关于Shafer-Fink不等式和Carlson不等式

关于Shafer-Fink不等式和Carlson不等式
关于Shafer-Fink不等式和Carlson不等式

万方数据

万方数据

万方数据

均值不等式测试题(含详解)

均值不等式测试题 一、选择题 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .11 2+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.2 10 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )(b a 1 1+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x + x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2- x 4 -x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 4 2-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________.

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

第10课--绝对值不等式(经典例题练习、附答案)word版本

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+ ②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式; ◇知识梳理 1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >??= =?? 时, |()|f x a >?____________; |()|f x a -

例2. 解不等式125x x -++> 变式1:12x x a -++<有解,求a 的取值范围 变式2:212x x a -++<有解,求a 的取值范围 变式3:12x x a -++>恒成立,求a 的取值范围 ◇能力提升 1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。 5.(2008佛山二模)关于x 的不等式2121x x a a -+-≤++的解集为空集,则实数a 的取值范围是 ____. 6. 若关于x 的不等式a x x ≥-++12的解集为R ,则实数a 的取值范围是_____________.

均值不等式含答案

课时作业15均值不等式 时间:45分钟满分:100分 课堂训练 5 3 1.已知-+-=l(.r>0,)>0),则小的最小值是( ) A V 【答案】 当且仅当3x=5y时取等号. 4 2?函数f(x)=x+~+3在(一8,一2]上( ) x A.无最大值,有最小值7 B.无最大值,有最小值一1 C.有最大值7,有最小值一1 D.有最大值一1,无最小值 【答案】D 4 【解析】Vx^-2, :.f(x)=x+~+3 ?V = __(r)+(—羽+3W_2 寸(-弓+3 4 =—1,当且仅当一x=—即x=—2时,取等号,

有最大值一1,无最小值.

1 4 3?己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ . 【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理. 【解析】因为x>—1, 所以x+ l>0. “ r ?+7x+10 (X +1)2+5(X +1)+4 所以尸x+1 = 吊 4 / f+D+吊+5N2 屮 +1)?苗+5=9 4 当且仅当x+l= 勒,即X=1时,等号成立. mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数? 课后作业 一、选择题(每小题5分,共40分)???当x=\时, 工+7x+l° 灯仆-1 — $ 函数〉'一 丫+1 (x>—1),取侍取:小值为9. 【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) — 【解析】 斤胃字E+芥沁+树+2胡畔 4. 求函数y= 以+7卄10 ~x+1 (Q-1)的最小值. mx+n

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

绝对值不等式讲义

解绝对值不等式 1、解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值 3、解不等式(1)|x-x 2-2|>x 2-3x-4;(2) 234 x x -≤1 变形二 含两个绝对值的不等式 4、解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5. [思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|?f 2(x)〈g 2(x)两边平方去掉绝对值符号。(2)题可采用零点分段法去绝对值求解。 5、 解关于x 的不等式|log (1)||log (1)|a a x x ->+(a >0且a ≠1) 6.不等式|x+3|-|2x-1|<2 x +1的解集为 。 7.求不等式13 31log log 13x x +≥-的解集.

变形三 解含参绝对值不等式 8、解关于x 的不等式 34422+>+-m m mx x [思路]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大。若化简成3|2|+>-m m x ,则解题过程更简单。在解题过程中需根据绝对值定义对3m +的正负进行讨论。 2)形如|()f x |a (a R ∈)型不等式 此类不等式的简捷解法是等价命题法,即: ① 当a >0时,|()f x |a ?()f x >a 或()f x <-a ; ② 当a =0时,|()f x |a ?()f x ≠0 ③ 当a <0时,|()f x |a ?()f x 有意义。 9.解关于x 的不等式:()0922>≤-a a a x x 10.关于x 的不等式|kx -1|≤5的解集为{x |-3≤x ≤2},求k 的值。 变形4 含参绝对值不等式有解、解集为空与恒成立问题 11、若不等式|x -4|+|3-x |;()f x a <解集为空集()m i n a f x ?≤;这两者互补。()f x a <恒成立 ()m a x a f x ?>。 ()f x a ≥有解()m a x a f x ?≤;()f x a ≥解集为空集()max a f x ?>;这两者互补。()f x a ≥恒成立 ()min a f x ?≤。

均值不等式 含答案(训练习题)

课时作业15 均值不等式 时间:45分钟 满分:100分 课堂训练 1.已知5x +3 y =1(x >0,y >0),则xy 的最小值是( ) A .15 B .6 C .60 D .1 【答案】 C 【解析】 ∵5x +3 y =1≥215xy , ∴xy ≥60, 当且仅当3x =5y 时取等号. 2.函数f (x )=x +4 x +3在(-∞,-2]上( ) A .无最大值,有最小值7 B .无最大值,有最小值-1 C .有最大值7,有最小值-1 D .有最大值-1,无最小值 【答案】 D 【解析】 ∵x ≤-2,∴f (x )=x +4 x +3 =-???? ??(-x )+? ????-4x +3≤-2(-x )? ?? ?? -4x +3 =-1,当且仅当-x =-4 x ,即x =-2时,取等号, ∴f (x )有最大值-1,无最小值.

3.已知两个正实数x ,y 满足x +y =4,则使不等式1x +4 y ≥m 恒成立的实数m 的取值范围是____________. 【答案】 ? ? ? ??-∞,94 【解析】 1x +4y =? ????x +y 4? ????1x +4y =54+y 4x +x y ≥5 4+214=94. 4.求函数y =x 2+7x +10 x +1 (x >-1)的最小值. 【分析】 对于本题中的函数,可把x +1看成一个整体,然后将函数用x +1来表示,这样转化一下表达形式,可以暴露其内在的形式特点,从而能用均值定理来处理. 【解析】 因为x >-1, 所以x +1>0. 所以y =x 2+7x +10x +1=(x +1)2+5(x +1)+4 x +1 =(x +1)+ 4 x +1 +5≥2(x +1)·4 x +1 +5=9 当且仅当x +1=4 x +1 ,即x =1时,等号成立. ∴当x =1时,函数y =x 2+7x +10 x +1(x >-1),取得最小值为9. 【规律方法】 形如f (x )=ax 2+bx +c mx +n (m ≠0,a ≠0)或者g (x )= mx +n ax 2+bx +c (m ≠0,a ≠0)的函数,可以把mx +n 看成一个整体,设 mx +n =t ,那么f (x )与g (x )都可以转化为关于t 的函数. 课后作业

解绝对值不等式的方法总结

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即2 2 551(1)551 (2) x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程 2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2 226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x

均值不等式常见题型整理

均值不等式 一、 基本知识梳理 1.算术平均值:如果a ﹑b ∈R +,那么 叫做这两个正数的算术平均值. 2.几何平均值:如果a ﹑b ∈R +,那么 叫做这两个正数的几何平均值 3.重要不等式:如果a ﹑b ∈R ,那么a 2+b 2≥ (当且仅当a=b 时,取“=”) 均值定理:如果a ﹑b ∈R +,那么 2 a b +≥ (当且仅当a=b 时,取“=”) 均值定理可叙述为: 4.变式变形: ()()() ()()() 22 2 2 1;2 2; 230;425a b ab a b b a ab a b a b +≤ +??≤ ??? +≥>+?? ≤ ??? ≤; 5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则可求其积的最大值;积为定值,则可求其和的最小值。 注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值; (3)各项或各因式都能取得相等的值。 6.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。 有时为了达到利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑分离常数等变形手段,创设一个应用均值不等式的情景。

二、 常见题型: 1、分式函数求最值,如果)(x f y =可表示为B x g A x mg y ++ =) ()(的形式,且)(x g 在定义域内恒正或恒负,,0,0>>m A 则可运用均值不等式来求最值。 例:求函数)01(11 2>->+++= a x x x ax y 且的最小值。 解:1 )1(11112++-+=++-+=+++=x a a ax x x ax ax x x ax y 1212211 )1(=-+≥-+++ +=a a a x a x a 当1 )1(+= +x a x a 即x=0时等号成立,1min =∴y 2、题在给出和为定值,求和的最值时,一般情况都要对所求式子进行变形,用已知条件进行代换,变形之后再利用均值不等式进行求最值。 例:已知19 1,0,0=+>>b a b a 且 ,求b a +的最小值。 解法一:169210991=+≥+++=+b a a b b a 思路二:由19 1=+b a 变形可得,9,1,9)9)(1(>>∴=-- b a b a 然后将b a +变形。 解法二:16109210)9)(1(210)9()1(=+=+--≥+-+-=+b a b a b a 可以验证:两种解法的等号成立的条件均为12,4==b a 。 此类题型可扩展为: 设321a a a 、、均为正数,且m a a a =++321,求3 21111a a a S ++= 的最小值。 )111)((13 21321a a a a a a m S ++++= )]()()(3[1 3 22331132112a a a a a a a a a a a a m ++++++= m m 9 )2223(1=+++≥ ,等号成立的条件是321a a a ==。

均值不等式练习题及答案解析

均值不等式练习题及答案解析 一.均值不等式 1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab 2. 若a,b?R*,则 a?b2 ? * ? a?b2 22 a?b时取“=”) ab 若a,b?R,则a?b?2 2 ab a?b?若a,b?R,则ab??) ?? ? 2 a?b2 注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”

均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域 y=3x解:y=3x+ 11 y=x+xx 1 3x =∴值域为[,+∞) 2x 1 x· =2; x 1 x· =-2 x 1 ≥22x1 当x>0时,y=x+≥x 11 当x<0时, y=x+= -≤-2 xx ∴值域为 解题技巧:技巧一:凑项例1:已知x?

54 ,求函数y ?4x?2? 14x?5 的最大值。 1 解:因4x?5?0,所以首先要“调整”符号,又?x? 54 ,?5?4x?0,?y?4x?2? 1 4x?5 不是常数,所以对4x?2要进行拆、凑项, ???2?3?1 ??3? 1? ???5?4x? 4x?55?4x? 当且仅当5?4x? 15?4x ,即x?1时,上式等号成立,故当x?1时,ymax?1。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

例1. 当时,求y?x的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2x??8为定值,故只需将y?x凑上一个系数即可。 当 ,即x=2时取等号当x=2时,y?x的最大值为8。 32 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。变式:设0?x? ,求函数y?4x的最大值。 3 2 2x?3?2x?9 解:∵0?x?∴3?2x?0∴y?4x?2?2x?2???? 222?? 当且仅当2x?3?2x,即x? 3 ?3? ??0,?时等号成立。?2? 技巧三:分离 例3. 求y?

均值不等式 含答案之欧阳光明创编

课时作业15 均值不等式 欧阳光明(2021.03.07) 时间:45分钟 满分:100分 课堂训练 1.已知5x +3 y =1(x >0,y >0),则xy 的最小值是( ) A .15 B .6 C .60 D .1 【答案】C 【解析】∵5x +3 y =1≥215xy , ∴xy ≥60, 当且仅当3x =5y 时取等号. 2.函数f (x )=x +4 x +3在(-∞,-2]上( ) A .无最大值,有最小值7 B .无最大值,有最小值-1 C .有最大值7,有最小值-1 D .有最大值-1,无最小值 【答案】D 【解析】∵x ≤-2,∴f (x )=x +4 x +3 =-? ? ?? ?? -x +? ????-4x +3≤-2-x ? ?? ?? -4x +3

=-1,当且仅当-x =-4 x ,即x =-2时,取等号, ∴f (x )有最大值-1,无最小值. 3.已知两个正实数x ,y 满足x +y =4,则使不等式1x +4 y ≥m 恒成立的实数m 的取值范围是____________. 【答案】? ?? ?? -∞,94 【解析】1x +4y =? ????x +y 4? ????1x +4y =54+y 4x +x y ≥5 4+214=94. 4.求函数y =x2+7x +10 x +1 (x >-1)的最小值. 【分析】 对于本题中的函数,可把x +1看成一个整体,然后将函数用x +1来表示,这样转化一下表达形式,可以暴露其内在的形式特点,从而能用均值定理来处理. 【解析】因为x >-1, 所以x +1>0. 所以y =x2+7x +10 x +1= x +1 2 +5x +1+4 x +1 =(x +1)+4 x +1 +5≥2 x +1 ·4 x +1 +5=9 当且仅当x +1=4 x +1 ,即x =1时,等号成立. ∴当x =1时,函数y =x2+7x +10 x +1(x >-1),取得最小值为9. 【规律方法】 形如f (x )=ax2+bx +c mx +n (m ≠0,a ≠0)或者g (x )= mx +n ax2+bx +c (m ≠0,a ≠0)的函数,可以把mx +n 看成一个整体,设

高中绝对值不等式-(精华版)-适合高三复习用--可直接打印

高中绝对值不等式-(精华版)-适合高三复 习用--可直接打印 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

绝对值不等式 绝对值不等式||||||a b a b +≤+,||||||a b a b -≤+ 基本的绝对值不等式:||a|-|b||≤|a ±b|≤|a|+|b| ======================= y=|x-3|+|x+2|≥|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 所以函数的最小值是5,没有最大值 ======================= |y|=||x-3|-|x+2||≤|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 由|y|≤5得-5≤y ≤5 即函数的最小值是-5,最大值是5 ======================= 也可以从几何意义上理解,|x-3|+|x+2|表示x 到3,-2这两点的距离之和,显然当-2≤x ≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x 到3,-2这两点的距离之差,当x ≤-2时,取最小值-5,当x ≥3时,取最大值5 [变题1]解下列不等式:(1)|x +1|>2- x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于 x +1>2-x 或x +1<-(2-x ) 解得x > 12 或无解,所以原不等式的解集是{ x |x >12 } (2)原不等式等价于-3 x <2x -2x -6<3x 即 222 226360 (3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--

均值不等式高考一轮复习(教师总结含历年高考真题)

1 / 8 基础篇 一、单变量部分 1、 求)0(1 >+ =x x x y 最小值及对应的x 值答案当x=1最小值2 2、 2、(添负号)求)0(1 <+=x x x y 最大值-2 3、(添系数)求)31,0()31(∈-=x x x y 最大值12 1 4、(添项)求)2(2 4 >-+=x x x y 最小值6 5、(添根号)02>≥x 求24x x y -=最大值2 6、(取倒数或除分子)求)0(1 2 >+= x x x y 最大值21 7、(换元法)求)1(132>-+= x x x x y 最大值-9 8、(换元法)求)2(522->++=x x x y 最大值4 2 二、多变量部分 1、(凑系数或消元法)已知 041>>a ,b>0且4a+b=1求ab 最大值16 1 2、(乘“1”法或拆“1”法)已知x>0,y>0,x+y=1求 y x 9 4+最小值25 3、(放缩法)已知正数a ,b 满足ab=a+b+3则求ab 范围),9[+∞ 三、均值+解不等式 1. 若正数a,b 满足ab=a+2b+6则ab 的取值范围是 ______),18[+∞_________ 2、已知x>0,y>0, x+2y+2xy=8则x+2y 的最小值__________4__________ 练习 1. 已知x>0,y>0,且 18 2=+y x 则xy 的最小值_______64_______ 2. )0(13 2 4>++=k k k y 最小值_________2_________ 3. 设0≥a ,0≥b ,12 2 2 =+b a ,则21b a +的最大值为_________ 4 2 3_________

004分式不等式及简单的绝对值不等式的解法

高三数学 序号004 高三 年级 班 教师 方雄飞 学生 分式不等式及简单的绝对值不等式的解法 学习目标 1、知识与技能:会求简单的分式不等式、简单的含绝对值不等式以及简单的高次不等式。 2、过程与方法: 通过知识点与实例巩固复习,体会数形结合及转化的思想在解题中的应用 3、情感态度与价值观:培养认真参与、积极交流的主体意识和乐于思考、踏实肯学的精神。 学习重点:绝对不等式与分式不等式的方法与步骤; 难点:注意数形结合和等价转化的思想在解题中的应用 教学过程 一、知识归纳 1、分式不等式的解法 思路是:“分式不等式??→?转化整式不等式”; 主要方法有:分类讨论、转化为整式 即: ?>0)()(x g x f ?≥0)() (x g x f 同理: ?<0)()(x g x f ?≤0) () (x g x f 2、简单的含绝对值不等式 思路是:“去掉绝对值符号”; 方法:平方法、定义法(讨论法)、几何意义法(等价变形) 即:a x a x a a x -<>?>>或)0(; a x a a a x <<-?><)0( 推广:?>≠>-)0,0(c a c b ax c b ax c b ax -<->-或 ?>≠<-)0,0(c a c b ax 3、简单的高次不等式的解法:标根法 思路:(1)、把不等式变形为一边是一次因式的积,另一边是0的形式; (2)、各因式中x 的系数全部变为1,约去偶次因式; (3)、把各个根从小到大依次排好标出,从右上方向左下方“穿针引线”; (4)、严格检查因式的根(特别是约去的偶次因式的根)是否在解集内; 二、例题讲解 题型1 分式不等式的解法 例1、解不等式:(1)、1213≥--x x (2)、05 46 52 2>--++x x x x ; 方法点拨1:解分式不等式的步骤:(1)先化为标准型,即 )0(0) () (<>或x g x f ; (2)转化为整式不等式; (3)解不等式时应注意“系数符号、不等号的方向以及考虑分母不为零” 练习1、解不等式:(1)、021≤-x (2)、021 2>--x x (3)21≤+x x (4)、22 06 x x x x +<+- 题型2 绝对值不等式的解法 例2、解不等式:(1)392≥-x ; (2)125x x -++< 练习2、解不等式:(1)、12≤+x (2)、311<+

(完整版)均值不等式专题20道-带答案

均值不等式专题3 学校:___________姓名:___________班级:___________考号:___________ 一、填空题 1.若则的最小值是__________. 2.若,且则的最大值为______________. 3.已知,且,则的最小值为______. 4.已知正数满足,则的最小值是_______. 5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______. 6.设正实数满足,则的最小值为________ 7.已知,且,则的最小值是________ 8.已知正实数x,y满足,则的最小值是______ 9.已知,函数的值域为,则的最小值为________. 10.已知,,且,则的最小值为__________. 11.若正数x,y满足,则的最小值是______. 12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______. 14.若,则的最小值为________. 15.已知a,b都是正数,满足,则的最小值为______. 16.已知,且,则的最小值为______. 17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____. 19.已知正实数,满足,则的最大值为______.

20.已知,,则的最小值为____.

参考答案 1. 【解析】 【分析】 根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】 则,即 由题意知,则, 则 当且仅当,即时取等号 本题正确结果: 【点睛】 本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式. 2. 【解析】 【分析】 先平方,再消元,最后利用基本不等式求最值. 【详解】 当时,,,所以最大值为1, 当时,因为,当且仅当时取等号,所以,即最大值为, 综上的最大值为

均值不等式测试题

3.2 均值不等式 测试题 一.选择题: 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .1 12+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D. 210 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )( b a 11+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D. b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x +x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2-x 4-x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 42-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________. 三.解答题:

基本不等式和均值不等式

均值不等式专项复习 例1.已知1 03 x <<求函数()13y x x =-的最大值. 例2.已知54x <,求11454y x x =-+-的最小值. 例3.求函数()28 11 x y x x +=>-的最小值. 变式:求()()2lg 2lg 3x x ---的最小值. 变式:已知2x >,求函数2 22816 24 x x y x x -+= -+的值域. 变式:设02 x π <<,求2 sin sin y x x =+ 的值域. 变式:求函数422 33 1 x x y x ++=+的最小值. 变式:求函数2y = 的最小值. 变式:已知,a b R +∈,且280a b ab +-=,求a b +的取值范围.

综合应用: 1.已知()y f x =是偶函数,当0x >时,()4 f x x x =+ ,且当[3,1]x ∈--时()n f x m ≤≤恒成立,则m-n 的最小值为_____. 2.若直线():100,0l a x b y a b ++=>>始终平分圆 22:8210M x y x y ++++=的周长,则求14 a b +的最小值. 3.设,x y 满足约束条件360, 20,0,0,x y x y x y --≤?? -+≥??≥≥? 若目标函数 ()0,0z a x b y a b =+> >的最大值为12,则求23 a b +的最小值 4.变式:函数),2[)2(log 2 2+∞+-=在ax x y 上恒为正,则实数a 的取值范围是_______________________. 5.已知函数()() 22ln f x x x x =++图象上各点处切线斜率为k ,则求斜率的最小值. 6.在ABC ?中,角A,B,C 的对边分别为a,b,c 面积 ()222 14 S b c a = +-若10a =,则求bc 的最大值。 7.设,且 ,则 8.设实数,x y 满足约束条件20 25020 x y x y y --≤?? +-≥??-≤? ,则22 xy u x y =+的取值范围是_______________. 9.已知数列满足113,4n n a a a n +==+则的最小值为__________. 10.若1a >,设函数()4x f x a x = +-的零点为m , ()log 4a g x x x =+-的零点为n ,则求 11 m n +的取值范围 25a b m ==11 2a b +=m ={}n a n a n

绝对值不等式的解法

2.3 其他不等式的解法(二) 上海教育出版社《数学》高一上册第二章2.3(2) 一、 教学目标 (一) 知识目标 (1) 掌握简单的含绝对值不等式常见的两种解法; (2) 进一步领悟“转化”的思想,掌握“转化“的方法及其依据。 (二) 能力目标 (1) 培养学生陌生问题转化为等价熟悉问题的能力; (2) 培养学生类比的能力; (三) 德育目标 (1) 培养学生转化问题的能力,从简单到复杂。 二、 教学的重难点及教学设计 (一) 教学重点 掌握含绝对值的不等式的解法。 (二) 教学难点 利用绝对值的意义,解含绝对值的不等式。 (三) 教学设计要点 1、 情境设计 (1) 通过简单复习绝对值的意义,引入含绝对值的不等式的解法,引入新课; 2、 教学方法 启发式讲授和学生合作探究相结合。 三、 教具准备 文字的ppt ,黑板,白色、彩色粉笔,幻灯片等。 四、 教学过程 (一) 引入新课——含绝对值不等式的解法 1. 复习: 在初中,我们已经知道x 的绝对表示的实数x 在数轴上所对应的点到原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值为0. 即: ||0x x x x x x ??=???,(当>0时) ,(当=0时)-,(当<0时) 2. 引出新课: (1)、 求不等式||x a a <(>0)的解集就是求数轴上到原点的距离小于a 的点所对应的 实数 x 的集合。

(2)、 用数轴作为图示说明,不等式||x a a <(>0) 等价于a x a -<<,解集为(),a a -,; (3)类似的,可以得到(请学生回答): ()() [] [][]||(0),||(0),||(0),,x a a a a x a a a a x a a a a >>-∞-+∞≤>-≥>-∞-+∞ 的解集为,的解集为的解集为 3、 例题分析 (1) 例1:解不等式:|23|5x -<. 解法说明:由绝对值的意义和不等式的基本性质 (2) 例2:解不等式:2 |3|4x x -≥.(请一个学生在黑板上做) 总结:由例1和例2知解含绝对值不等式时,应先根据绝对值的意义,将它转化为不含有绝对值的不等式,再求解. (3) 例3:解不等式:23| |12x x -≥+. 两种解法:(1)先去绝对值,再解分式不等式 (2) 先化成整式不等式,再去绝对值,注意等价 (4) 例4:解不等式:|2||1| 5.x x ++-> 方法:要去绝对值,因而分类讨论 (5) 例5:若|1||2|x x a ++->的解集为R,求a 的取值范围。 五、 小结 解绝对值不等式的方法: 去绝对值,注意要等价变形

相关文档
最新文档