双数字电位器DS1867的原理及应用

双数字电位器DS1867的原理及应用
双数字电位器DS1867的原理及应用

数字电位器程序

sbit X_CS_1=P1^0; // sbit X_INC=P1^1;// sbit X_UD=P1^2; // sbit X_CS_2=P1^4; // //有关电位器的宏定义 #define SETB_X9C103_CS1 X_CS_1=1 #define CLRB_X9C103_CS1 X_CS_1=0 #define SETB_X9C103_INC X_INC=1 #define CLRB_X9C103_INC X_INC=0 #define SETB_X9C103_UD X_UD=1 #define CLRB_X9C103_UD X_UD=0 #define SETB_X9C103_CS2 X_CS_2=1 #define CLRB_X9C103_CS2 X_CS_2=0 void X9C103_Inc_N_Step(unsigned char Sel,unsigned char N); void X9C103_Dec_N_Step(unsigned char Sel,unsigned char N); void Delay(unsigned int t) ; void X9C103_Init(unsigned char Sel);//初始化至中间位置 //延时us子程序 void Delay(unsigned int t) { unsigned int i; for(i=0;i<t;i++) ; } //************************************************************************ // 数字电位器向上调一步 // 数字电位器100个抽头,相当于99步 //************************************************************************ void X9C103_Inc_N_Step(unsigned char Sel,unsigned char N) { unsigned char i=0; SETB_X9C103_UD; // U/D 拉高则下面的INC下沿,执行UP操作 Delay(3); // 延时大约2us

示波器原理及其应用分析解析

示波器原理及其应用 示波器介绍 示波器的作用 示波器属于通用的仪器,任一个硬件工程师都应该了解示波器的工作原理并能够熟练使用示波器,掌握示波器是对每个硬件工程师的基本要求。 示波器是用来显示波形的仪器,显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。 在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注,如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。 1.1.示波器的分类 示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

1.2.1 模拟示波器 模拟示波器使用电子枪扫描示波器的屏幕,偏转电压使电子束从上到下均匀扫描,将波形显示到屏幕上,它的优点在于实时显示图像。 模拟示波器的原理框图如下: 见上图所示,被测试信号经过垂直系统处理(比如衰减或放大,即我们拧垂直按钮-volts/div),然后送到垂直偏转控制中去。而触发系统会根据触发设置情况,控制产生水平扫描电压(锯齿波),送到水平偏转控制中。 信号到达触发系统,开始或者触发“水平扫描”,水平扫描是一个是锯齿波,使亮点在水平方向扫描。触发水平系统产生一个水平时基,使亮点在一个精确的时间内从屏幕的左边扫描到右边。在快速扫描过程中,将会使亮点的运动看起来

IIR数字滤波器设计原理

IIR 数字滤波器设计原理 利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。 如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率 s p w w 和的转换,对s p αα和指标不作变化。边界频率的转换关系为)21tan(2w T =Ω。接着,按照模拟低通滤波器的技术指标根据相应 设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一 化低通滤波器参数表,得到归一化传输函数 )(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。之后,通过双线性变换法转换公式 11 112--+-=z z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。 步骤及内容 1) 用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为: 在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。 2) 以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特 性曲线。 3) 程序及图形 程序及实验结果如下: %%%%%%%%%%%%%%%%%%

%iir_1.m %lskyp %%%%%%%%%%%%%%%%%% rp=1;rs=15; wp=.2*pi;ws=.3*pi; wap=tan(wp/2);was=tan(ws/2); [n,wn]=buttord(wap,was,rp,rs,'s'); [z,p,k]=buttap(n); [bp,ap]=zp2tf(z,p,k); [bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,.5); [h,f]=freqz(bz,az,256,1); plot(f,abs(h)); title('双线性z 变换法获得数字低通滤波器,归一化频率轴'); xlabel('\omega/2\pi'); ylabel('低通滤波器的幅频相应');grid; figure; [h,f]=freqz(bz,az,256,100); ff=2*pi*f/100; absh=abs(h); plot(ff(1:128),absh(1:128)); title('双线性z 变换法获得数字低通滤波器,频率轴取[0,\pi/2]'); xlabel('\omega'); ylabel('低通滤波器的幅频相应');grid on; 运行结果: 00.050.10.150.20.25 0.30.350.40.450.500.1 0.2 0.3 0.40.50.60.70.8 0.9 1 双线性z 变换法获得数字低通滤波器,归一化频率轴 ω/2π低通滤波器的幅频相应

X9221数字电位器的应用

李学海 X9221中文资料1下载(双非易失数字电位器) X9221中文资料2下载(双非易失数字电位器) 美国XICOR公司新近研制出一种型号为X9221的功能独特的电子数控电位器。X9221在一片CMOS集成电路内集成有2个非易失性数控电位器(E2POT),其调节过程可以由微处理器(μP)或微控制器(μC)经二线总线接口进行控制。这种二线接口数字电位器具有如下许多优点:(1)调节精度高;(2)不易受诸如振动、污染、潮湿等影响;(3)无机械磨损;(4)接口引脚少;(5)集成度高;(6)数据可读写;(7)具有配置寄存器及数据寄存器;(8)多电平量存储功能,特别适用于音频系统;(9)易于软件控制;(10)采用设计人员熟悉的I2C通信协议;(11)体积小巧,易于装配。它适用于家庭影院系统、音频环绕控制、音响功放、有线电视设备等。 X9221内含滑动端计数寄存器(WCR)及数据寄存器。它的每个E2POT可存储4个滑动端位置;每个电位器有64个抽头;温度范围分为民品级、工业级和军品级;工作电压Vcc则为4.5~5.5或2.7~5.5V。 内部结构 X9221片内包含2个电阻阵列(或称电位器或E2POT)和I2C接口电路。X9221的功能方框图如图1所示。 每个电阻阵列内又包含63个电阻单元、64个电子开关、一个滑动端计数寄存器(WCR)、4个8位数据寄存器(R0~R3)、递增/递减逻辑电路、级联控制逻辑电路以及64选1译码电路。单个电阻阵列的结构框图如图2所示。

在相邻的两个电阻单元之间以及两个端点处共设64个可以被滑动端访问的抽头。滑动端在阵列中的位置可由用户通过二线串行总线(I2C)接口控制。每个电阻阵列配置一个滑动端计数寄存器和4个数据寄存器,这4个数据寄存器可以由用户程序直接写入和读出。 滑动端计数寄存器的内容控制滑动端在电阻阵列中的位置。数据寄存器的内容可以传送到滑动端计数寄存器,以设置滑动端的位置。当前滑动端的位置可以被传送到与它相关联的4个数据寄存器中的任何一个之中。也就是说,WCR可以直接被写入,或者也可以把起辅助作用的4个数据寄存器之一的内容转移到WCR中来改变其内容。这些数据寄存器和WCR都可以由微电脑来读出或写入。 X9221中的每一个电阻阵列的主体部分是63只串联连接的集成电阻器。电阻串联支路的两端VH和VL就相当于一个机械电位器的两个固定端;串联支路中的电阻器之间的连接点以及两个端点,都可以经过场效应管开关连通到滑动端VW上。在同一时刻只能有一只开关闭合,究竟哪一只闭合由滑动端计数寄存器WCR内容确定。只有WCR中的低6位被译码,才能选择和使能64选1的开关接通。 引脚功能 X9221共有20个外接引脚。它有DIP、SOIC和TSSOP三种封装形式。其引脚排列如图3所示。各引脚的功能如表1所示。 表1 引脚功能

详解数字电位器的原理与应用

详解数字电位器的原理与应用数字电位器(DigitalPotenTIometer)亦称数控可编程电阻器,是一种代替传统机械电位器(模拟电位器)的新型CMOS数字、模拟混合信号处理的集成电路。数字电位器采用数控方式调节电阻值的,具有使用灵活、调节精度高、无触点、低噪声、不易污损、抗振动、抗干扰、体积小、寿命长等显著优点,可在许多领域取代机械电位器。 数字电位器一般带有总线接口,可通过单片机或逻辑电路进行编程。它适合构成各种可编程模拟器件,如可编程增益放大器、可编程滤波器、可编程线性稳压电源及音调/音量控制电路,真正实现了“把模拟器件放到总线上”(即单片机通过总线控制系统的模拟功能块)这一全新设计理念。 目前,数字电位器正在国内外迅速推广,并大量应用于检测仪器、PC、手机、家用电器、现代办公设备、工业控制、医疗设备等领域。 1.基本工作原理 由于数字电位器可代替机械式电位器,所以二者在原理上有相似之处。数字电位器属于集成化的三端可变电阻器件其等效电路,如图l所示。当数字电位器用作分压器时,其高端、低端、滑动端分别用VH、VL、VW表示;而用作可调电阻器时,分别用RH、RL和RW表示。 图2所示为数字电位器的内部简化电路,将n个阻值相同的电阻串联,每只电阻的两端经过一个由MOS管构成的模拟开关相连,作为数字电位器的抽头。这种模拟开关等效于单刀单掷开关,且在数字信号的控制下每次只能有一个模拟开关闭合,从而将串联电阻的每一个节点连接到滑动端。

数字电位器的数字控制部分包括加减计数器、译码电路、保存与恢复控制电路和不挥发存储器等4个数字电路模块。利用串入、并出的加/减计数器在输入脉冲和控制信号的控制下可实现加/减计数,计数器把累计的数据直接提供给译码电路控制开关阵列,同时也将数据传送给内部存储器保存。当外部计数脉冲信号停止或片选信号无效后,译码电路的输出端只有一个有效,于是只选择一个MOS管导通。 数字控制部分的存储器是一种掉电不挥发存储器,当电路掉电后再次上电时,数字电位器中仍保存着原有的控制数据,其中间抽头到两端点之间的电阻值仍是上一次的调整结果。因此,数字电位器与机械式电位器的使用效果基本相同。但是由于开关的工作采用“先连接后断开”的方式,所以在输入计数有效期间,数字电位器的电阻值与期望值可能会有一定的差别,只有在调整结束后才能达到期望值。 从图2可以看出,数字电位器与机械式电位器有2个重要区别:1)调整过程中,数字电位器的电阻值不是连续变化的,而是在调整结束后才具有所希望的输出。这是因为数字电位器采用MOS管作为开关电路,并且采用“先开后关”的控制方法:2)数字电位器无法实现电阻的连续调整,而只能按数字电位器中电

数字示波器原理及使用

数字示波器的原理及使用 【摘要】示波器就是以直角坐标为参数系,以时间扫描为时基两维地显示物理量——电量瞬时变化的仪器,它不但能观测低频信号(包括单次信号),同时也能观测高频信号与快速脉冲信号 ,并能对其表征的参量进行分析与测量。随着数字集成电路技术的发展而出现的数字存储示波器,不但能对波形进行显示,还能对波形进行存储、分析、计算,并能组成自动测试系统,使之成为了电子测量领域的基础测试仪器之一。 关键词:示波器,信号,数字集成电路,数字存储 【Abstract】Oscilloscope is an instrument that can display electrical signals in rectangular coordinates system based on amplitude and time、It can not only observe the low-frequency signal (including single signal), but also the high-frequency signal and pulse signal, and parameters on the characterization of the analysis and measurement、The digital storage oscilloscope was invented with the development of digital integrated circuit technology, which can not only display the waveform but also can store, analysis, calculate the Parameters of the signal and can form an automatic testing system、The digital storage oscilloscope have become one of the basic testing instrument for electronic measurement 、 Keywords: oscilloscope,signal,digital integrated circuit, digital storage oscilloscope 1、前言 随着数字集成电路技术的发展,数字式示波器的出现以其存储波形及多种信号分析、计算、处理等优良的性能逐步取代模拟示波器。与模拟示波器相比,数字示波器可以实现高带宽及方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。 2、数字示波器的基本原理 2、1数字存储示波器的组成原理 典型的数字示波器原理框图如图2、1所示,它分为实时与存储两种工作状态,当其以实时状态工作时,其电路组成原理与模拟示波器相同。当其以存储状态工作时,它的工作过程一般分为存储与显示两个阶段,在存储工作阶段,模拟输入信号先经过适当的放大或衰减,然后经过采样与量化两个过程的数字化处理,将模拟信号转化成数字信号后,在逻辑控制电路的控制下将数字信号写入到存储器中。量化过程就就是将采样获得的离散值通过 A/D转换器转换成二进制数字。采样,量化及写入过程都就是在同一时钟频率下进行的。在显示工作阶段,将数字信号从存储器中读出来,并经D/A转换器转换成模拟信号,经垂直放大器放大加到CRT 的Y偏转板。与此同时,CPU的读地址计数脉冲加之D/A转换器,得到一个阶梯波的扫描电压,加到水平放大器放大,驱动CRT的X偏转板,从而实现在CRT上以稠密的光点包络重现模拟信号。

数字示波器及其简单原理图

数字示波器及其简单原理图 数字示波器可以分为数字存储示波器(DSOs)、数字荧光示波器(DPOs)、混合信号示波器(MSOs)和采样示波器。 数字式存储示波器与传统的模拟示波器相比,其利用数字电路和微处理器来增强对信号的处理能力、显示能力以及模拟示波器没有的存储能力。数字示波器的基本工作原理如上图所示当信号通过垂直输入衰减和放大器后,到达模-数转换器(ADC)。ADC 将模拟输入信号的电平转换成数字量,并将其放到存贮器中。存储该值得速度由触发电路和石英晶振时基信号来决定。数字处理器可以在固定的时间间隔内进行离散信号的幅值采样。接下来,数字示波器的微处理器将存储的信号读出并同时对其进行数字信号处理,并将处理过的信号送到数-模转换器(DAC),然后DAC的输出信号去驱动垂直偏转放大器。DAC也需要一个数字信号存储的时钟,并用此驱动水平偏转放大器。与模拟示波器类似的,在垂直放大器和水平放大器两个信号的共同驱动下,完成待测波形的测量结果显示。数字存储示波器显示的是上一次触发后采集的存储在示波器内存中的波形,这种示波器不能实时显示波形信息。其他几种数字示波器的特点,请参考相关书籍。

Agilent DSO-X 2002A 型数字示波器面板介绍

该示波器有两个输入通道CH1和CH2,可同时观测两路输入波形。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。 荧光屏(液晶屏幕)是显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。 操作面板上的各个按钮按下后,相应参数设置会显示在荧光屏上。 开机后,荧光屏显示如下: 测试信号时,首先要将示波器的地(示波器探笔的黑夹子)与被测电路的地连接在一起。根据输入通道的选择,将示波器探头接触被测点(信号端)。按下Auto Scale,示波器会自动将扫描到的信号显示在荧光屏上。 输入耦合方式:模拟示波器输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC);部分数字示波器则没有GND耦合这种方式,其通过在屏幕上直接标注零电平线的位置的方法来实现GND耦合(用来确定零电平线)的功能。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观

数字电位器的应用操作分析

数字电位器的应用 数字电位器介绍 简单的讲,数字电位器由数字输入操纵,产生一个模拟量的输出。那个定义类似于数模转换器(DAC),所不同的是:DAC具有一个缓冲输出,大多数数字电位器没有输出缓冲器,因而不能驱动低阻负载。依据数字电位器的不同,抽头电流最大值能够从几百微安到几个毫安。因此,不论是一般电位器依旧数字电位器,假如与低阻负载连接,都应保证在最恶劣的条件下,抽头电流不超出所同意的IWIPER 范围。所谓“最恶劣的条件”发生在抽头电压VW接近于端电压VH,而且线路中没有足够限流电阻的情况下。有些应用中,抽头流过较大的电流,这时应该考虑电流流经抽头时产生的压降,那个压降会限制数字电位器的输出动态范围。数字电位器的应用 数字电位器的应用特不广泛,某些特定情况下可能需要增加元件以配合电路调整。例如,数字电位器的端到端电阻一般为10~200K ,

而调整LED亮度时通常需要特不低的阻值。针对那个问题,能够选用DS3906。当DS3906外部并联一个固定105 的电阻时,能够提供70~102 的等效电阻,这种结构能够按照0.5 的步进值精确调节LED的亮度。 有些情况下还会需要专门性能的数字电位器,例如对电压或电流进行温度补偿,光纤模块中对激光驱动器偏置的调节确实是一个典型范例(见图1),温度补偿数字电位器MAX1858内部带有一个用EEPROM保存的查找表,校准值在查找表内按温度顺序排列。数字电位器内部的温度传感器对温度进行检测,然后依照检测的温度值从查找表里得到对应的校准电阻。

非易失性是数字电位器常见的一个附加功能。基于EEPROM 的非易失数字电位器在上电复位时能够保持在某个已知状态。现有的EEPROM 技术能够专门容易保证50000次的擦写次数,相关于机械式电位器,非易失数字电位器的可靠性更高。一次性编程(OTP)数字电位器(如MAX5427-MAX5429),能够在编程后永久保存缺省的抽头位置。与基于EEPROM的数字电位器一样,上电复位后,OTP数字电位器初始化到已知状态。然而一经编程,OTP数字电位器的上电复位状态不能够再更改。 数字电位器能够协助自动完成电源系统中电压或电流的校准,或用

数字电位器常见问题及应用经验总结

对于设计人员而言,数字电位器正变得越来越重要,它们具有很多优点,但也存在很多限制。下面比较机械电位器,数字电位器的共同点和区别,并由此帮助读者了解如何使用数字电位器。 电位器的出现有很长的历史,它以各种方式应用在广泛的领域,如常数调整和测量领域。最常见的莫过于设定和微调电阻值来微调电路,设置电平和调整增益等。电位器也被用来设计机器人和工业设备中的位置反馈。针对电位器需要考虑的各个方面,需针对特定应用的各种需求来设置。如电位器上的最大电压,各臂所能提供的最大电流,能允许消耗的最大功率以及最需要考虑的电阻问题。从功率到噪声的各个方面。单个电阻的误差通常有+/-20%到+/-5%,温度也会造成电阻值的漂移,所以需要考虑电位器的精度,线性,单调性与否,是否考虑设计中其它因素。比如人耳对声音的频率响应将比较重要。断电与加电时电阻的变化,成本和体积,还有可靠性如装配,潮湿等。 在爱迪生一千多项的发明当中,电位器总是为人们所遗忘。它是在十九世纪七十年代被发明并应用在开关中。如图一所示。 经一百年来,随着材料及外形的改变,机械电位器在一些初级的应用中受到极大的关注。无可置疑机械电位器和数字电位器有许多区别,而它们的共性却令人惊讶。其中最大相同就是它们都具有可调性,能提供大范围的端到端电阻。 机械电位器可耐上千伏的高压,数字电位器受制于小体积通常电压在30伏以内。机械电位器电阻容量也比数字电位器大。然而我们只要稍加考虑就可以解决上述问题。 机械电位器受振动发生电阻飘移的时候会给设计造成问题。机械电位器的接触点因磨损,老化而造成电阻增大或失效,进而使机械电位器的性能无法预知。数字电位器则无因机械结构造成上述的问题,可以经上万次开关操作而依然保持一致。 数字电位器通常采用多晶硅或薄膜电阻材料,具有低噪声,高精度和优良的温度系数。 机械电位器和数字电位器尺寸大小比对如图二所示。

256抽头精密数字电位器AD5160测试程序

/********* STC12C5A60S2平台AD5160数字电位器程序时钟:外部12M晶振 电位器串联外部电阻连接为可变电阻模式,若不串外部电阻直接接参考电压源即工作为数字电位计模式 *NOTE:作为可变电阻模式与外部电阻串联时存在一定程度容差,若所串电阻大于AD5160本身满量程电阻(型号有5K\10K\50K\100K)10倍以上则此容差才可忽略*****/ /*AD5160.H*/ #ifndef _AD5160_H_ #define _AD5160_H_ #include #include typedef unsigned char uchar; typedef unsigned int uint; sbit CPCS = P3^2; //数字电位器AD5160的片选CS,低电平有效 sbit SDI = P3^4; //数字电位器AD5160的数据SDI sbit SCK = P3^5; //数字电位器AD5160的时钟SCLK void AD5160_init() //AD5160初始化 { CPCS = 1; SCK = 0 SDI = 1; } void set_AD5160(uchar dat) //设定从W抽头到B端的抽头数,以10K版本的为{ //例电阻为R w B = 60+39*rdac 其中W抽头接触电阻为60Ω uchar i,rdac=0; CPCS = 1; rdac = dat; //RDAC为写入AD5160 内部8位radc寄存器数据 SCK = 0; _nop_();_nop_();_nop_();_nop_(); SCK = 1; //SCK在CS拉低前触发一个时钟

(整理)数字存储示波器的原理及使用

数字存储示波器的原理及使用 示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。目前大量使用的示波器有两种:模拟示波器和数字示波器。模拟示波器发展较早,技术也非常成熟,其优点主要是带宽宽、成本低。但是随着数字技术的飞速发展,数字示波器拥有了许多模拟示波器不具备的优点:不仅具有可存储波形、体积小、功耗低,使用方便等优点,而且还具有强大的信号实时处理分析功能;具有输入输出功能,可以与计算机或其他外设相连实现更复杂的数据运算或分析。随着相关技术的进一步发展,数字示波器的频率范围也越来越高了,其使用范围将更为广泛因此,学习数字示波器的使用具有重要的意义。 实验目的 1. 了解数字示波器的工作原理; 2. 掌握数字示波器的使用方法; 3. 会用数字示波器测量未知信号的参数。 实验原理 数字存储示波器与模拟示波器不同在于信号进入示波器后立刻通过高速A/D转换器将模拟信号前端快速采样,存储其数字化信号。并利用数字信号处理技术对所存储的数据进行实时快速处理,得到信号的波形及其参数,并由示波器显示,从而实现模拟示波器功能。而且测量精度高,还可以存储和调用显示特定时刻信号。 一个典型的数字存储示波器原理框图如图1所示,模拟输入信号先适当地放大或衰减,然后再进行数字化处理。数字化包括“取样”和“量化”两个过程,取样是获得模拟输入信号的离散值,而量化则是使每个取样的离散值经A/D转换成二进制数字,最后,数字化的信号在逻辑控制电路的控制下依次写入到RAM(存储器)中,CPU从存储器中依次把数字信号读出并在显示屏上显示相应的信号波形。GPIB为通用接口总线系统,通过它可以程控数字存储示波器的工作状态,并且使内部存储器和外部存储器交换数据成为可能。 由此可见,数字示波器必须要完成波形的取样、存储和波形的显示,另外为了满足一般应用的需求,几乎所有微机化的数字示波器都提供了波形的测量与处理功能。 1. 波形的取样和存储 由于数字系统只能处理离散信号,所以必须对模拟连续波形先进行抽样,再进行A/D 转换。根据Nyquist定理,只有抽样频率大于要处理信号频率的两倍时,才能在显示端理想地复现该信号。 由此可见,数字示波器必须要完成波形的取样、存储和波形的显示,另外为了满足一般应用的需求,几乎所有微机化的数字示波器都提供了波形的测量与处理功能。

示波器基本原理

目录 第一章示波器基本原理 (2) 1、1 模拟示波器 (2) 1、1、1示波管 (2) 1、1、2模拟示波器方框图 (3) 1、2 数字存储示波器(DSO) (4) 第二章示波器的使用 (5) 2、1示波器的各个系统和控制 (5) 2、2示波器的正确使用 (7) 第三章模拟示波器的校准 (9) 第四章数字存储示波器的使用和校准 (13) 4、1 TDS220的结构 (13) 4、2 TDS220的常规检查 (14) 4、3 TDS220的校准过程 (16)

第一章 示波器基本原理 示波器是一种图形显示设备,它能够直接观测和真实显示被测信号,是观察电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器,它可分为模拟和数字类型。下面就分模拟和数字部分对示波器的基本原理进行简单介绍。 1、1 模拟示波器 模拟示波器是第一代示波器产品,拥有极佳的"波形更新率"(约每秒超过二十万次),它仅仅在扫描的回扫时间及闭锁(Hold off )时间内不显示信号,因此又称为模拟实时示波器(Analog Real Time Oscilloscope )。由于模拟示波器是数字示波器在的基础,我们先来看模拟示波器的工作原理。 1、1、1示波管 模拟示波器的心脏是阴极射线管(CRT ),示波管由电子枪、偏转系统和荧光屏组成,它们被密封在真空的玻璃壳内,如图1-1所示。 电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打在荧光屏上,荧光屏的内表面涂有荧光物质,这样电子束打中的点就发出光来。 电子在从电子枪到屏幕的途中要经过

偏转系统,在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X )偏转板和垂直(Y )偏转板组成。这种偏转方式称为静电偏转。 将输入信号加到Y 轴偏转板上,而示波器自己使电子束沿X 轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹 1、1、2模拟示波器方框图 从上一小节可以看出,只要控制X 轴偏转板和Y 轴偏转板上的电压,就能控制示波管显示的图形形状。因此,只要在示波管的X 轴偏转板上加一个与时间变量成正比的电压,在y 轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。因此,往往给X 轴加上锯齿波。 示波器的基本组成框图如图1-2所示,它主要由示波管、Y 轴系统、X 轴系统三部分组成。此外还包括电源电路,它产生电路中需要的多种电源。示波器中还往往有一个精确稳定的方波信号发生器,供校验示波器用。 被测信号通过探头到达示波器的垂直系统,经衰减器适当衰减后送至垂直放大器,放大后产生足够大的信号,加到示波管的Y 轴偏转板上,控制亮点在屏幕中的上下移动。为了在屏幕上显示出完整的稳定波形,将Y 轴的被测信号引入X 轴系统的触发系统,启动或触

数字电位器与控制

数字电子电路课程设计:数字电位器与控制 一、实验目的 根据时序图和真值表设计按钮控制数字电位器控制电路: 1基本要求:按住控制键,数字电位器阻值连续变化。 2扩展要求:可使用Protues等软件进行仿真设计。 3扩展电路要求:按住控制键,数字电位器阻值连续变化且变化速度递增/递减。 二、实验仪器 74LS132 2输入端与非门 NE555 X9C103 数字电位器 二极管,电容,电阻,开关等 三、实验原理 (1)、X9C103一般说明 X9C103 E2POT TM非易失性数控电位器,端电压±5V,100个抽头 X9C13是固态非易失性电位器,把它用做数字控制的微调电阻器是理想的.. X9C13是一个包含有99个电阻单元的电阻阵列.在每个单元之间和二个端点都有可以被滑动单元访问的抽头点.滑动单元的位置CS,U/D和INC三个输入端控制.滑动端的位置可以被贮存在一个非易失性存贮器中,因而在下一次上电工作时可以被重新调用. X9C103的分辨率等于最大的电阻值被99除.例如X9C503(50千欧)的每个抽头间的阻值为505欧母. 所有的Xicor非易失性存贮器都设计成并经过测试能够用于持久的保存数据的应用场合. 特点: *低功耗CMOS ——VCC=3V至5.5V ——工作电流最大3mA ——等待电流最大500μA *99个电阻单元 ——有温度补偿 ——±20%端点到端点阻值范围

*100个滑抽头点 ——滑动端的位置取决于三线接口 ——类似于TTL升/降计数器 ——滑动端位置贮存于非易失性存贮器中。可在上电时重新调用*滑动端位置数据可保存100年 *X9C103==10K? 数控电位器控制时序图如下: CS INC U/D 图1.1引脚配置及引脚说明引脚配置如图1.1所示。

基于单片机的数字电位器设计

关键字:单片机数字电位器 人耳对声强的主观感受遵循韦伯定律(Webber's Law),在音量较小时人耳对声波振幅的改变感受灵敏,声音达到一定响度后,人耳的听觉特性开始变得迟钝。而指数型电位器的阻值变化规律为先慢后快,如果将这种衰减特性用在音量调节中,则恰好可以抵消人耳对音量感知的对数特性,保证主观听感的平滑。 与传统的机械式音量电位器相比,数字电位器(DCP)的阻值调节由内部CMOS开关控制,因而使用寿命长、可靠性高且不会产生机械噪声;如果将廉价的通用型线性数字电位器直接用于音量调节,在小音量状态下稍微调节电位器即会使输出声压陡然增加,无法保证大动态范围内音量的准确定位,因此目前将数字式电位器运用在成熟功放产品中的实例还不多。实际上,如果将低分辨率线性数字电位器与通用嵌入式系统结合起来,就能够得到运用于音量控制领域的低成本高分辨率指数式电位器。 总体设计方案 在数字电位器的扩展系统中,主控单元可选用常见的8位或16位成熟单片机。这里我们主要针对Intersil公司的低分辨率线性数字电位器X9313、X9312进行扩展,系统最终能够达到的实际分辨率为31×99=3069级;如果把32抽头的X9313全部更换为X9312,分辨率还可以进一步提高至9801级。 X9313与X9312这两种DCP均为三线制接口、带掉电自动保存功能的非易失性数字电位器,其内部分别包含31、99个电阻单元构成的电阻阵列,相邻两个电阻单元以及电阻阵列端点都设置有可以被滑动单元访问的抽头,如图1所示。滑动单元的位置由CS、U/D和INC 三个输入端控制,抽头位置值能够被存储在非易失性存储器中,供下次上电时调用置位。 图1 X931x系列DCP的内部结构 系统的每个声道的音量控制由两个X9313与一个X9312构成,图2为三个数字电位器的功能连接图。所有DCP的U/D、INC端分别连接在一起,而片选端CS各自占用一个MCU 端口。这种硬件连接方式能够很容易地实现四声道乃至更多声道的音量控制。为了与常见的数字式音量调整习惯一致,最好不要保留通用DCP的三键式控制方式,而只需设置UP/DOWN 两组按键直接控制音量的增减。UP/DOWN按键与MCU的连接应设置软件延时的去抖算法,以消除按键输入时的抖动,MCU与DCP之间则不再考虑按键抖动。

数字示波器的使用

数字示波器的使用 实验报告 姓名: 学号: 座位号: 指导教师: 报告箱号: 实验日期:年月日星期第节

数字示波器的使用 预习提示:完整地学习使用某一仪器的最好方法一般是对照着用户手册,按照提示一步一步地操作,并观察记录实验现象和结果,思考自己所完成的仪器操作的作用。但初次接触像示波器这样的通用仪器,一方面,我们不可能在短时间内学会其所有的操作;另一方面,通用仪器的各种功能之间并不一定有直接的相互关联,我们可以选择其中的部分功能进行学习,其他功能可以留到以后用到时再参考用户手册来学习和实践。实验预习时,学生可以粗读用户手册中与实验内容相关的章节(第一章和第二章),知道有关功能/操作大致是哪些步骤、可以得到哪些结果。千万不要尝试去“背诵”用户手册的某个章节甚至整本用户手册。 实验目的: 预习作业: 1.示波器是一个什么样的仪器?它有哪些应用? 2.本实验所用数字示波器的电压显示范围V pp是_________;若待测量信号的V pp小于此值,则可将信号 直接接到数字示波器的信号输入端(通道1或通道2);若待测量信号的V pp大于此值,则需用示波器10:1衰减探头,且在探头线___________开关打开的情况下才能将信号接入示波器。 3.信号接入示波器之后,如果发现信号幅度纵向只占屏幕的很小部分或上下均超出屏幕显示范围,应调 节相应通道的________旋钮;若信号纵向偏离屏幕中心位置,则应调节相应通道的_________旋钮。若屏幕上显示的信号周期数太少或太多,则应调节该通道的________旋钮。 4.若屏幕上显示的信号一直在左右移动,很可能是因为_________源/模式选择或________电平设置不当。 5.(本题可在实验过程中完成)电压档位显示在液晶屏的_________位置,时基档位显示在液晶屏的 _________位置,触发源和触发模式选择显示在液晶屏的________位置。 6.(本题可在实验过程中完成)屏幕上,信号电压的零点由显示屏________位置的_______符号来指示。 信号以直流耦合方式输入时的指示符号是________;信号以交流耦合方式输入时的指示符号是 ________。

示波器的调节与使用

数字示波器的调节与使用 一、实验目的 1.了解示波器的结构与示波原理 2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3.学会用示波器测正弦交流信号的电压幅值及频率 4.学会用李萨如图法,测量正弦信号频率 二、实验仪器 RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器 三、实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正

弦波形。 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示: AMP A/D Display Input DeMUX Acquistion Memory uP Display Memory 图3.数字存储示波器的基本原理框图

X9511数字电位器芯片

数字电位器芯片X9511的应用扩展 引言 数字电位器在我国还是近几年出现的新型器件,该器件一出现,就以其调节准确方便,使用寿命长,受物理环境影响小,性能稳定等特点,而被广大电子工程技术人员所接受。但数字电位器本身能够承受的电流和电压有限,因而需要扩展,同时在实际应用中,数字电位器的阻值范围及分辨率也需要扩展,本文介绍的扩展方案适用于各种信号的数字电位器。 数字电位器简介 数字电位器是可用数字信号控制电位器滑动端位置的新型器件,一般分按钮控制和串行信号控制两种,X9511就是X I C O R公司生产的理想按键式数字电位器,它内含31个串联电阻阵列和32个轴头。轴头位置由两个按键控制,并且可以被存储在一个E2P R O M存储器中,以供下一次通电时重新调用,并自动恢复轴头位置,X9511有1kΩ和10kΩ的X9511Z和X9511W两种规格。 X9511内部由计数器、存储器、译码器、模拟开关和电阻阵列等电路组成,其中计数器是5位可逆计数器,可用于对控制信号P U(或P D)进行加(或减)计数,计数器的计数值可以在A S E的控制下存储非易失性存储器中。计数器的数值经过32选1译码器译码后可用于控制模拟开关,32个模拟开关相当于电位器的32个轴头,电阻阵列由采

用集成电路工艺制作的31个串联一起的电阻构成,电阻两端分别连接模拟开关的一端,而模拟开关的另一端连接在一起构成数字电位器的滑动端(V W),译码器的输出端可控制模拟开关的通断,从而实现滑动轴头位置的变化。 X9511的计数器电路具有以下特点: ◆ 输入端具有内部上拉电阻和消除开关抖动的抗扰电路,当输入脉冲宽度小于40m s时,计数器将其视为干扰信号而不进行计数; ◆ P U和P D引脚可直接连接一个按钮开关到地,当按钮按下时,在P U或P D端产生一个负脉冲,使计数器进行加1(按P U键)或减1(按P D键)计数; ◆ 能将计数值存储在非易失性存储器E2P R O M中长期保存; ◆ 能在上电时自动将E2P R O M中的数据恢复到计数器中; ◆ 当计数器计数到最大值“31”时,P U按键失效,而计数到最小值“0”时,P D按键失效,从而避免循环计数,保证电位器调到最大位置时不会跳到零位,或从零位跳到最大位置。 ◆ 具有慢速和快速计数选择,当输入负脉冲宽度小于250m s时为慢速计数方式,此时按一下按键计数器将执行加1(或减1)操作,当脉冲宽度大于250m s时,计数器为快速(连续)计数方式,此时1秒钟以内,电路将以250m s的速率连续计数,若按键按下的时间大于1

示波器的原理和使用 实验报告

示波器的原理和使用实验报告 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 1、示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1.1、示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 图1示波管的内部结构和供电图示

1.荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s 为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2.电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。

相关文档
最新文档