在调查研究的基础上划分危险区和安全区;确定乡(镇),村级防御组织机构人员及职责;充分利用已有的监测及通信设施,设备,制定实时监测及通信预警方案,确定预警程序及方式,根据预报及时发布山洪灾

山洪灾害预警指标检验复核技术报告编制大纲

附件2 山洪灾害预警指标检验复核技术报告 编制大纲 四川省水文水资源勘测局

封面格式 ××市××县山洪灾害预警指标检验复核 报告 (编制单位) 年月

1 项目概况 1.1 基本情况 结合山洪灾害调查评价成果,描述县域基本情况,包括县域地理位置、河流水系、水文气象、地质地貌、社会经济、暴雨洪水特征以及危险区分布、山洪灾害成因和特点、历史山洪灾害等情况。 1.2 山洪灾害防治情况 概述山洪灾害防治项目前期建设情况,包括前期项目主要内容及存在的问题,从防汛的角度说明开展山洪灾害预警指标检验复核工作的重要性、必要性和紧迫性。 2. 建设目标与任务 2.1 目标和任务 简要介绍本县(区)山洪灾害预警指标检验复核工作建设目标和项目建设具体任务。 2.2编制依据 《四川省山洪灾害调查评价技术要求(2014)》 《山洪灾害分析评价技术要求》(2014) 《山洪灾害分析评价方法指南》(2015) 《水工建筑物与堰槽测流规范》(SL 537-2011) 《水文调查规范》(SL 196-2015)

《水文测流规范》(SL 58-2014) 《水利水电工程设计洪水技术规范》(SL 44-2006) 其他行业规范和相关要求。 3 资料收集与整理 主要介绍山洪灾害预警指标检验复核工程量、内业资料收集情况、外业复核工作准备、组织与分工、主要实施流程、调查复核内容、技术路线及资料成果等情况。 3.1 检验复核工程量及对象确定 简要介绍本县检验复核工程量下达情况。 结合近期发生的山洪灾害事件、站点布设和资料情况及山洪灾害调查评价成果等资料,说明确定检验复核对象的依据。 3.2 基础资料收集整理 介绍检验复核对象所在流域的基本情况。包括面积、河长、比降、植被覆盖、土地利用资料。 介绍检验复核对象所在流域近期发生的场次洪水及历史洪水的降雨过程和流量资料过程资料的收集情况。 介绍在前期调查评价成果中提取复核对象所在小流域的设计暴雨洪水计算方法及相应参数,提取复核对象的成灾水位、纵横断面信息(纵横断面图、照片、经纬坐标)、河道糙率、比降、预警指标等信息的情况。 3.3现场复核

山洪灾害监测预警系统

水雨情监测系统主要包括水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。山洪灾害预警系统由基于平台的山洪灾害防御预警系统和山洪灾害群测群防预警系统组成。 群测群防的组织体系主要包括建立县、乡(镇)、村、组、户五级山洪灾害防御责任制体系,明确县、乡(镇)、村、组防御山洪灾害的组织机构、人员设置、职责等。宣传培训包括防灾知识的普及,防灾准备,监测、警报设施的维护和操作,预案的宣传、演练等。 系统组成 由前端数据采集设备、供电设备、传输设备和监控中心组成,前端安装在水库或水电站的数据采集主机将采集到的视频图像、水位、降雨量、水温、气压等数据通过GPRS或3G 等无线方式传输到监控中心,监控中心软件可以显示并分析前端设备采集的数据,当出现警情时会发出预警信息,提醒相关指挥人员做好抢险救灾工作准备。

系统功能 1、高精度的雨量、水位、温度、湿度探测器,能够准确反映所监测区域的数据变化情况。 2、高清晰的视频监控系统能够实时监控山洪灾害发生发展情况和人员转移避险行动情况,并可根据通信网络实际情况采用定时拍照上传图片和实时动态视频传输等方式。 3、采用GPRS、3G等先进的无线传输方式,可以不受空间和地域的限制,减少布线所带来的巨大工作量,保证传输的稳定、可靠、及时。 4、灵活的供电方式。既可以选择高性能锂电池+太阳能供电方式,也可以根据各地区环境的不同,灵活的选择风光互补供电方式来保证设备的持续工作。

5、功能强大、人性化的监控软件界面,具有实时信息加工处理、灾害模拟分析、灾害风险评估、实时发布和数据库等暴雨洪水分析功能,提高预警信息发布质量和时效性。 6、可根据需要配备移动巡查设备,在山洪灾害发生时,防汛人员携带移动巡查设备到达现场,能及时掌握实时雨水情和区域汛情,并实时采集现场图像和相关数据资料,上传到防汛指挥部门,为应急指挥提供支撑。 钛能科技股份有限公司·智能电网与新能源事业部专心致力于电力自动化和电能质量两大产品的设计、开发、生产以及系统运行维护。事业部以优质的产品、丰富的集成和服务经验为发电厂、变电站综合自动化系统、光伏电站等新能源发电电气自动化系统、高压电气设备温度保护系统和电能质量监测与治理系统提供一体化的解决方案。欢迎您前来咨询!

山洪灾害监测预警系统建设技术要求(初稿)

全国山洪灾害防治试点监测预警系统建设技术要求 (初稿) 全国山洪灾害防治试点工作组

2011年5月

目 录 1 系统的总体构架 2 监测系统 2.1 监测信息的流程要求 2.2 站点布设的技术要求 2.2.1 站点布设原则 2.3 监测站点管理 2.4 监测设备技术要求 3 县级监测预警平台 3.1 平台硬件设备的配置要求 3.2 平台软件的配置要求 3.2.1 平台应用软件功能要求 3.2.2 平台应用软件的技术指标要求 3.2.3 平台系统软件配置要求 4 预警系统 4.1 预警方式要求 4.2 主要预警设备技术要求 4.2.1 传真群发 4.2.2 广播预警系统 4.2.3 短信平台 4.2.4 第三方平台 5 群测群防体系 5.1 责任制内容要求 5.2 预案内容要求 5.3 宣传培训演练方式和内容要求 5.3.1 宣传 5.3.2 培训

5.3.3 演练

全国山洪灾害防治试点监测预警系统建设技术要 求 1 系统的总体构架 山洪灾害监测预警系统包括水雨情监测系统、县级监测预警平台、预警系统三大部分。为更好地发挥系统的防灾减灾作用,还需建立群测群防组织体系,包括责任制落实、预案编制、宣传培训演练等。 2 监测系统 2.1 监测信息的流程要求 自动监测站通过配置的数据传输信道(可因地制宜地选用GPRS/GSM 短信、程控电话网(PSTN)、超短波(UHF/VHF)、卫星等信道)自动发送雨水情信息到县级监测预警平台,有条件可同时发送到省水情中心或市水情分中心,实现省市县信息同步共享。 人工监测站信息以电话语音方式及时报送到县级监测预警平台。 简易监测站信息由观测人员通过可能的方式及时报告县、乡(镇)防灾负责人。 2.2 站点布设的技术要求 监测站网主要布设在流域面积为200km2以下易遭受山洪灾害的中小流域。通过山洪灾害易发程度降雨分区和区域历史洪水、社会经济调查,在充分利用现有监测站点的基础上,布设监测站网。 2.2.1 站点布设原则 (一)雨量站布设原则 (1)分区控制原则:依据山洪灾害易发程度降雨分区,原则上按照20~100km2/站的密度布设自动或人工雨量监测站;在高易发降雨区、人口密度较大的山洪灾害频发区适当加密站点。 (2)流域控制原则:布设监测站点时优先考虑山区的中小流域,站点应尽量安装在流域中心等有代表性的、且有人看管的地段,要注意

相关文档
最新文档