2009年高考数学专题复习函数、导数部分错题精选

2009年高考数学专题复习函数、导数部分错题精选
2009年高考数学专题复习函数、导数部分错题精选

2009年高考数学专题复习函数、导数部分错题精选

一、选择题:

1、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}

2,,,,=∈=x y x b a x x f y y x 中元素的个数为( )

A. 1

B. 0

C. 1或0

D. 1或2

2、已知函数()x f 的定义域为[0,1],值域为[1,2],则函数()2+x f 的定义域和值域分别是( )

A. [0,1] ,[1,2]

B. [2,3] ,[3,4]

C. [-2,-1] ,[1,2]

D. [-1,2] ,[3,4] 3、已知0<a <1,b <-1,则函数b a y x

+=的图象必定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

4、将函数()x

x f 2=的图象向左平移一个单位得到图象1C ,再将1C 向上平移一个单位得图象

2C ,作出2C 关于直线x y =对称的图象3C ,则3C 对应的函数的解析式为( )

A. ()11log 2+-=x y

B. ()11log 2--=x y

C. ()11log 2++=x y

D. ()11log 2-+=x y

5、已知函数()()x x f a

-=2log 1在其定义域上单调递减,则函数()(

)2

1log x

x g a -=的单调

减区间是( )

A. (]0,∞-

B. ()0,1-

C. [)+∞,0

D. [)1,0 6、函数x x x y sin cos -=在下面的哪个区间上是增函数( ) A. ??

?

??23,2ππ B. ()ππ2, C. ??? ??25,23ππ D. ()ππ3,2

7、设()x x x f s i n =,1x 、???

???-∈2,22ππx ,

且()1x f >()2x f ,则下列结论必成立的是( ) A. 1x >2x B. 1x +2x >0 C. 1x <2x D. 2

1x >2

2x 8、方程2log 2=+x x 和2log 3=+x x 的根分别是α、β,则有( ) A.

α<β B. α>β C. α=β D. 无法确定α与β的大小

9、若α、β是关于x 的方程()05322

2

=+++--k k x k x (R k ∈)的两个实根,则2

2

βα+的最大值等于( )

A. 6

B.

950

C. 18

D. 19 10、若ax y =与x

b y -=在()+∞,0上都是减函数,对函数bx ax y +=3

的单调性描述正确的

是( )

A. 在()+∞∞-,上是增函数

B. 在()+∞,0上是增函数

C. 在()+∞∞-,上是减函数

D. 在()0,∞-上是增函数,在()+∞,0上是减函数 11、已知奇函数()x f 在()0,∞-上单调递减,且()02=f ,则不等式()()11--x f x >0的解

集是( )

A. ()1,3--

B. ()()3,11,1 -

C. ()()+∞-,30,3

D. ()()+∞-,21,3 12、不等式(

)

32log 2

+-x x a ≤1-在R x ∈上恒成立,则实数a 的取值范围是( ) A. [)+∞,2 B. (]2,1 C. ??????1,21 D. ???

??21,0

13、方程0122

=++x ax 至少有一个负的实根的充要条件是( )

A. 0

B. a <1

C.a ≤1

D. 0

-=x a

y (a >0且a ≠1)的图象可能是

(A ) (B )

(C ) (D )

15、函数()x f y =是R 上的奇函数,满足()()x f x f -=+33,当x ∈(0,3)时()x

x f 2=,

则当x ∈(6-,3-)时,()x f =( ) A. 6

2

+x B. 6

2

+-x C. 6

2

-x D. 6

2

--x

16、函数()()()b x b x a ax x f +-+-+=34812

3

的图象关于原点中心对称,则()x f

A. 在[]

34,34-上为增函数

B. 在[]34,34-上为减函数

C. 在[)+∞,34上为增函数,在(]34,-∞-上为减函数

D. 在(]34,-∞-上为增函数,在[)+∞,34上为减函数

17、ααcos sin +=t 且αα3

3

cos sin +<0,则t 的取值范围是( ) A. [)0,2- B. []2,2- C. ()(]2,10,1 - D. ()(

)

+∞-,30,3

18、二次函数()x f 满足()()22+-=+x f x f ,又()30=f ,()12=f ,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是( )

A. ()+∞,0

B. [)+∞,2

C. (]2,0

D. [2,4] 19、已知函数()d cx bx ax x f +++=2

3

则 ( )

A. ()0,∞-∈b

B. ()1,0∈b

C. ()2,1∈b

D. ()+∞∈,2b

20、设(){}

12,2

++==bx x y y x M ,()(){}b x a y y x P +==2,,(){}

φ==P M b a S ,,

则S 的面积是 ( )

A. 1

B. π

C. 4

D. 4π

二、填空题:

21、函数x

y 1

=

(x >-4)的值域是____________________. 22、函数52--+=x x y 的值域是________________________. 23、函数x x y -+=

3的值域是_________________________.

24、若实数x 满足2cos log 2=+θx ,则28++-x x =_____________________. 25、设定义在区间[

]

222,22

---a a

上的函数()x x x f --=33是奇函数,则实数a 的值是

_______________________. 26、函数()12-=

x x f (x <-1)的反函数是_______________________.

27、函数()2

p

x p x x f +-

=在(1,+∞)上是增函数,则实数p 的取值范围是____________________.

28、已知集合{}

a x ax x x A -≤-=2,集合(){}21log 12≤+≤=x x B ,若B A ?,则

实数a 的取值范围是________________________.

29、已知函数()x f y =是定义在R 上的偶函数,当x <0时,()x f 是单调递增的,则不等式

()1+x f >()x f 21-的解集是_________________________.

30、已知()()

x x x f a a log log 2

+-=对任意??

? ??∈21,0x 都有意义,则实数a 的取值范围是

________________________________

31、函数432

--=x x y 的定义域为[]m ,0,值域为??

?

???--

4,425,则实数m 的取值范围是______________________.

32、函数()cox

x xcox

x f ++=

sin 1sin 的值域是______________________.

33、对于任意R x ∈,函数()x f 表示3+-x ,2

123+x ,342

+-x x 中的较大者,则()x f

的最小值是____________________________.

34、已知a >1,m >p >0,若方程m x x a =+log 的解是p ,则方程m a x x

=+的解是

____________________.

35、已知函数()()3122

--+=x a ax x f (a ≠0)在区间??

?

???-

2,23上的最大值为1,则实数 a 的值是____________________.

36、对于任意实数x 、y ,定义运算x *y 为:x *y =cxy by ax ++,其中a 、b 、c 为

常数,等式右边的运算是通常的加法和乘法运算,现已知1*2=3,2*3=4,并且有一个非零常数m ,使得对于任意实数x ,都有x *m =x ,则

m =______________________.

37、已知函数()()()[]

111lg 2

2

+++-=x a x a x f 的定义域为()+∞∞-,,则实数a 的取值范围

是________________________. 38、若函数())4(log -+

=x

a

x x f a (a >0且a ≠1)的值域为R ,则实数a 的取值范围是________________.

39、若曲线()2

1a x y --=与2+=x y 有且只有一个公共点P ,O 为坐标原点,则

OP 的取值范围是________________________.

40、若定义在区间D 上的函数()x f 对D 上的任意n 个值1x ,2x ,…,n x ,总满足

()()()[]n x f x f x f n

++211

≤??

?

?

?++n x x x f n 21

,则称()x f 为D 上的凸函数.已知函数x y s i n =在区间()π,0上是“凸函数”,则在△ABC 中,

C B A s i n s i n s i n ++的最大值是____________________.

答案:1 C 、 2 C 、3 A 、4 B 、5 D 、6 B 、7 D 、8 A 、9 C 、10 C 、11 B 、12 C 、13 C 、14 C 、15 B 、 16 B 、17 A 、18 D 、19 A 、20 B 、

21 ()1,0,4??

-∞+∞ ?

??

、 22[]7,7-、 23、 24 10、 25 2、 26)0y x =>

271p ≥、 28[]1,3、 29()()

,02,-∞+∞ 、 301,116??????、 31 3,32??

????

321???-- ?? ???

? 、 33 2、 34 m p - 、35 34或32--、 36 4、 37

5

3

a >或1a ≤- 、 38 04a <≤或1a ≠、 39

2?? 、

北大附中高考数学专题复习导数与微分经点答疑(四)

学科:数学 教学内容:导数与微分经点答疑(四) 11.什么是高阶导数? 我们知道函数2x y =的导数是x 2y ='.而导数x 2y ='仍是可导的,它的导数是()2y =''.这种导数的导数()''y 就称为对y 对x 的二阶导数.一般地我们有: 函数y =f (x )的导数()x f y '='仍是x 的函数,若函数()x f y '='的导数存在,则称 ()x f y '='的导数为y =f (x )的二阶导数.记作即或22dx y d y '' ().dx dy dx d dx y d y y 22??? ??=' '=''或 相应地,把y =f (x )的导数()x f '叫作函数y =f (x )的一阶导数. 同样,若二阶导数()x f y ''=''的导数存在,则称其导数为y =f (x )的三阶导数.记作 ()即或,dx y d x y 33''' ()()()()().dx y d dx d dx y d y y ,x f x f ,y y 22333???? ??=''''''=''''''='''或又记作 …… 一般地,若n -1阶导数()()()x f y 1n 1n --=的导数存在,则称其导数为y =f (x )的n 阶 导数.记作()()即或n n n n dx y d x f ,y ()()()()()()()().dx y d dx d dx y d x f x f ,y y 1n 1n n n n 1n 1n n ??? ? ??==''=----或 这里的n 称为导数()x f n 的阶数.二阶及二阶以上的导数统称为高阶导数. 若y =f (x )具有n 阶导数,也常说成函数f (x )为n 阶可导. 由以上高阶导数的定义可以看出,要求n 阶导数,需要求出n -1阶导数,要求n -1

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

函数与导数专题复习

函数与导数专题复习 类型一 导数的定义 运算及几何意义 例1:已知函数)(x f 的导函数为)('x f ,且满足x xf x f ln )1(2)(' +=,则=)1('f ( ) A .-e B.-1 C.1 D.e 解:x f x f 1)1(2)(''+=,1)1(1)1(2)1('''-=∴+=f f f 【评析与探究】求值常用方程思想,利用求导寻求)('x f 的方程是求解本题的关键。 变式训练1 曲线33+-=x x y 在点(1,3)处的切线方程为 类型二 利用导数求解函数的单调性 例2:d cx bx x x f +++= 233 1)(何时有两个极值,何时无极值?)(x f 恒增的条件是什么? 解:,2)(2'c bx x x f ++=当0442>-=?c b 时, 即c b >2时,0)('=x f 有两个异根2,1x x ,由)('x f y =的图像知,在2,1x x 的左右两侧)('x f 异号,故2,1x x 是极值点,此时)(x f 有两个极值。 当c b =2时,0)('=x f 有实数根0x ,由)('x f y =的图像知,在0x 左右两侧)(' x f 同号,故0x 不是)(x f 的极值点 当c b <2时,0)(' =x f 无根,当然无极值点 综上所述,当时c b ≤2,)(x f 恒增。 【评析与探究】①此题恒增条件c b ≤2易掉“=”号,②c b =2 时,根0x 不是极值点也易错。 变式训练2 已知函数b x x g ax x x f +=+=232)(,)(,它们的图像在1=x 处有相同的切线 ⑴求函数)(x f 和)(x g 的解析式;

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

2014高考二轮复习函数与导数专题(理科普通班)

肥东锦弘中学2014届高三二轮复习专题二——函数与导数 一 函数的概念 1 函数) 12(log 1)(2 1+=x x f 的定义域是 2 函数)(x f 的定义域是][2,0,则函数x x f x g ln )2()(=的定义域是 3 函数?????<+≥=4 ),1(4,)21()(x x f x x f x ,则)5log 1(2+f 的值为 4 求下列函数的值域 (1)1(0)y x x x =+>; (2)4 32++=x x x y (3)2552+++=x x x y ; (4)22232(0)(1) k k y k k ++=>+ 5 设函数2()2()g x x x R =-∈,()4()()()()g x x x g x f x g x x x g x +++-=+-a a a x g x f x x 且1≠a ,若a g =)2(,则=)2(f 3 已知定义在R 的函数)(x f ,且函数)3(-=x f y 的图像关于点)(0,3对称,当0≥x 时,x x x f 2)(2+=,若)()2(2a f a f >-,则实数a 的取值范围 4 设函数1 sin )1()(22+++=x x x x f 的最大值是M ,最小值是m ,则=+m M 5 已知定义在R 上的偶函数)(x f 满足)2()()4(f x f x f +=+,且在区间[0,2]上是减函数,有下列命题: (1)0)2(=f ; (2) 函数)(x f 的图象关于直线4-=x 对称; (3)函数)(x f 在(8,10)上单调递增; (4)若关于x 的方程m x f =)(在区间[-6,2]的两根为21,x x ,则这两根之和为-8.

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考理科数学数学导数专题复习

高考理科数学数学导数专 题复习 Last revision date: 13 December 2020.

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 在0x 处有增 称为函数,即 f 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ).()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果 )(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

函数与导数专题复习(精编)

函数与导数专题复习【知识网络】

第1课时 客观题中的函数常见题型 【典例分析】 题型一、函数的解析式 例1.(2010年高考陕西卷理科5)已知函数?????≥+<+=1 ,1 ,12)(2x ax x x x f x ,若((0))f f =4a , 则实数a =( ) (A ) 12 (B )4 5 (C) 2 (D ) 9 题型二、函数的定义域与值域 例2.(2009年江西卷)函数2 34 y x x = --+的定义域为( ) A .(4,1)-- B .(4,1)- C .(1,1)- D .(1,1]- 例3.(2008年江西卷)若函数()y f x =的值域是1,32?????? ,则函数()()1 ()F x f x f x =+ 的值域是( ) A .[21,3] B .[2,310] C .[25,310] D .[3,3 10] 整理:求函数值域的方法: (1) 观察法:观察函数特点 (2) 图像法:一元二次函数, 对勾函数, 指数函数, 对数函数, 三角函数 (3) 分离常数 (4) 换元法

题型三、函数的性质(奇偶性、单调性与周期性) 例4.(2010年高考山东卷理科4)设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-3 例5.(2010年高考江西卷理科9)给出下列三个命题: ①函数11cos ln 21cos x y x -= +与ln tan 2 x y =是同一函数; ②若函数()y f x =与()y g x =的图像关于直线y x =对称,则函数(2)y f x =与 1 ()2 y g x =的图像也关于直线y x =对称; ③若奇函数()f x 对定义域内任意x 都有()(2)f x f x =-,则()f x 为周期函数. 其中真命题是 A .①② B .①③ C .②③ D .② 题型四、函数图像的应用 例6.(2010年高考山东卷理科11)函数y =2x -2 x 的图像大致是 题型五、函数的最值与参数的取值范围 例7.(2010年高考江苏卷试题14)将边长为1m 正三角形薄片,沿一条平行于底边的 直线剪成两块,其中一块是梯形,记2 (S =梯形的周长) 梯形的面积 ,则S 的最小值是_______.

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

高中数学专题复习:专题复习(六)——函数与导数

专题复习(六)—— 函数与导数 (一)知识梳理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数 一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)导数的几何意义 函数f (x )在x =x 0处的导数就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率. (3)函数f (x )的导函数 称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.基本初等函数的导数公式 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.函数的单调性与导数的关系 已知函数f (x )在某个区间内可导,则 (1)如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增; (2)如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减; (3)若f ′(x )=0恒成立,则f (x )在这个区间内是常数函数. 5.理清导数与函数单调性的关系

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

相关文档
最新文档