第8讲 高考中常用数学的方法(配方法、待定系数法、换元法)

第8讲 高考中常用数学的方法(配方法、待定系数法、换元法)
第8讲 高考中常用数学的方法(配方法、待定系数法、换元法)

高考中常用数学的方法 ------配方法、待定系数法、换元法

一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法.

配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决.

待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数.

换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化.

二、例题解析

例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ).

(A )32

(B )14

(C )5

(D )6

分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得:

2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式

222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25 ∴ 5222=++z y x ,应选C .

例2.设F 1和F 2为双曲线14

22

=-y x 的两个焦点,点P 在双曲线上且满足∠

F 1PF 2=90°,则ΔF 1PF 2的面积是( ).

(A )1

(B )

2

5 (C )2 (D )5

分析及解:欲求||||2

1

2121PF PF S F PF ?=

? (1),而由已知能得到什么呢?

由∠F 1PF 2=90°,得20||||2221=+PF PF

(2),

又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即

16||||2||||||||||212221221=?-+=-PF PF PF PF PF PF ,

242

1

)16|||(|21||||222121=?=-+=

?PF PF PF PF ∴

1||||2

1

2121=?=

?PF PF S F PF ,∴ 选(A ). 注:配方法实现了“平方和”与“和的平方”的相互转化.

例3.设双曲线的中心是坐标原点,准线平行于x 轴,离心率为2

5

,已知点P (0,5)到该双曲线上的点的最近距离是2,求双曲线方程.

分析及解:由题意可设双曲线方程为12222=-b

x a y ,∵25

=e ,∴a =2b ,因此所求双

曲线方程可写成:2224a x y =- (1),故只需求出a 可求解.

设双曲线上点Q 的坐标为(x ,y ),则|PQ |=22)5(-+y x (2),∵点Q (x ,y )在双曲线上,∴(x ,y )满足(1)式,代入(2)得|PQ |=

222)5(4

4-+-y a y (3),此时|PQ |2

表示为变量y 的二次函数,利用配方法求出其最小值即可求解.

由(3)式有4

5)4(45||22

2

a y PQ -+-=(y ≥a 或y ≤-a ).

二次曲线的对称轴为y =4,而函数的定义域y ≥a 或y ≤-a ,因此,需对a ≤4与a >4

分类讨论.

(1)当a ≤4时,如图(1)可知函数在y =4处取得最小值,

∴令44

52

=-a ,得a 2=4 ∴所求双曲线方程为14

22

=-x y . (2)当a >4时,如图(2)可知函数在y =a 处取得最小值,

∴令44

5)4(4522

=-

+-a a ,得a 2=49, ∴所求双曲线方程为

149

4492

2=-x y . 注:此题是利用待定系数法求解双曲线方程的,其中利用配方法求解二次函数的最值问题,由于二次函数的定义域与参数a 有关,因此需对字母a 的取值分类讨论,从而得

到两个解,同学们在解答数习题时应学会综合运用数学思想方法解题.

例4.设f (x )是一次函数,且其在定义域内是增函数,又124)]([11-=--x x f f ,试求f (x )的表达式.

分析及解:因为此函数的模式已知,故此题需用待定系数法求出函数表达式.

设一次函数y =f (x )=ax +b (a >0),可知 )(1

)(1b x a

x f -=-,

∴124)(1

1])(1[1)]([2211-=+-=--=--x b ab a

x a b b x a a x f f .

比较系数可知: ??????

?=+>=)

2(12)(1)

1()0(41

2

2b ab a a a

解此方程组,得 21=

a ,

b =2,∴所求f (x )=22

1

+x . 例5.如图,已知在矩形ABCD 中,C (4,4),点A 在曲线922=+y x (x >0,y >0)上移动,且AB ,BC 两边始终分别平行于x 轴,y 轴,求使矩形ABCD 的面积为最小时点A 的

坐标.

分析及解:设A (x ,y ),如图所示,则=ABCD S (4-x )(4-y ) (1)

此时S 表示为变量x ,y 的函数,如何将S 表示为一个变量x (或y )的函数呢?有的同学想到由已知得x 2+y 2=9,如何利用此条件?是从等式中解出x (或y ),再代入(1)式,因为表达式有开方,显然此方法不好.

如果我们将(1)式继续变形,会得到S =16-4(x +y )+xy (2) 这时我们可联想到x 2+y 2与x +y 、xy 间的关系,即(x +y )2=9+2xy .

因此,只需设

t =x +y ,则

xy =

2

92-t ,代入(2)式得

S =16-4t +2

7

)4(212922+-=-t t (3)S 表示为变量t 的二次函数, ∵0

2

7

. 此时??

?

??==+,27

,

4xy y x )222,222()222,222(-++-或的坐标为得A 注:换元前后新旧变量的取值范围是不同的,这样才能防止出现不必要的错误. 例6.设方程x 2+2kx +4=0的两实根为x 1,x 2,若21

2221)()(

x x

x x +≥3,求k 的取值范围.

解:∵2]2)([2)()()(2212

2121221212221--+=-+=+x x x x x x x x x x x x ≥3,

以k x x 221-=+,421=x x 代入整理得(k 2-2)2≥5,又∵Δ=4k 2-16≥0,

∴?????≥-≥-0

45|2|22

k k 解得k ∈(-52,+-∞)∪[52+,+∞]. 例7.点P (x ,y )在椭圆14

22=+y x 上移动时,求函数u =x 2+2xy +4y 2

+x +2y 的最大值. 解:∵点P (x ,y )在椭圆1422

=+y x 上移动, ∴可设???==θθsin cos 2y x 于是 y x y xy x u 24222++++=

=θθθθθθsin 2cos 2sin 4cos sin 4cos 422++++ =]1sin cos )sin [(cos 22++++θθθθ

令t =+θθsin cos , ∵)4

sin(2cos sin π

θθθ+=+,∴|t |≤2.

于是u =2

3

)21(2)1(222++=++t t t ,(|t |≤2).

当t =2,即1)4

sin(=+π

θ时,u 有最大值.

∴θ=2k π+4

π

(k ∈Z )时,226max +=u .

例8.过坐标原点的直线l 与椭圆

12

6)3(2

2=+-y x 相交于A ,B 两点,若以AB 为直径的圆恰好通过椭圆的左焦点F ,求直线l 的倾斜角.

解:设A (x 1,y 1),B (x 2,y 2)

直线l 的方程为y =kx ,将它代入椭圆方

程整理得 036)31(22=+-+x x k (*) 由韦达定理,221316k x x +=

+(1),2

2

1313

k x x +=(2) 又F (1,0)且AF ⊥BF ,∴1-=?BF AF k k , 即

11

12211-=-?-x y

x y , 将11kx y =,22kx y =代入上式整理得 1)1(21212-+=?+x x x x k

,

将(1)式,(2)式代入,解得 312=

k . 故直线l 的倾斜角为6

π或65π. 注:本题设交点坐标为参数,“设而不求”,以这些参数为桥梁建立斜率为k 的方程求解.

例9.设集合A ={R x a x x x ∈=+-+,024|1}

(1)若A 中有且只有一个元素,求实数a 的取值集合B ;

(2)当a ∈B 时,不等式x 2-5x -6

解:(1)令t =2x ,则t >0且方程0241=+-+a x x 化为t 2-2t +a =0 (*),A 中有且只有一个元素等价于方程(*)有且只有一个正根,再令f (t )=t 2-2t +a ,

则Δ=0 或???≤>?0)0(0f 即a =1或a ≤0,从而B =(-∞,0]∪{1}.

(2)当a =1时,113-

当a ≤0,令g (a )=a (x -4)-(x 2-5x -6),则当a ≤0时不等式 )4(652-<+-x a x x 恒成立,

即当a ≤0时,g (a )>0恒成立,故 x x g <-????≤->1040

)0(≤4.

综上讨论,x 的取值范围是(113-,4).

初三数学换元法专练

利用换元法解分式方程的四种常见类型 一、直接换元 例1 解方程015)1 (2)1(2=----x x x x . 解:设 y x x =-1 ,则原方程可化为01522=--y y . 解得 5,321=-=y y . 当3-=y 时,31 -=-x x ,解得 43=x ; 当5=y 时,51=-x x ,解得 45 =x . 经检验,4 5 ,4321==x x 是原方程的根. 二、配方换元 例2 解方程 1)1 (3)1(22 2 =+-+ x x x x . 解:原方程配方,得 05)1 (3)1(22=-+-+x x x x . 设,1y x x =+则05322 =--y y . 解得 25 ,121=-=y y . 当1-=y 时,,11-=+x x 即012 =++x x . 因为0311412 <-=??-=?, 所以方程012 =++x x 无实数根. 当25=y 时,,2 51=+x x 即02522 =+-x x . 解得 21 ,221==x x . 经检验,2 1 ,221==x x 是原方程的根. 三、倒数换元 例3 解方程 031 ) 1(21122=-+++++x x x x . 解:设 y x x =++1 12,则原方程可化为032 =-+y y .

去分母,整理,得0232 =+-y y ,解得 2,121==y y . 当1=y 时, 11 1 2=++x x ,即02=-x x . 解得 1,021==x x . 当2=y 时, 21 1 2=++x x ,即0122=--x x . 解得 21,2143-=+=x x . 经检验,,1,021==x x 21,2143-=+=x x 都是原方程的根. 四、变形换元 例4 解方程12 22 242 2 =+-+ -x x x x . 解:原方程可变形为052 22 )22(22 2 =-+-+ +-x x x x . 设y x x =+-222 ,则原方程可化为052 2=-+ y y . 去分母,整理,得02522 =+-y y . 解得 2 1,221= =y y . 当2=y 时,2222 =+-x x ,即022 =-x x . 解得 2 1,021==x x . 当21= y 时,2 1222 =+-x x ,即03242=+-x x . 因为044344)2(2 <-=??--=?, 所以方程03242 =+-x x 无实数根. 经检验,2 1 ,021= =x x 是原方程的根. 例1 解方程 分析 括号里的分式相同,由这个特点,知可用换元法来解。

浅谈新课改下的高中数学课堂教学

浅谈新课改下的高中数学课堂教学 发表时间:2012-10-19T09:59:17.937Z 来源:《少年智力开发报(数学专页)》2012-2013学年4期作者:郭青明[导读] 《新课程标准》指出:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。罗山高中郭青明《新课程标准》指出:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。课堂教学是学生在校期间学习科学文化知识的主阵地,也是对学生进行思想品德教育的主渠道。课堂学习是学生获得知识与技能的主要途径,因此,教学质量的好坏,主要取决于课堂教学质量的好坏。怎样才能较好地提高中学数学课堂教学质量?笔者根据多年的高中教学经验以及这两年新课改的体会认为:必须 激起学生的学习兴趣,优化课堂结构,改进教学方法,重视培养和提高数学思维。 一、创设多彩的教学情境,激发学生的学习兴趣 新课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。如何达到这个目标?心理学家认为,兴趣是人们力求认识某种事物或爱好某种活动的倾向,兴趣的功效之一就是能对正在进行的活动起推动作用,学生的学习兴趣和自觉性是构成学习动机的重要成分。所以在教学中我们要以学生已有的知识和生活经验作为数学教学的资源,设计学生感兴趣的丰富多彩的教学情境,使学生感受到数学并不是枯燥无味且没多大用处的,而是与生活的联系紧密。为此,可以与学生多交流,了解他们喜欢什么,对什么感兴趣。通过学生所了解、熟悉的社会实际问题(如环境问题、治理垃圾问题、旅游问题等),为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的学习热情。例如在讲循环结构时引进电脑病毒事件“熊猫病毒”,一开始就“引人入胜”,产生好奇心,并由此产生求知欲望与热情,对理解内容起到了良好的作用。 及时地进行表扬与鼓励,是提高学习兴趣的重要方法。课堂教学中,要对同学们的热情态度和取得的成绩给予正确的评价和适当的鼓励。如在讲完一个概念后,让学生复述,并回答概念的内涵和外延;讲完一个例题后,让学生归纳其解法,运用了哪些数学思想和方法。对于基础差的学生,可以对他们多提一些基础问题,让他们有较多的锻炼机会。同时,教师要鼓励学生大胆提问,耐心细致地回答学生提出的问题,并给予及时的肯定和表扬,增强学生提问的勇气和信心。当学生的作业做得很好时,当学生的解题方法新颖时,当学生的成绩有进步时,当学生表现出刻苦钻研精神时,都要给予适度的表扬,以增强学习信心,达到表扬一个人,激励一大片的目的。 二、优化课堂结构,提高课堂时间的利用率 数学课堂教学一般有复习、引入、传授、反馈、深化、小结、作业布置等过程,如何恰当地把各部分进行搭配与排列,设计合理的课堂教学层次,充分利用课堂时间,是上好一节数学课的最重要的因素。 设计课堂层次时,必须重视认知过程的完整性,要回归认识的最初,也就是要遵循人们认识事物的规律。由于人们认识事物的过程是一个渐进的过程,因此,要努力做到使教学层次的展开符合学生的认知规律,使教师的教与学生的学两方面的活动协调和谐。在组织课堂教学时,当同学初步获取教师所传授的知识后,应安排动脑动手独立思考与练习,教师及时捕捉反馈信息,并有意识地让它们产生“撞击”与“交流”,这样,同学们对某一概念的理解,对某一例题的推演,就会有一个由感性认识到理性认识,并由认识到实践的过程,从而对知识的领会加深,能力也得到发展。 设计课堂教学层次还必须注意紧扣教学目的与要求,充分熟悉教材,理解教材的重点、难点、基本要求与能力要求,从多方面围绕教学目的来组织课堂教学。严格控制教学内容,不增加难度,不降低要求,力求把教学目标落实到课堂教学的每一个环节上。当课堂容量较大时,要保证讲清重点,解决难点,其他的可以指明思路,找出关键,有的甚至可以点而不讲,但要指导学生自学完成;当课堂容量不大时,可以安排学生分析评论,并进一些深化练习,进行比较、提高。这样,课堂结构紧凑,时间得到充分利用,有利于课堂教学目标的实现。 三、运用恰当的教学方法,学生掌握知识,形成技巧的一种手段,要提高课堂教学效果,必须有良好的教学方法,深入浅出,使学生易于吸收。具体一堂课,到底选用哪种教学方法,必须根据教学目的、教学内容和学生年龄特点考虑。一般而言,每节数学课都要求在掌握知识的同时形成能力,因此,通常所采用的都是讲授与练习相配合的方法。有些课题要数形结合求解,此时可联系图形,用谈话式“依形探数”或“用数定形”,以使问题直观易懂,学生吸收自然好。对于一些综合题,可结合分析,采用点拨讲授法,要挖尽条件,点其窍门,减缓坡度,以提高学生的分析解题能力,也便于学生吸收。 需要指出的是,设置问题时要尽量具体,环环相扣,而且要多范围,最后也要有“从中你有什么收获“这样的总结性问题,切忌蜻蜓点水,不深不透。 教学方法上,要求教师必须在“讲”上下工夫,狠抓“练习”这一环节,注重启发式、探索式,讲授时做到深入浅出,语言规范简洁,练习时做到难易适中,适时启发反馈,力求使同学在认识与实践中逐步加深对知识的理解,并形成技能技巧,以达到吸收消化的目的。 总之,课堂教学是教师与学生的双方活动。要提高中学数学课堂教学质量,必须树立教师是主导、学生是主体的辩证观点,形成具有激情的学习气氛,使学生从“要我学“变为”我要学“,变被动为主动,变学会为会学,这样就一定能达到传授知识,培养能力的目的,收到事半功倍的效果。

利用换元法解方程组

2 例如:x 2 3x x 2 3x 2 3x 2 2x 3x 2 2x 4x 2 5x 观察发现 2 3x 2 3x 2x 4x 2 5x 1,故可设 x 2 3x 2 3x 2 2x v ,原方程变为u 2 uv v 2 ,方程由繁变简,可得解? 第 6 讲利用换元法解方程 、方法技巧 (一) 换元法 解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的 . (二) 运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程 解分式方程、无理方程、 整式(高次)方程的基本思想是将分式方程化为整式方程、 无理方程化为有理方程、整式(高次)方程逐步降次 (三) 换元的方法是以所讨论方程的特有性质为依据的, 不同的方程就有不同的换元方 法,因此, 这种方法灵活性大,技巧性强?恰当地换元,可将复杂方程化简,以 便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 82,使方程变得易解,这是均值换元法 例如: 5 — 6 0,可使用局部换元法, x 1 ②x 2 0,变形后也可使用局部换元法,设 2x 2 ~2 x x 2 1 19 —,看着很繁冗,变形整理成 6 x 2 x 2 2 x 2 x 19 一 —时,就可使用局部换兀法 6 82 , 可设 口 x 2,方程变成 ⑤6x 4 5x 3 38x 2 5x 符合与中间项等距离的项的系数相等, 如6x 4 与6 , 5x 3与5x 系数相等,可构造 x 1换元,是倒数换元法. x ⑥x 3 2、.3x 2 3x .3 1 0 ,不易求解,若反过来看,把设 x 看作已知数, 把.3设为设t ,则方程就变成x t 2 2x 2 1 t 数字换元法不常用,但不失为一种巧妙的解题方法 有时根 据方程各部分特点可设双元,达到化繁为简, 求解的目的

高中数学教学方法浅谈

高中数学教学方法浅谈 :传统教学中教师是课堂的中心,基本采用满堂灌的方法,不管学生听不听得懂,反正讲了,学生就该仔细听,就应该会,课上作笔记,课后大量作业做巩固。但是,我们发现,事实上有些学生根本听不懂,不知教师讲之所以然,课下只能抄作业,结果学生疲劳厌学,教师疲劳厌教。长此以往,学生一旦习惯了这种被动的学习,学习的主动性就会渐渐丧失。我们可以清楚地看出,在这样的教学过程中,教师以"讲"为中心的教学方法早已经过时的,从学生的潜能开发、思维拓展、身心发展、自主健全的角度来看,是非常不利的。 :高中数学;教学方法 对教师来说,在数学课教学中要灵活运用不同的教学方法法,最大程度地开发学生的潜能,培养学生的创造性思维,这是最为重要的。学生是学习的主人,我们要放手让学生自己去发现问题、自己探究解决问题、自己推导公式、自己归纳结论、自己摸索前进。当然,这里的放手绝不是放任自流,否则,学生得到的将是一些肤浅的、支离破碎的不完善的知识。所以,我们在充分相信学生的能力、充分放手的同时,还要多在引导上下工夫,讲究"导"的艺术,教师"导"得好,学生的聪明才智才能得到充分的发挥,真正驾驭学习,成为学习的主人,才能为学生自主学习添活力。

如何在课堂教学中培养学生的自主创新素质是一堂数学课能真正成功的关键所在、核心所在。而数学教学的核心问题是培养学生发现问题并通过自己思考解决数学问题的能力、培养学生独立思考的能力,通过独立思考,独立解决问题,启迪和发展学生的思维。在实际生活中,也可以更多、更好地发现问题,从而提炼出相应的数学问题,这是学习的目的所在。发现问题的能力一旦培养为一种潜在的意识,可以解释为"探察问题的意识"、可以解释为"找到新东西"的能力,在教与学的过程中是培养创造力的基本途径。问题的发现与解决要体现数学的思想方法。在这一过程中学生的数学思维跟数学创造力可以真正得到体现,更可以显示出数学教学的真正魅力所在,数学教育的真正目的所在。 要完成知识的传播,同时要培养学生的思维能力,这一教学过程的关键是教师的教学设计,如何培养学生创造思维,如何成功教学一堂数学课。面对高中数学的教学,可从以下几个方面开展。 一、更新教育观念 在课堂教学结构上,教师要始终坚持以学生为主体,以教师为主导的教学原则,这样才能优化教学效果。 二、提高复习课解题教学的艺术性 在高中数学复习时,由于解题的量很大,就更要求教师将解题活动组织得生动活泼、情趣盎然,让学生领略到数学的优

高考中的常用数学方法配方法待定系数法换元法

高考中的常用数学方法 配方法、待定系数法、换元法 一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法. 配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决. 待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数. 换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化. 二、例题解析 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ). (A )32 (B )14 (C )5 (D )6 分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为 222z y x ++,因此需将对称式 222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段 是配方法.故)(2)(2 222xz yz xy z y x z y x ++-++=++=62 -11=25 ∴ 52 22=++z y x ,应选C . 例2.设F 1和F 2为双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°, 则ΔF 1PF 2的面积是( ). (A )1 (B ) 2 5 (C )2 (D )5 分析及解:欲求||||2 1 2121PF PF S F PF ?= ? (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2 22 1=+PF PF (2), 又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即 16||||2||||||||||212221221=?-+=-PF PF PF PF PF PF ,

数学解题方法换元法详解

二、换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2α ,α∈[0,π2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x 2+y 2=r 2(r>0) 时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值换元,如遇到x +y =S 形式时,设x =S 2+t ,y =S 2 -t 等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,π2 ]。 例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求 1S m a x +1S min 的值。(93年全国高中数学联赛题) 【分析】 由S =x 2+y 2联想到cos 2α+sin 2 α=1,于是进行三角换元,设x S y S ==???? ?cos sin αα代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin αα 代入①式得: 4S -5S ·sin αcos α=5 解得 S =10852-sin α ;

浅谈中学数学学法指导

浅谈中学数学学法指导 数学学习方法指导,简称数学学法指导,是“学会学习”的一个重要组成部分。目前,数学学法指导问题是数学教学理论研究和实践中的一个重要课题。因此,笔者想就此问题从三个方面做些探讨,以抛砖引玉。 一、数学学法指导的意义 1、数学教学方法改革的需要 长期以来,数学教学改革偏重于对教的研究,但是对于学生是如何学的,学的活动是如何安排的,往往较少问津。现代教学理论认为,教学方法包括教的方法和学的方法,正如前苏联教学论专家巴班斯基指出的那样:“教学方法是由学习方式和教学方式运用的协调一致的效果决定的。”即教学方法是受教与学相互依存的教学规律所制约的。 当前,教学方法改革中的一个新的发展趋向,就是教法改革与学法改革相结合,以研究学生科学的学习方法作为创建现代化教学方法的前提,寓学法于教法之中,把学法研究的着眼点放在纵向的教法改革与横向的学法改革的交汇处。从这个意义上讲,学法指导应该是教学方法改革的一个重要方面。 2、培养学生学习能力的需要 埃德加富尔在《学会生存》一书中指出:“未来的文盲不再是不识字的人,而是没有学会怎样学习的人。”“教会学生学习”已成为当今世界流行的口号。前苏联教育家赞可夫在他的教学经验新体系中把“使学生理解学习过程”作为五大原则之一。也就是说,学生不能只掌握学习内容,还要检查、分析自己的学习过程,要学生对如何学、如何巩固进行自我检查、自我校正、自我评价。学法指导的目的,就是最大限度地调动学生学习的主动性和积极性,激发学生的思维,帮助学生掌握学习方法,培养学生学习能力,为学生发挥自己的聪明才智提供和创造必要的条件。 3、更好地体现以学生为主体的需 我国著名教育家陶行知先生早就指出:“我以为好的先生不是教书,不是教学生,乃是教学生学。”美国心理学家罗斯也说过:“每个教师应当忘记他是一个教师,而应具有一个学习促进者的态度和技巧。”专家学者精辟地阐述了学生在整个教学过程中始终是认识的主体和发展的主体的思想,强调了学法指导中以学生为主体的重要性。教师在教学过程中的作用,只是为学生的认识的发展提供种种有利的条件,即帮助、指导学生学习,培养学生自学的能力和习惯。 二、数学学法指导的内容

换元法及其应用

换元法及其应用 高一(2)班(C3)张宇绪论:目的在于总结数学解题方法,灵活运用换元法解题。 (一)选题引入 【例一】 其中(>1),则的值域是_______。 【分析】 一般得求出的值域比较容易,但当的自变量也是一个函数的时候求 其值域相对比较困难,这时候换元法就大派用场了。 【解】 求的值域,首先要求出的表达式。 函数一般我们习惯还是用来表示,所以要把换成。 【例二】 解不等式:。 【分析】 这是包含对数函数的不等式,一般地对数函数或指数函数写起来都比较麻烦,当在一个等式或不等式中对数或指数出现次数很多的时候,一般可以考虑用换元法,把对数或指数换掉,这样可以简化计算的中间过程,减少因为写错写漏而引起的错误。 【解】 原不等式可以化为: 即,以2为底的对数函数是增函数。 ,以2为底的指数函数是增函数。

变量代换的一个共同的特点是:尽可能让外表结构简单明白,尽可能将新鲜的问题转化到熟悉的老问题中去。换元法关键的一步是变量代换,如何选择,如何代换直接影响计算的复杂度,甚至影响到能否解决问题。 (二) 选题概述 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 (三) 选题分类 1、局部换元 又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4 +2 -2≥0,先变形为设2 =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 2、三角换元 应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =√1-X^2值域时,若x ∈[-1,1],设x =sin α ,sinα∈[-1,1 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x +y =r (r>0)时,则可作三角代换x =rco sθ、y =rsinθ化为三角问题。 3、均值换元 如遇到x +y =2S 形式时,设x = S +t ,y = S -t 等等。 (四) 换元法典型题归纳 1、整体换元 求函数x x x x y cos sin cos sin ++=的最大值. 解:设??t x x ?y x x t .2 1cos sin ),22(cos sin 2-=?≤≤-+=则 ?t t t y .1)1(2 12122-+=+-=故 当.221,2max +==??y ?t 时 2、三角换元 求函数25x x y -+=的值域. 解:令????x ],2 ,2[,sin 5ππθθ-∈=

浅析高中数学常用教学方法

浅析高中数学常用教学方法 摘要:在高中数学教学过程中,教师应更新教学理念,灵活教学方法,正确处理师生关系。多角度展开教学,学会运用现代化教学手段,教学方式多样化,只有这样不断促进教学质量的提高。本文从多方面进行了分析。 关键词:高中数学;教学;方法中图分类号:G633.6文献标识码:B文章编号:1672-1578(2014)02-0171-011.教师应更新其教学理念,灵活运用教学方法 随着社会的发展,知识更新的速度越来越快,在现代教学过程中,教师承担的任务也越来越多。单纯的”填鸭式”教学已不符合当今的教学理念。面对新的知识与新的形势,教师应不断提高自身素质与教学能力,做到与时俱进。教师应跟随新课程改革的发展步伐,不断更新其教学理念。教师应增强学习意识,不断提高自我,学习最新的教育教学标准,掌握最新的教学要求与教学重点。教师只有不断地吸收新知识、新理论,才能满足日益提高的数学教学要求。数学具有很强的逻辑性,内容抽象,不易理解,教师在教学过程中应使用灵活的教学方法。教师应选择合适的教学方法,并引导学生使用正确的学习方法学习,提高课堂教学效率。教师在教学时应灵活施教,因材施教,授课时要具有启发性

和生动性,引导学生自主学习,举一反三,以提高数学教学质量。 2.激发学生的学习兴趣,培养学生的发散思维 在教学活动中,学生是主体,教师应更加关注学生学的过程。尊重学生、关注学生,引导学生确立正确的学习态度,让学生自觉主动地学习。兴趣是最好的老师。教师在教学过程中应努力激发学生的学习兴趣,改变学生的学习观念。学生有了好的学习兴趣才会有较高的学习效率。教师需要改善自己的教学手段,改进教学方法,使教学过程更加直观生动,激起学生的兴趣。教师应根据高中阶段学生的心理,选择合适的教学方式,激发学生的学习兴趣。高中数学概念较为抽象,教师应根据教学内容采取学生容易理解和接受的方式授课,学会运用多媒体等现代化的教学手段,使教学内容变得生动具体,使学生产生学习兴趣。 在教学过程中,应多增加其与学生的互动,突出学生的主体作用,引导学生自主地参与到教学活动中,使学生学会独立思考和探索,进一步激发学生的学习兴趣。数学逻辑性较强,教师应注重锻炼学生的发散思维能力。发散思维,是指大脑在思维时呈现的一种扩散状态的思维模式,它表现为思维视野广阔,思维呈现出多维发散状。教师应鼓励学生发散思考,一题多解,举一反三。教师要不断地训练学生的发散思维,提高数学教学的质量。对于某道数学题,教师应

2011年中考数学专题复习之一 配方法与换元法

之一:配方法与换元法 一、配方法与换元法的特点: 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 配方法与换元法是初中数学中的重要方法,近几年的中考题中常常涉及。有时题中指定用配方法或换元法求解,而更多的则是隐含在题目当中,在分析题意的基础上,由考生自己确定选用配方法或换元法,把代数式配成完全平方式的形式,利用完全平方式的特性去求解,以达到快速解题的目的,这是种快捷也是很有效的方法,在初中代数中,占有很重要的地位和份量。 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 二、配方法与换元法的方法: 配方法与换元法主要依据完全平方公式,由公式a 2±2ab+b 2=(a±b)2可知,如果一个多项式能够表达成“两个数的平方和,加上或减去这两个数的积的2倍,则这个多项式就可以写成这两个数的和或差的平方。”由完全平方式的性质可知,任何一个实数的平方都 是非负数,即(a-b)2≥0,当a=b 时,(a-b)2 =0。利用这条性质,并可以解决很多与之有联系的数学问题。 配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.而配方法一般有两种形式,一是根据第一项和 第二项的系数特点,确定第三项系数或常数项。如二次三项式4 x 2 +6x+k 是完全平方式,试确定k 值。这一类的问题只有一解。而更多的是由第一项和第三项的系数特点,确定第二项的系数。如二次三项式4x 2+kxy+25 y 2是完全平方式,试确定k 值。这一类问题一定要考虑正、负值两种情况,结果应为两解才为正确,这一点为不少考生所忽视,一定要考虑周到方可取得好成绩。 三、例题精讲: 热身: 填空题: 1.将二次三项式x 2 +2x -2进行配方,其结果为 。 2.方程x 2+y 2+4x -2y+5=0的解是 。 3.已知M=x 2 -8x+22,N=-x 2 +6x -3,则M 、N 的大小关系为 。 4.用配方法把二次函数y=2x 2+3x+1写成y=a(x+m)2+k 的形式 。 5.设方程x 2+2x -1=0的两实根为x 1,x 2,则(x 1-x 2)2= 。 6.已知方程x 2-kx+k=0的两根平方和为3,则k 的值为 。 7.若x 、y 为实数,且1 1),32(332 +-+-=-+x y x y x 则 的值等于 。 【例1】 分解因式:(1)a 2b 2-a 2+4ab-b 2+1 ;(2)(x 2+2x +4)(x 2+2x+6)-8 分析:多于三项式的多项式的分解因式,常需要进行适当的分组,分组的原则是:首先看有没有能够构成完全平方的项,然后看看有没有能够构成平方差的项,最后看有没有公因式. 解答:(1)a 2b 2-a 2+4ab-b 2+1 = (a 2b 2+2ab+1)-(a 2-2ab+b 2)=(ab+1)2-(a-b)2 =(ab+a-b+1)(ab-a+b+1)。

高中数学3(换元法)

第 7 讲 换元法(高中版) (第课时) 换元法? ??? ??? ???? ??? ???? ?? ??????? ????三角代换均值代换 整体代换策略化超越式为代数式化无理式为有理式化分式为整式降次复杂问题简单化非标准问题标准化 用途 重点:1.;2.;3.。 难点:1.;2.;3.;。 我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子。换元的关键是构造元和设元。 换元的实质是转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式。换元后要注意新变量的取值范围,它既不能缩小也不能扩大。 换元法在因式分解、化简求值、恒等式证明、条件等式证明、方程、不等式、函数、数列、三角、解析几何等问题中有广泛的应用。 换元的常用策略有:整体代换(有理式代换,根式代换,指数式代换,对数式代换、复变量代换)、三角代换、均值代换等。 整体代换:在条件或者结论中,某个代数式反复出现,那么我们可以用一个字母来代替它, 当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角代换:如果把代数式换成三角式更容易求解时,可以利用代数式中与三角知识的联系进

行换元。例如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2 α ,α∈[0, π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。又如变量x 、y 适合条件x 2 +y 2 =r 2 (r>0)时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值代换:对两个类似的式子,可令其算术平均值为t 进行换元;如果遇到形如 S y x =+ 或 S y x =+2 2 这样的对称结构,可设 x =S 2+t ,y =S 2-t 或 t S x +=22 ,t S y +=2 2等等。 1.换元法在方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而利用这些常规的变形方法解题,有时会产生高次方程,解起来相当繁琐,甚至有时难于解得结果。对于某些方程,我们可以用新的变量来替换原有的变量,把原方程化成一个易解的方程。 例.(高二)如果关于x 的方程 0sin cos 22 2 4 =++θθx x 有相异的四实根,求θ的范围。 分析:此题已知条件的形式比较陌生,我们先看看能不能把它转化为我们所熟悉的形式。 令 t x =2 ,则原方程化为: 0sin cos 22 2=++θθt t ⑴ 使原方程有相异的四实根等价于使方程⑴有两不等正根。 由此得 ?? ? ? ?>>->-=?)4(0sin )3(0cos ) 2(0sin 4cos 4222θθθθ 即 ?? ? ??≠<>0sin 0cos 02cos θθθ 解之得 4 52432ππθππ+<<+ k k 且 )()12(J k k ∈+≠πθ 2.换元法在不等式中的应用 例.(高二)设对所于有实数x ,不等式x 2 log 241()a a ++2x log 221a a ++log 2()a a +142 2 >0 恒成立,求a 的取值范围。 分析:不等式中,log 241()a a +、 log 221a a +、log 2()a a +142 2 三项有何联系?对它们进 行变形后再实施换元法。 解: 设 log 2 21 a a +=t ,则 log 241()a a +=log 2812()a a +=3+log 2a a +12=3-log 221 a a +=3-t , log 2()a a +142 2 =2log 2 a a +12=-2t , 代入后原不等式简化为 (3-t )x 2 +2tx -2t>0 ,它对一切实数x 恒成立,

浅谈高中数学教学方法

浅谈高中数学教学方法 在高中数学教学工作中,教师应合理选择教学方式,根据学生的学习特点与年龄特点,制定完善的教学方案,明确具体的教学要求,建立多元化的教育机制,创新传统的教学模式,培养学生的数学知识应用能力,增强管理工作效果,为其后续发展奠定基础。 标签:高中数学教学方式创新措施 高中数学教师在教学期间,需重点关注学生的学习兴趣,培养学生参与意识,使得学生积极参与到课堂教学中,形成正确的认知,养成良好的自主学习与探究习惯,建立多元化的教学管理机制,达到预期的教学目的。 一、激发学生学习兴趣,培养参与意识 在高中数学教学工作中,教师应激发学生的学习兴趣,培养学生的学习能力,指导学生在独立思考的过程中,将指导工作作为主要内容,除了要提升学生学习积极性之外,还要增强学生的自信心,满足当前的教学要求。教师在激发学生学习兴趣的过程中,还要指导学生积极参与到课堂教学活动中,明确具体的教学要求与原则,将教学内容与学生实际生活联系在一起,营造良好的氛围,为学生提供充足的自主学习时间,培养学生独立学生思维能力,增强教学管理力度。首先,需将学生的学习与实际生活联系在一起,营造良好的课堂教学氛围,为学生提供充足的时间,并利用合理方式提升学生的学习水平。例如:教师在讲解均值不等式知识的时候,可以为学生提供商店酬宾销售案例,在明确折扣方案之后,指导学生根据均值不等式的知识计算折扣内容,对具体的知识进行计算与设计,保证在实际发展的过程中,建立多元化的控制体系,明确高中数学教学难点,利用合理的方式解决问题。其次,教師还要为学生创建良好的思维环境,在思维教学模式中,为其创建情境,使得学生产生身临其境的感觉,在独立思考的情况下,更好的完成学习任务。在创建教学情境的情况下,针对学生学习兴趣进行分析,创建多元化的教学环境,指导学生更好的对知识进行观察与了解,增强工作效果。最后,高中数学教师在教学工作中,需明确学生的学习兴趣要求,给予学生足够的关爱与关心,尤其是一些学习能力较差的学生,教师应与其进行情感方面的交流,不仅可以提升学生的学习自信心,还能增强高中数学的教学效果。另外,在高中数学教学工作中,教师应制定现代化与多元化的控制模式,加大管理力度,明确各方面管理工作要求与原则,创新教学形式,从而激发学生的学习兴趣,增强教学工作效果。 二、拓展教与学的资源 在信息时代发展的过程中,教师需将网络作为主要的资源实施教学活动,为学生提供丰富的学习资源,使得学生在学习教材知识的基础上,掌握课堂之外的学习内容。在建设网络学习机制的过程中,还要通过学校的工作要求,创建现代化的课堂教学管理机制,提升网络教学水平。具体措施为:

换元法在椭圆问题中运用

换元法在椭圆问题中使用 我们在解决椭圆问题时往往因为运算量大,而感觉问题变得很难。其实,在椭圆方程中,令a=b=r,则椭圆方程变为圆方程;在椭圆面积公式S=πab中,令a=b=r,则椭圆面积公式变为圆的面积公式.以上说明圆能够看作是特殊的椭圆,它们有很多相似的性质,从而椭圆的有些 问题就能够用圆的知识来处理.下面分类举例,予以说明.求椭圆的中 点弦方程例1:已知椭圆+=1,定点P(m,n)(mn≠0)在椭圆内,求以P(m,n)为中点的弦所在的直线方程.解:令x′=,y′=,则已知椭圆和定点P(m,n)变为相对应的圆x′2+y′2=1和定点P′(,),从而所求问题变为:求圆x′2+y′2=1内以P′(,)为中点的弦所在的直线方程.∵直线OP′的斜率kOP′==,∴以P′为中点的弦所在直 线的斜率为-,弦所在直线的方程为y′-=-(x′-),化简得 b2mx+a2ny-b2m2-a2n2=0.评析:本题也可用韦达定理或“点差法”解决,但运算较繁琐,而以上解法通过换元法将椭圆转化为圆,再使用 圆的性质轻松求解,可谓方法独特.求椭圆上的动点到定直线(或定点)的距离的最值例2:在椭圆+=1上求一点,使它到直线l:3x-2y-16=0 的距离最短,并求此距离.解:令x′=,y′=,则已知椭圆和直线l变为相对应的圆x′2+y′2=1和直线l′:6x′-2y′-16=0.从而所求问 题变为:求圆x′2+y′2=1上一点到直线l′:6x′-2y′-16=0的距 离最短问题.由平面几何知识可知,过圆x′2+y′2=1的圆心O′(0,0)作直线l′的垂线段,交圆于点P′(x′,y′),点P′到垂足的距离最短.所以由直线l′的垂线O′P′:y′=-x′和圆x′2+y′2=1 相交,可求得点P′为(,-).则相对应椭圆上所求的点P为(,-),所求最短距离为=.评析:此类问题还可用函数法、判别式法、导数法 和参数法求解,而通过换元法将椭圆和直线(或定点)转化为相对应 的圆和直线(或定点),使用圆的性质和平面几何知识使问题易于理解,又可避免较为繁琐的计算过程.求椭圆方程例3:已知椭圆的中心 在原点,焦点在x轴上,离心率为,过点M(0,2)作直线l与椭圆交于A、B两点,设N为AB的中点,且KON=,=,求椭圆的方程.解:

浅谈高中数学课堂教学方法

浅谈高中数学课堂教学方法 浅谈高中数学课堂教学方法摘要:知识经济时代的新形势,对人们的生活方式、工作方式、学习方式、思维方式带来深刻变化,终身学习成为每个人的重要任务。高中数学学习方法,就是研究让学生在数学学习上怎样才能节约时间,提高效率,不陷入题海战术,轻松掌握知识,灵活运用知识的方式方法。包括课堂听讲的指导,记笔记的指导方法,如何抓住知识点的指导等学习方法的指导,也包括课后作业的指导,即如何巩固,最终达到让学生学会学习高中数学的目的以及学会学习的目的。 关键词:课堂教学高中数学学习方法从事高中数学教学工作数年,面对我们学校多层次的学生,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,抓好每一个学生,体现每一个学生的特点,取得优异成绩,是做好课堂教学的一个很重要的课题。下面我谈一下我的体会。 一、数学学习兴趣的培养在大多数人眼里,数学是枯燥无味的,相当多的学生仅仅是为了考学而学习数学,这样就很难学好数学。要学好数学我觉得关键是提高学生学习数学的兴趣,所以数学教学重在培养学生的兴趣,有了兴趣,学生才能乐意走进课堂,去品味学数学的情趣,才会有展示自我能力的欲望。那么,如何培养学生的数学学习兴趣呢?学生能否对数学产生兴趣,主

要依赖于我们的教学实践,与我们的教学内容和教学方法的选择和应用密切相关。 二、深入了解学生,因材施教深入了解学生,不但要了解学生表面的行为,更要了解学生内心的活动。俄国教育家乌中斯基早就指出:“如果教育学希望从一切方面去教育人,那么就必须首先也从一切方面去了解人。”现在的学生,你不去了解他,研究他,就不能很好地理解他;而如果不能理解他,那就很难提高教育的效率。平时在工作中,应重视研究自己的学生,研究学生的行为及产生这种行为的原因,然后,努力正确地理解学生,从而采取有效的教育方法,将会有较大的收获。 数学是一门实用性学科,实际数学教学中我们不仅要根据教学内容更要结合学生实际、社会现实、生活现状等具体情况来确定对学生的教学方式。不同年级、不同体性、不同时段的不同学生有着不同的知识层次和不同的学习需求。教学中,教师必须充分把握住学生的自身特点及其各阶段的心理变化,及时调整教学内容及教学方法,从而量身制定出相应的教学方案,切实做到因材施教。千万不可将教师自己的多年所学,一成不变的教授给每一位学生。“一招行天下”的思想,在一对一教学中尤为大忌。 三、能突出重点、化解难点每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解方法归纳总结 第一部分:方法介绍 初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍. 、提公因式法.:ma+mb=m(a+b) 、运用公式法. (1) (a+b)(a -b) = a 2-b2 ---------- a 2-b2=(a+b)(a -b); , 2 2, 2 2 , 2,2 (2) (a ± b) = a ± 2ab+b ----------------- a ± 2ab+b =(a ± b); (3) (a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2); 2 2、3 3 3 3 2 2、 (4) (a -b)(a +ab+b ) = a -b -------------- a -b =(a -b)(a +ab+b ). F面再补充两个常用的公式: (5) a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2; 3,3 3 2,2 2 (6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca); 例.已知a, b, c是ABC的三边,且a2 b2 c2则ABC的形状是() (二)分组后能直接运用公式ab bc ca, A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解: a2 b2 c2 ab bc ca 2 2 2 2a 2b 2c 2ab 2bc 2ca (a b)2 2 2 (b c) (c a) 三、,分组分解法 例 2、分解因式:2ax 10ay 5by 解法一:第、二项为一组; 第三、四项为一组。 解:原式=(2ax 10ay) (5by bx) = 2a(x 5y) b(x 5y) =(x 5y)(2a b) bx 解法二:第一、四项为一组;第 二、三项为一组。 原式=(2ax bx) ( 10ay 5by) =x(2a b) 5y(2a b) =(2a b)(x 5y) 练习:分解因式1、a2 ab ac bc 2、xy x y 1

8常用数学方法-配方法、待定系数法、换元法

第8讲 高考中常用数学的方法 ------配方法、待定系数法、换元法 一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法. 配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决. 待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数. 换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化. 二、例题解析 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ). (A )32 (B )14 (C )5 (D )6 分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式 222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是 配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25 ∴ 5222=++z y x ,应选C . 例2.设F 1和F 2为双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足∠ F 1PF 2=90°,则ΔF 1PF 2的面积是( ). (A )1 (B ) 2 5 (C )2 (D )5 分析及解:欲求||||2 1 2121PF PF S F PF ?= ? (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2221=+PF PF (2), 又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即

相关文档
最新文档