智能调节器特性实验

智能调节器特性实验
智能调节器特性实验

智能调节器特性实验

一、实验目的

1、了解智能工业调节器的功能和特性,学习调节器的正确使用方法。

2、了解调节器的PID调节规律及其实现方法.

3、掌握调节器比例度、积分时间、微分时间的校验方法

4、了解控制参数自整定的方法。

5、了解控制参数整定在整个系统中的重要性

二、实验原理

(一)PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID 控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

(二)PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID 控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲

线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID 控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作﹔(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期﹔(3)在一定的控制度下通过公式计算得到PID 控制器的参数。 PID 参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P 、I 、D 的大小。

PID 控制器参数的工程整定,各种调节系统中P.I.D 参数经验数据以下可参照: 温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s 。

三、实验设备

智能工业调节器一台

THJ-3高级过程控制实验装置一台 四、实验内容

(一) PID 控制参数

国标GB11005.2-89DDZ-III 系列单元组合仪表调节器中规定了调节器的检验项目,本实验仅做其中的自动-手动切换比例作用,积分时间,微分时间等主要项目的检定。

(二)参数自整定

设计一个控制系统,设置仪表参数,进行参数自整定调节。

五、实验方案与步骤

(一) 手动—自动无扰动切换电路检查 1、检查实验装置接线,接通电源

按A/M 键,处于手动状态,使MAN 灯亮,调手操器阀位,观察调节器的输出指示值在4-20mA 是否与手操数码阀位同步。

2、通过△,▽和△▽键可对调节器给定值进行修改,调输入电流与给定相等,使偏差为零,使手操数码阀位与调节器输出指示值一致,按A/M 键,使“AUTO ”指示灯亮,处于自动状态,再由自动至手动状态,这时电流变化应不大于±0.08mA. (二)比例度的检测

D I P

T D T I K P ===

,,1

()()()()???

?

?

?++=?

t

D

I P dt t de T dt t e T t e K t u 0

1 ()e P

e K t u P 1

=

= (0,=∞=D I T T ) 1、 参数设置

设置比例度参数为50% 2、“手动模式”中设置调节器阀位输出值为0%。按量程20%(6cm )加入阶跃信号

3、选择“PID 模式”,使调节器处于“自动”状态,待调节器输出值稳定后,读取相应的阀位值Y%。

4、将调节器的比例度分别置100%、200%、400%重复步骤2和3。 (三)积分时间的检测

()()()???

?

?

?+=?t

I P dt t e T t e K t u 01 ()e T t

e t u I

+

= (0%,100==D T P ) 1、 设置比例度参数为100%,积分时间为10; 2、 “手动模式”中设置调节器阀位输出值为0%。

3、给调节器量程20%(6cm )加入阶跃信号,同时按下秒表,开始计时,可观察到调节器输出阀位值开始跳变,然后斜线上升,记录其上升到40%,60%,80%的时间,计算积分时间Ti 。

4、设置积分时间为20、30,重复2,3步骤。 (四)微分时间检测

(五)调节器PID 参数自整定 1、搭建液位控制系统,,设置SV=10,ctrl=2;

2、当At 闪烁字符消失时,记录下此时的M5,P ,t 参数。

六、实验数据与处理

1、 比例度检查(允许误差:±25%)

表中%100//?=

输出信号量程

输出信号变化量输入信号量程

输入信号变化量测定P

=

()()%100%4-20mA/420%20Y mA -? =

%1002000

?Y

误差δ=

%100?-设置

测定

设置P P P

2

3、微分相应曲线

分析如何测定微分时间。

4、记录下自整定后下面参数的参数值。

实验思考题:

1、PID控制参数变化对被控对象过程的影响分别是什么?

2、PID参数整定方法有哪些?

传感器实验报告.doc

实验一金属箔式应变片性能—单臂电桥 1、实验目的了解金属箔式应变片,单臂单桥的工作原理和工作情况。 2、实验方法在CSY-998传感器实验仪上验证应变片单臂单桥的工作原理 3、实验仪器CSY-998传感器实验仪 4、实验操作方法 所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、F/V表、主、副电源。 旋钮初始位置:直流稳压电源打倒±2V档,F/V表打到2V档,差动放大增益最大。 实验步骤: (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。 (3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V 档,F/V表置20V档。开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,等待数分钟后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 (4) 将测微头转动到10㎜刻度附近,安装到双平行梁的右端即自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使V/F表显示值最小,再旋动测微头,使V/F表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5) 往下或往上旋动测微头,使梁的自由端产生位移记下V/F表显示的值,每旋动测微头一周即 压值的相应变化。

DS18B20温度传感器实验

DS18B20温度传感器实验Proteus仿真原理图: DS18B20内部结构:

/************************* 源程序 ****************************/ #include #include #define uint unsigned int #define uchar unsigned char #define delayNOP() {_nop_();_nop_();_nop_();_nop_();} sbit DQ = P3^3; sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "}; uchar code Temperature_Char[8] = { 0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0 }; uchar code df_Table[]= { 0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9 }; uchar CurrentT = 0; uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0}; bit DS18B20_IS_OK = 1; void DelayXus(uint x) { uchar i; while(x--) { for(i=0;i<200;i++); } } bit LCD_Busy_Check(){ bit result; LCD_RS = 0; LCD_RW = 1; LCD_EN = 1; delayNOP(); result = (bit)(P0&0x80); LCD_EN=0; return result; } void Write_LCD_Command(uchar cmd) { while(LCD_Busy_Check()); LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; _nop_(); _nop_(); P0 = cmd; delayNOP(); LCD_EN = 1; delayNOP(); LCD_EN = 0; }

实验四 电容式传感器的位移特性实验

实验四 电容式传感器的位移特性实验 一、实验目的 了解电容传感器的结构及特点,电容传感器的位移测量原理。 二、实验仪器 电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源、绝缘护套 三、实验原理 电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器,它实质上是具有一个可变参数的电容器。利用平板电容器原理: d S d S C r ??= = εεε0 (4-1) 式中,S 为极板面积,d 为极板间距离,ε0真空介电常数,εr 介质相对介电常数,由此可以看出当被测物理量使S 、d 或εr 发生变化时,电容量C 随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。这里采用变面积式,如图4-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。 图4-1 差动电容传感器原理图 四、实验内容与步骤 1.按图4-2将电容传感器安装在传感器固定架上,将传感器引线插入电容传感器实验模块插座中。 图4-2 电容传感器安装示意图 2.将电容传感器模块的输出U O 接到数显直流电压表。 3.将实验台上±15V 电源接到传感器模块上。检查接线无误后,开启实验台电源,用

电压表2V档测量“电容传感器模块”的输出,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(2V档)。(Rw确定后不要改动) 4.旋动测微头推进电容传感器的共享极板(下极板),每隔0.2mm记下位移量X与输出电压值V的变化,填入下表4-1。 五、实验报告 1.根据表4-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。

开关机械特性测试仪说明书

开关机械特性测试仪说明书 由于输入输出端子、测试柱等均有可能带电压,在插拔测试线、电源插座时,会产生电火花,小心电击, 避免触电危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 只有合格的技术人员才可执行维修。 —防止火灾或人身伤害 使用适当的电源线。只可使用专用并且符合规格的电源线。 正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险,请注意所有额定值和标记。在进行连接之前,请阅读使用说明书,以便进一步了解有关额定值的信息。 使用适当的保险丝。只可使用符合规定类型和额定值的保险丝。避免接触裸露电路和带电金属。有电时,请勿触摸裸露的接点和部位。

请勿在潮湿环境下操作。 请勿在易爆环境中操作。 -安全术语 警告:警告字句指出可能造成人身伤亡的状况或做法。 目录 一、介绍 (5) 二、面板介绍 (7) 三、仪器操作说明 (10) 四、开关接线案例 (14) 五、注意事项 (19)

第一部分:介绍 1.1概述 HTGK-H 高压开关测试仪以单片机为核心进行采样,处理和输出,其主要特点是采用汉字提示以人机对话的方式操作,汉字显示结果并打印输出,具有智能化、功能多、数据准确、抗干扰性强、操作简单、体积小、重量轻、外观美等优点,适用于各种户内、户外少油、多油开关、真空开关、六氟化硫开关的动特性测试。 1.2主要测试项目及功能 1.12个断口的固有分、合闸时间; 2.重合闸时间; 3.分、合闸最大不同期性; 4.刚分、刚合速度; 5.弹跳时间及幅度; 6.开关开距及开关超行程(真空开关预置开关行程); 7.分、合闸平均速度; 8.显示、打印速度—距离曲线 1.3 主要技术指标 1.时间测量 同时可测量断口数:≤12个 测定过程整定时间:0—6秒 分辨率:0.1ms

实验一电阻应变片传感器特性实验

实验一、二 电阻应变片传感器特性实验 一、 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥,全桥测量电路与单臂电桥的不同性能、了解各自的特点。 二、 基本原理: 敏感元件—金属箔在外力作用下,其电阻值会发生变化。即金属的电阻应变效应。根据推导可以得出: l l k l l l l l l R R ?=???++=?++?=?02121)()(ρρμρρμ “应变效应”的表达式。k 0称金属电阻的灵敏系数,从式(3)可见,k 0受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是) (ρερ ?,是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料 而言,以前者为主,则 μ210+≈k ,对半导体,0 k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸 比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数k 0=2左右。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4) 式中 σ——测试的应力; E ——材料弹性模量。 可以测得应力值σ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 单臂电桥:即应变片电阻接入电桥的一臂,测出其电阻变化值,结构比较简单,但是灵敏度较差; 半桥:把不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压UO2=EG ε/2。式中E 为电桥供电电压。 全桥:测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U 03=KE ε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善 三、需用器件与单元:应变式传感器实验模板、砝码、数显表、±15V 电源、±5V 电源、万用表。 四、实验内容与步骤: 1、应变片的安装位置如图(1-1)所示,应变式传感器已装到应变传感器模块上。传感器中各应变片已接入模板的左上方的R1、R 2、R 3、R4。可用万用表进行测量,R1=R2=R3=R4=350Ω。 R1 R2 R3R4 图1-1 应变式传感器安装示意图 图1-2 应变式传感器单臂电桥实验接线图 2、接入模板电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,顺时针调节Rw2使之大致位于中间位置,再进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。(注意:当Rw2的位置一旦确定,就不能改变。) 3、按图1-2将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、

扩散硅压阻式压力传感器的压力测量实验

实验十一 扩散硅压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理与方法。 二、实验仪器 压力传感器模块、温度传感器模块、数显单元、直流稳压源+5V 、±15V。 三、实验原理 在具有压阻效应的半导体材料上用扩散或离子注入法,摩托罗拉公司设计出X 形硅压力传感器如下图所示:在单晶硅膜片表面形成4个阻值相等的电阻条。并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。 扩散硅压力传感器的工作原理:在X 形硅压力传感器的一个方向上加偏置电压形成电流 i ,当敏感芯片没有外加压力作用,内部电桥处于平衡状态,当有剪切力作用时,在垂直电流方向将会产生电场变化i E ??=ρ,该电场的变化引起电位变化,则在端可得到被与电流 垂直方向的两测压力引起的输出电压Uo 。 i d E d U O ???=?=ρ (11-1) 式中d为元件两端距离。 实验接线图如图11-2所示,MPX10有4个引出脚,1脚接地、2脚为U o+、3脚接+5V电源、4脚为Uo-;当P1>P2时,输出为正;P1

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

传感器实验四报告

传感器与检测技术实验报告 课程名称:传感器与检测技术 实验项目:电势型传感器实验 实验地点: 专业班级: 学号: 姓名: 指导教师: 2013年11 月11 日

实验一线性霍尔传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:本实验采用的霍尔式位移传感器是由线性霍尔元件、永久磁钢组成,霍尔式位移传感器的工作原理和实验电路原理如图所示。将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0, (a)工作原理(b)实验电路原理 设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。当霍尔 元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大输出为V。V与X有一一对应的特性关系。 三、需用器件与单元: 主机箱中的±2V~±10V直流稳压电源、±15V直流稳压电源、电压表;霍尔传感器实验模板、霍尔传感器、测微头。 四、实验步骤: 调节测微头的微分筒,使微分筒的0刻度线对准轴套的10mm 刻度线。按示意图安装、接线,将主机箱上的电压表量程切换开关打到2V档,±2V~±10V直流稳压电源调节到±4V档。检查接线无误后,开启主机箱电源,移动测微头的安装套,使传感器的PCB板处在两园形磁钢的中点位置时,拧紧紧固螺钉。再调节RW1使电压表显示0。测位移使用测微头时,当来回调节微分筒使测杆产生位移的过程中本身存在机械回程差,为消除这种机械回差可用单行程位移方法实验:顺时针调节测微头的微分筒3周,记录电压表读数作为位移起点。以后,反方向调节测微头的微分筒,每隔△X=0.1mm从电压表上读出输出电压Vo值,将读数填入表 表17 霍尔传感器(直流激励)位移实验数据 根据表17数据作出V-X实验曲线,分析曲线在不同测量范围(±0.5mm、±1mm、 ±2mm)时的灵敏度和非线性误差。实验完毕,关闭电源。

【人力资源】实验4-18用压力传感器和温度传感器资料

第五章 热学实验 热学实验是大学物理实验中的重要内容。在理想热学实验中,应遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。我们的实验内容设计了对空气的比热容比进行测定。 §5.1空气比热容比的测定 气体的定压比热容与定容比热容之比称为气体的绝热指数,它是一个重要的热力学常数,在热力学方程中经常用到,本实验用新型扩散硅压力传感器测空气的压强,用电流型集成温度传感器测空气的温度变化,从而得到空气的绝热指数;要求观察热力学现象,掌握测量空气绝热指数的一种方法,并了解压力传感器和电流型集成温度传感器的使用方法及特性。 【预习重点】 1.了解理想气体物态方程,知道理想气体的等温及绝热过程特征和过程方程。 2.预习定压比热容与定容比热容的定义,进而明确二者之比即绝热指数的定义。 3.认真预习实验原理及测量公式。 【实验目的】 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.了解压力传感器和电流型集成温度传感器的使用方法及特性。 【实验原理】 理想气体的压强P 、体积V 和温度T 在准静态绝热过程中,遵守绝热过程方程:PV γ 等于恒量,其中γ是气体的定压比热容P C 和定容比热容V C 之比,通常称γ=V P C C /为该气体的比热容比(亦称绝热指数)。 如图5.1.1所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。

(1)首先打开放气阀A ,贮气瓶与大气相通,再关闭A ,瓶内充满与周围空气同温(设为0T )同压(设为0P )的气体。 (2)打开充气阀B ,用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀B 。此时瓶内空气被压缩,压强增大,温度升高。等待内部气体温度稳定,即达到与周围温度平衡,此时的气体处于状态I (1P ,1V ,0T )。 (3)迅速打开放气阀A ,使瓶内气体与大气相通,当瓶内压强降至0P 时,立刻关闭放气阀A ,将有体积为ΔV 的气体喷泻出贮气瓶。由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。在此过程后瓶中的气体由状态I (1P ,1V ,0T )转变为状态II (0P ,2V ,1T )。2V 为贮气瓶容积,1V 为保留在瓶中这部分气体在状态I (1P ,0T )时的体积。 (4)由于瓶内气体温度1T 低于室温0T ,所以瓶内气体慢慢从外界吸热,直至达到室温 0T 为止,此时瓶内气体压强也随之增大为2P 。则稳定后的气体状态为III (2P ,2V ,0T )。从 状态II →状态III 的过程可以看作是一个等容吸热的过程。由状态I →II →III 的过程如图5.1.2所示。 图5.1.1 试验装置简图 图5.1.2 气体状态变化及P-V

DS18B20温度传感器实验

DS18B20温度传感器实验 TEMP1 EQU 5AH ;符号位和百位公用的存放单元TEMP2 EQU 5BH ;十位存放单元 TEMP3 EQU 5CH ;个位存放单元 TEMP4 EQU 5DH ; TEMP5 EQU 5EH TEMP6 EQU 5FH ;数据临时存放单元 TEMP7 EQU 60H TEMP8 EQU 61H ORG 0000H AJMP MAIN

ORG 0020H

MAIN: MOV SP,#70H LCALL INT ;调用DS18B20初始化函数 MAIN1: LCALL GET_TEMP ;调用温度转换函数 LCALL CHULI ;调用温度计算函数 LCALL DISP ;调用温度显示函数 AJMP MAIN1 ;循环 INT: L0: SETB P3.7 ;先释放DQ总线 MOV R2,#250 ;给R2赋延时初值,同时可让DQ保持高电平2us L1: CLR P3.7 ;给DQ一个复位低电平 DJNZ R2,L1 ;保持低电平的时间至少为480us SETB P3.7 ;再次拉高DQ释放总线 MOV R2,#25 L2: DJNZ R2,L2 ;保持15us-60us CLR C ORL C,P3.7 ;判断是否收到低脉冲 JC L0

MOV R6,#100 L3: ORL C,P3.7 DJNZ R6,L3 ;存在低脉冲保持保持60us-240us ; JC L0 ;否则继续从头开始,继续判断 SETB P3.7 RET ;调用温度转换函数 GET_TEMP: CLR PSW.4 SETB PSW.3 ;设置工作寄存器当前所在的区域 CLR EA ;使用DS18B20前一定要禁止任何中断LCALL INT ;初始化DS18B20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#44H ;送入温度转换命令 LCALL WRITE LCALL INT ;温度转换完成,再次初始化18b20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#0BEH ;送入读温度暂存器命令 LCALL WRITE

断路器机械特性及试验

断路器机械特性及试验 断路器的机械特性也就是物理特性,我们所做的断路器机械特性试验包括分合闸时间、速度、行程,开距,同期,弹跳等。我厂使用的是六氟化硫和真空断路器,本次总结拿真空断路器来说事,真空开关的机械特性对电气性能影响最大的是分闸运动特性(即分闸速度),因为断路器机械特性存在问题的话就会对电气性能造成影响及潜在 的隐患。 真空断路器的结构:

断路器的操动机构: 合闸过程:当手按下机构外壳的合闸按钮或启动合闸线圈Y3合闸过程便开始,于是脱扣机构12释放由预先已储能的盘簧带动主轴10,凸轮11和主轴10一起转动,绝缘连杆6由移动连杆8和凸轮带动,然后在每一相真空断路器的灭弧室2内的动触头16由绝缘连杆6带动向上运动,直至触头接触好为止,同时触头压力弹簧5被压紧,以保证主触头由适当的压力,在合闸过程中分闸弹簧7也同时被压紧。 分闸过程:当手按下机构外壳的分闸按钮或启动分闸线圈Y2分闸过程便开始,于是脱扣机构12释放仍有足够储能的盘簧带动主轴10进一步转动,由凸轮11和移动连杆8去释放分闸弹簧,于是动触头16和绝缘连杆6一起以一定

的速度向下运动,至分闸位置,同时触头压力弹簧5被压紧,以保证主触头由适当的压力,在合闸过程中分闸弹簧7也同时被压紧。 1.三相不同期:指开关三相分(合)闸时间的最大及最小值的差值。 2.弹跳时间:指开关的动静触头在合闸过程中发生的所有接触,分离(即弹跳)的累计时间值(即第一次接触到完全接触的时间)。 3.分闸时间:处于合闸位置的断路器,从分闸脱扣带电时刻到所有各极触头分离时刻的时间间隔。 4.合闸时间:处于分闸位置的断路器,从合闸回路带电时刻到所有极的触头都接触时刻的时间间隔。 5.开距:指开关从分状态开始到动触头与静触头刚接触的这一段距离。 真空断路器的主要作用:是控制和保护作用,根据系统运行的需要将部分或全部的的电气设备或线路投入或退出;当电力系统某一部分发生故障时,它和保护装置(综保)相配合,将该故障部分从系统中迅速切除,减少停电范围,防止事故扩大,保护系统中各类电气设备不受损坏,保证系统无故障部分安全运行。真空断路器处于合闸位置时,其对地绝缘由支持绝缘子承受,一旦真空断路器所连接的线路发生永久接地故障,断路器动作跳闸后,接地故障点又未被清除,则有电母线侧的对地绝缘要由该断路器断口的真空间隙承受(所以要做断口的工频耐压试验);各种故障开断时,断口一对触子间的真空绝缘间隙要耐受各种恢复电压的作用而不发生击穿。 断路器技术参数的合格范围:我们以ABB的12KV断路器为例来说明

实验三 热电阻、热点偶测温特性实验

实验三热电阻、热电偶测温特性实验 一、实验目的:了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理: 1、热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E 型、加热源。 四、实验步骤: (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

实验四 霍尔式传感器的静态位移特性—直流激励

南昌大学实验报告 学生姓名: 学 号: 专业班级: 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩: 实验四 霍尔式传感器的静态位移特性—直流激励 实验目的:了解霍尔式传感器的原理与特性。 所需单元及部件:霍尔片、磁路系统、电桥、差动放大器、V /F 表、直流稳压电源,测微头、振动平台。 有关旋钮的初始位置:差动放大器增益旋钮打到最小,电压表置2V 档,直流稳压电源置2V 档,主、副电源关闭。 实验步骤: (1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号,霍尔片安装在实验仪的振动圃盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔式传感器。 (2)开启主、副电源将差动放大器调零后,增益置接近最小,使得霍尔片在磁场中位移时V /F 表读数明显变化,关闭主,副电源,根据图1接线,W 1、r 为电桥单元的直流电桥平衡网络。 (3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。 (4)开启主、副电源,调整W1使电压表指示为零。 (5)上下旋动测微头,记下电压表读数,建议每隔0.2mm 读一个数,将读数填入下 表: 图1 接线图

做出V—X曲线,指出线性范围,求出灵敏度,关闭主、副电源。 可见,本实验测出的实际上是磁场情况,它的线性越好,位移测量的线性度也越好,它的变化越陡,位移测量的灵敏度也越大。 (6)实验完毕,关闭主、副电源,各旋钮置初始位置。 注意事项: (1)由于磁路系统的气隙较大,应使霍尔片尽量靠近极靴,以提高灵敏度。 (2)一旦调整好后,测量过程中不能移动磁路系统。 (3)激励电压不能过大,以免损坏霍尔片。(±4V就有可能损坏霍尔片)

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

实验十一 LM35温度传感器特性实验

实验十一 LM35温度传感器特性实验 【实验目的】 1、了解LM35温度传感器的基本原理和温度特性的测量方法; 2、测量LM35温度传感器输出电压与温度的特性曲线; 【实验仪器】 电磁学综合实验平台、LM35温度传感器、加热井、温度传感器特性实验模板 【实验原理】 1.电压型集成温度传感器(LM35) LM35温度传感器,标准T0-92工业封装,其准确度一般为±0.5℃。(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。内部的激光校准保证了极高的准确度及一致性,且无须校准。输出电压的温度系数K V=10.0mV/℃,利用下式可计算出被测温度t(℃): U O=K V*t=(10mV/℃)*t 即: t(℃)= U O/10mV (11-1)LM35温度传感器的电路符号见图11-1,V o为输出端实验测量时只要直接测量其输出端电压U o,即可知待测量的温度。 图11-1

图11-2LM35传感器特性实验连接图 【实验步骤】 1、按图11-2,将实验平台加热输出与加热井(加热接口)连接,实验台风扇接口与加热井(风扇接口)连接。 2、调节PID控温表,设置SV:在表面板上按一下(SET)按键,SV表头的温度显示个位将会闪烁;按面板上的“▲”或“▼”键调整设置个位的温度;在按面板上按一下(SET)按键即可,SV表头的温度显示个位将会闪烁,再按“<”键使表头的温度显示十位闪烁,按面板上的“▲”或“▼”键调整设置十位的温度;用同样方法还可设置百位的温度。调好SV所需设定的温度后,再按一下(SET)按键即可完成设置。将加热开关选择(快)档加热,待30秒后,仪器开始加热,控温表即可自动控制温度。调节不同温度,设定参照步骤2进行调节。 3、根据不同的实验连接不同的连接线,可参照上图。 【实验数据】 1、LM35传感器(工作电压5V)(直流电压表2V档测量) 表11-1 t(℃) 30 40 50 60 70 80 90 100 U 2、描绘.LM35传感器曲线,求出.LM35随温度变化的灵敏度S(mV/℃), 【注意事项】 1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

压阻式压力传感器的特性测试实验

压阻式压力传感器的特性测试实验 一、实验目的 了解扩散硅压阻式压力传感器测量压力的原理和标定方法。 二、实验内容 掌握压力传感器的压力计设计。 三、实验仪器 传感器检测技术综合实验台、压力传感器实验模块、压力传感器、导线。 四、实验原理 扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受到力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出敏感栅)组成电桥。在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。图13-1为压阻式压力传感器压力测量实验原理图。 + - 放大单元主台体上电压表 +4V 压阻式压力传感器Vo+ VS+ Vo- Vs- 图13-1 压阻式压力传感器压力测量实验原理 五、实验注意事项 1、严禁将信号源输出对地短接。 2、实验过程中不要带电拔插导线。 3、严禁电源对地短路。 六、实验步骤 1、将引压胶管连接到压力传感器上,其他接线按图13-2进行连接,确认连线无误且打开主台体电源、压力传感器实验模块电源。

电电电电 电电电电电电 Vin Vin Vout GND 电电电电电电±15V 电电 D5 C4++E2 C5 D4D6R29S1C1 R12 R13 R17R16 C2 R1 IC1 R14 R3 R5R4 R6 D1IC4 R7R20 R19 R9 C3 RW1 -15V GND +15V VCC GND Vout-Vout+R8R10 D2 R21电电电电电 D3E1D5R28IC2 IC3 R2 R18RW2 电电电电电电电电 电电电 电 电电 电电 电电电电电电电 R30 R31R21R21 1234567 810K 20K 51K 100K P1 +5V

实验十二集成电路温度传感器特性测量全解

实验十二集成电路温度传感器特性测量一.概述 温度传感器的特性测量和定标是大学普通物理热学实验和电磁学实验中的一个基本内容,是新的全国理工科物理实验教学大纲中一个重要实验。为开设好此实验,由复旦大学物理实验教学中心和上海复旦天欣科教仪器有限公司协作,联合研制了采用DS18B20单线数字温度传感器为测量元件的新一代恒温控制仪。新仪器与同类其它仪器相比,有以下四个优点:1)传感器体积小;2)控温精度高;3)无污染及噪声(无水银污染且不用继电器);4)设定温度和测量温度均用数字显示。本实验仪器可用于各种温度传感器的特性测量和各种材料的电阻与温度关系特性测量实验,本仪器也可用于物理化学实验做恒温仪用,它是理工科大学普通物理实验必备重要实验装置之一。 二.用途 1.电流型集成温度传感器AD590的特性测量和应用: (1)测量AD590输出电流和温度的关系,计算传感器灵敏度及C 0时传感器输出电流 值。 (2)用AD590传感器,电阻箱,数字电压表和直流电源等设计并安装数字式摄氏温度计。 (3)测量集成温度传感器AD590在某恒定温度时的伏安特性曲线,求出AD590线性 使用范围的最小电压 U。 r 三.仪器组成与技术指标 1.仪器组成 如图1所示,本机为有单片控制的智能式数字恒温控制仪、量程为0-19.999V四位半数字电压表、直流1.5V-12V稳压输出电源、可调式磁性搅拌器以及2000ml烧杯、加热器、玻璃管(内放变压器油和被测集成温度传感器)等组成。

图1 2.技术指标: A.温控仪 (1)温度计显示工作温度:0℃-100℃ (2)恒温控制温度:室温-80o C (3)控制恒温显示分辨精度:≤±0.1℃ B.直流数字电压表 (1)量程:0-19.999V (2)读数准确度:量程0.03%±5个字 (3)输出电阻:20Ω(为了防止长时间短路内接电阻) C.温度传感器DS18B20的结构与技术特性(控温及测温用): (1)温度测量范围:-55℃-125℃ (2)测温分辨率:0.0625℃ (3)引脚排列(如图2所示):

断路器机械特性测试用的位移传感器

龙源期刊网 https://www.360docs.net/doc/6a6954666.html, 断路器机械特性测试用的位移传感器 作者:刘立 来源:《科技传播》2012年第22期 摘要本文详细的介绍了位移传感器从最初单纯地记号笔方式到光标标定方式,再到光电 编码器方式,最后到仍然还在探索和发展阶段的与传感器的非接触测量的例如半导体激光位移传感器这样的方式,四个发展阶段以及两种机械特性的测量方式。 关键词断路器;位移传感器;测量方式 中图分类号TM56 文献标识码A 文章编号 1674-6708(2012)79-0138-02 1 位移传感器 所谓位移传感器又叫做线性传感器,它可以分为电感式、电容式、光电式、位移、超声波式、霍尔式多种形式。位移传感器的应用主要是在一些具有自动化装备的生产线上对模拟量来进行一些智能的控制。 2 位移传感器的四个主要发展阶段 断路器的机械特性测试的第一个阶段是将一个记号笔连接到动触头的连杆上,通过这个连接的记号笔在设定好坐标纸上的将断路器的运动轨迹来描绘出来,这样就可以非常直观地将行程值记录下来,并且可以将出现相对应的速度值方便地计算出来。在这里我们来看一下,记号笔所体现的功能其实就是位移传感器相应的功能。在这里比较具有代表性的两个仪器分别是振荡器和转鼓仪。 断路器的机械特性测试的第二个阶段是将一个滑线电阻的动臂固定在动触头的拉杆位置上,之后在滑线电阻的两端再施加一定额度的电压,把配合的16线示波器所得出来的那个行程时间来借助一下光标的标定所绘出的波形曲线,这样就可以得到所要了解的相关速度、行程数据,还可以把波形通过连接的打印机打印出来。这种方法主要是借助一个电子示波器,已经可以比较直观将断路器的机械特性测试出来。与此同时滑线电阻动臂也与动触头的拉杆一起运动用电压记录这一功能完成了速度测试、位移的传感器的两个功能,但是这个位移传感器的缺点就是调整起来会比较麻烦,测量的精度也相对比较低。 断路器的机械特性测试的第三个阶段,也是现在国内外很多用户都在使用的数字化、智能化以及图形化的一个综合的断路器机械特性的测试设备,例如国外很有名的KoCOS特性仪、宝珈马等以及国内现在正在被广泛使用的生产厂家的试验仪器设备。现在这种具有综合特性的设备的核心位移传感器绝大部分都是采用了滑线电阻尺或者是光电编码器。光电编码器也是在不断发展和完善的,从早些时候的分辨率比较低的割纹、打孔光电编码器到如现在分辨率非常高的印制有条纹薄膜的光电编码器,这种光电编码器具有很强的抗干扰性、将测量的数值自动

相关文档
最新文档