电压电流 畸变率

电压电流 畸变率
电压电流 畸变率

电压谐波畸变率

高次谐波的分量

在理想状况下,电压波形应是周期性标准正弦波,但由于电力系统中存在有大量非线性阻抗特性的供用电设备,这些设备向公用电网注入谐波电流或在公用电网中产生谐波电压,称为谐波源。谐波源使得实际的电压波形偏离正弦波,这种现象称为电压正弦波形畸变。通常以谐波来表征。电压波形畸变的程度用电压正弦波畸变率来衡量,也称电压谐波畸变率。

电压谐波畸变率以各次谐波电压的均方根值与基波电压有效值之比的百分数来表示。

电压谐波畸变率=√(U2*U2+U3*U3+...+Un*Un)*100%/ U1

式中Un--第n次谐波电压有效值,V

U1--基波电压有效值,V

什么是电流畸变率?

谐波电流与基波电流的比值%

谐波畸变出现电压频率整倍数频率分量的一种非线性失真,即正弦波形的周期性畸变现象。

谐波畸变产生的主要危害

(1)导致电力变压器发热谐波导致电力变压器发热源于两方面原因,其一是谐波电流能增加变压器的铜损和漏磁损耗;其二是谐波电压能增加铁损。变压器的发热程度直接影响了变压器使用容量的降低程度。

(2)导致电力电缆发热在三相对称回路中,三次谐波在三相导线中相位相同,在中性线上叠加后产生了3倍于相线的谐波电流和谐波电压,导致中性线温度升高。智能建筑中大量的OA设备及电子式荧光灯均使三次谐波在系统中的占有率增大,因此谐波引起中性线发热问题值得关注。当高频电流通过导线时,电流具有集肤效应,显然高次谐波电流的存在使线路集肤效应加重,线路外表面电流密度加大,从而导致线路(相线及中性线)发热。

(3)导致对电子设备的干扰智能建筑中自动化及电子信息设备均要求有较高的电源质量,且都工作于低电压水平,极易受到谐波的干扰而使控制失常。控制失常可能引发三A 系统的严重故障。

(4)导致低压配电设备工作异常谐波畸变可使配电用低压电器设备(断路器、漏电保护器、接触器、热继电器等)发生故障。谐波电流使低压电器设备铁损、铜损增加,集肤效应加剧,从而产生异常发热,误动作等故障。

谐波畸变的防范措施鉴于智能建筑对三A系统运行的高可靠性要求,应适当采取消除或抑制谐波危害的防范措施如下:

(1)在根据负载确定电力变压器额定容量时,应考虑谐波畸变而留有格量。在民用建筑设计中一般应保证变压器负荷率为70%~80%左右,该负荷率的工程裕量即可防范谐波

引起的变压器发热危害。

(2)在电缆截面选择中应考虑谐波引起线缆发热的危害。对于联接谐波主要扰动源设备的配线,确定线缆载流量时应日有足够裕量,可适当放大一级选择线缆截面。在三相四线制系统中,应考虑三次谐波电流和高次谐波电流引起的集肤郊应对中性线的发热危害,即在中性线截面的选择中国有足够裕量。

(3)在设计和施工阶段,建议采取以下措施抑制谐波对电子设备的干扰。①为该类设备设计专用回路供电,尽可能避免干扰沿供电线路窜入。②为易受干扰设备加装线路滤波器,消除或抑制谐波分量,达到净化电源目的。③使该类设备配线尽可能远离谐波电流畸变严重的线路,以避免空间电磁干扰。

电压谐波总畸变率

电压谐波总畸变率 一、定义 在理想状况下,电压波形应是周期性标准正弦波,但由于电力系统中存在有大量非线性阻抗特性的供用电设备,这些设备向公用电网注入谐波电流或在公用电网中产生谐波电压,称为谐波源。谐波源使得实际的电压波形偏离正弦波,这种现象称为电压正弦波形畸变,通常以谐波来表征。电压波形畸变的程度用电压正弦波畸变率来衡量,也称电压谐波畸变率。 二、计算方法 电压谐波畸变率以各次谐波电压的均方根值与基波电压有效值之比的百分数来表示。 电压谐波畸变率=√(U2*U2+U3*U3+...+Un*Un)*100%/U1 式中Un--第n次谐波电压有效值,U1--基波电压有效值。 三、谐波畸变产生的危害 1、导致电力变压器发热。谐波导致电力变压器发热源于两方面原因,其一是谐波电流能增加变压器的铜损和漏磁损耗;其二是谐波电压能增加铁损。变压器的发热程度直接影响了变压器使用容量的降低程度。 2、导致电力电缆发热。在三相对称回路中,三次谐波在三相导线中相位相同,在中性线上叠加后产生了3倍于相线的谐波电流和谐波电压,导致中性线温度升高。智能建筑中大量的OA设备及电子式荧光灯均使三次谐波在系统中的占有率增大,因此谐波引起中性线发热问题值得关注。当高频电流通过导线时,电流具有集肤效应,显然高次谐波电流的存在使线路集肤效应加重,线路外表面电流密度加大,从而导致线路(相线及中性线)发热。 3、导致对电子设备的干扰。智能建筑中自动化及电子信息设备均要求有较高的电源质量,且都工作于低电压水平,极易受到谐波的干扰而使控制失常。控制失常可能引发三A系统的严重故障。 4、导致低压配电设备工作异常。谐波畸变可使配电用低压电器设备(断路器、漏电保护器、接触器、热继电器等)发生故障。谐波电流使低压电器设备铁损、铜损增加,集肤效应加剧,从而产生异常发热,误动作等故障。 四、防范措施 1、在根据负载确定电力变压器额定容量时,应考虑谐波畸变而留有格量。在民用建筑设计中一般应保证变压器负荷率为70%~80%左右,该负荷率的工程裕量即可防范谐波引起的变压器发热危害。 2、在电缆截面选择中应考虑谐波引起线缆发热的危害。对于联接谐波主要扰动源设备的配线,确定线缆载流量时应日有足够裕量,可适当放大一级选择线缆截面。在三相四线制系统中,应考虑三次谐波电流和高次谐波电流引起的集肤郊应

10KVPT含3次谐波

10kV系统的电压谐波分析 南京供电公司计量中心曹根发 摘要:本文对10kV小电流接地系统的电压谐波,由于10kV电压互感器中 性点的消谐电阻,及接地变一侧的灭弧线圈等原因,而造成的错误测试结果,进行了分析,并针对这种现象提出改进的测试方法。 1.前言 由于生产发展的需要和国家电力总公司及江苏省公司的要求,我市公司对所辖范围内的电网,配网电能质量,(电压谐波占有率)进行了一次普测、普查。 由于10kV配网系统采用了小电流接地的运行方式,10KV配网的电压互感器接线方式如图1所示。在PT的一次侧中性点到地串接一只电阻,称消谐电阻。此电阻一般由氧化锌阀片构成,在正常运行方式下,无电流通过此电阻。一次侧中心点与地等电位。近似与Y/Y型接法。而主变接线方式则是Y/Δ型接法。所以在10kV母线上并一只接地变,采用Y/Y型接法。在变一侧中心点串一只电抗器,俗称灭弧线圈。在10kV系统形成中心点接地的运行方式。 国标规定电压失谐率是相电压的谐波百分比含量做为判别限值的标准。从而规范了测试信号是相电压,与之相应的测试设备的接线方式是“Y”型接法。若取线电压为取样信号。测试设备需按“△”接法,结果将造成取样信号中的3n次谐波被抵消,抵消量大小,与3n次谐波电压与同相的基波电压相位及相电压的不平衡度有关。 在普查进程中,我们发现有6座110kV变电站中的9条10kV母线严重超标。共同特征是3次电压畸变率是造成超标的最主要因素。其余各次谐波含量不大。且占比例极低。同时所有电压谐波超标的10kV母线,电压三相不平衡度也接近或超过国标值。(国标Σu <2%) 切除变电站10kV侧的补偿电容器组,仅五次谐波有所下降,三次谐波下降量不大总畸变率仍居高不下。在10kV电源侧110KV测得,3次电压谐波仅有1%左右。而在这9条母线供电范围内,并无大型工矿企业,和大型非线性生产用户。

谐波测试报告

谐波测试评估报告一、谐波测试(只测量了AC相) 图一:电压谐波总畸变率曲线 图二:谐波电流频谱图

监测时间: 参数 A相C相 限值95%值结论95%值结论 基波电压(kV)10.512 ------ 10.502 ------ ------- 2至25次谐波电压含有率(%)2 0.03454 合格0.01092 合格 1.60 3 0.19926 合格0.15543 合格 3.20 4 0.03408 合格0.00670 合格 1.60 5 0.16759 合格0.17845 合格 3.20 6 0.02714 合格0.00746 合格 1.60 7 0.25205 合格0.24453 合格 3.20 8 0.03559 合格0.01170 合格 1.60 9 0.05251 合格0.04012 合格 3.20 10 0.03198 合格0.01110 合格 1.60 11 0.25849 合格0.23378 合格 3.20 12 0.03327 合格0.00933 合格 1.60 13 0.16225 合格0.16792 合格 3.20 14 0.02927 合格0.01277 合格 1.60 15 0.06167 合格0.03726 合格 3.20 16 0.02944 合格0.00777 合格 1.60 17 0.46499 合格0.49567 合格 3.20 18 0.02481 合格0.00602 合格 1.60 19 0.70382 合格0.82298 合格 3.20 20 0.02479 合格0.00736 合格 1.60 21 0.04745 合格0.02988 合格 3.20 22 0.02127 合格0.00644 合格 1.60 23 0.06317 合格0.08257 合格 3.20 24 0.02202 合格0.00853 合格 1.60 25 0.06950 合格0.07423 合格 3.20 电压总畸变率(%)0.95432 合格 1.04190 合格 4.00 短时间闪变(l)0.21041 ------ 0.07000 ------ ------ 长时间闪变(l)0.25475 合格0.09240 合格 1.00 三、频率及电压不平衡率评估 监测时间 参数最大值平均值最小值95%值限值结论频率(Hz)50.048 50.003 49.961 ±0.032 ±0.20 合格负序电压不平衡度(%)100.000 0.14991 0.01000 0.11000 2.00 合格

总谐波畸变率标准及术语

总谐波畸变率标准及术 语 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

总谐波畸变率 total harmonic distortion (THD) 周期性交流量中的谐波含量的方均根值与其基波分量的方均根值之比(用百分数表示)。电压总谐波畸变率以THDu 表示电流总谐波畸变率以THDi 表示。 THD一般指的是以2次~39次谐波总量与基波的百分比,再高次的谐波因绝对值太小而忽略不计。 电能质量公用电网谐波时间: 2003-12-22 13:08:44 中华人民共和国国家标准 电能质量公用电网谐波GB/T 14549 93 Quality of electric energy supply Harmonics in public supply network 国家技术监督局1993-07-31 批准 1994-03-01 实施 1 主题内容与适用范围 本标准规定了公用电网谐波的允许值及其测试方法 本标准适用于交流额定频率为50Hz 标称电压110kV 及以下的公用电网 标称电压为220kV 的公用电网可参照110kV 执行

本标准不适用于暂态现象和短时间谐波 2 引用标准 GB 156 额定电压 3 术语 公共连接点point of common coupling 用户接入公用电网的连接处 谐波测量点harmonic measurement points 对电网和用户的谐波进行测量之处 基波(分量) fundamental (component) 对周期性交流量进行付立叶级数分解得到的频率与工频相同的分量 谐波(分量) harmonic (component) 对周期性交流量进行付立叶级数分解得到频率为基波频率大于1 整数倍的分量谐波次数(h) harmonic order(h) 谐波频率与基波频率的整数比 谐波含量(电压或电流) harmonic content (for voltage or current) 从周期性交流量中减去基波分量后所得的量

谐波的危害和国家相关标准

谐波的危害和国家相关标准 1 谐波的危害性 1.1 谐波产生的原因 谐波是怎样产生的?在理想纯净的电力系统中,电流和电压都是纯正弦波。实际上,当电流流过与所加电压不呈线性关系的负载时,就形成非正弦电流。在只含线性元件(电感、电容及电阻)的简单电路里,流过的电流与所加电压成正比,所以如果所加的电压是正弦的话,流过的电流就是正弦的。应指明,在有无功元件的场合,在电压和电流的相位有一个相对移动时,功率因数变低了,但线路仍是线性的。 任何周期性波形可分为一个基频正弦加上许多谐波频率的正弦。谐波频率是基频的整倍数。例如,基频为50Hz时,二次谐波为IOOHz,而三次谐波则为150Hz。 1.2 谐波造成的危害 理想的公用电网所提供的电压应该是单一而固定的频率以及规定的电压阀值。谐波电流和谐波电压的出现,对公用电网是一种污染,它使电器设备所处的环境恶化,也对周围的通信系统和公用电网以外的设备带来危害。在电力电子设备广泛应用之前,人们对谐波及其危害就进行过一些研究,并有一定认识,但那时谐波污染还不严重,没有引起足够重识。近三四十年来,各种电力电子装置的迅速普及使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度关注。谐波对公用电网和其它系统的危害大致有以下几个方面: (1):谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热甚至发生火灾。(2):谐波影响各种电器设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。对旋转电机(发电机和电动机)产生附加功率损耗、产生脉动转矩和噪声。此外,由整流器供电的电动机可引起明显的电压畸变。对异步电动机,转子过热是电压畸变带来的主要问题,谐波损失也取决于电动机特性,电动机的漏抗随谐波频率呈线性增加。脉动转矩是由空气间隙磁束(主要基波分量)和转子谐波电流磁束之间的相互作用而产生。传统设计的定速感应电动机其转速大约比第一临界转速高30%-40%。对可调速电动机则应分析其机械频振速度以避免由于脉动转矩放大而造成损坏。 负荷电流中的谐波在变压器中造成的损耗产生附加发热,降低了其负荷能力,其他如变压器电感与系统电容之间,可能在谐波频率时,发生谐振和温度周期变化,引起机械绝缘应力及铁心振动,产生附加损耗使变压器降低了带负荷能力。(3):谐波会引起公用电网中局部并联谐振和串联谐振,从而使谐波放大,就使(1)和(2)中的危害大大增加,甚至引起严重事故。谐波电流在导线上的发热比均方根电流造成的预期发热为高。这是由于集肤效应和邻近效应造成的。集肤效应是由于导线内部被外部各层所屏蔽,电流集中于外部,导线的电阻增加并随频率和导线的直径而增加。邻近效应是由于导线磁场使邻近导线内的电流分布畸变。例如对5次谐波电流,在邻近4/OAWC导线的交流和直流电阻之比为1.33。 三相四线制的配电网向单相负荷供电时,在中性导线上会造成不正常的高电流(3

总谐波畸变率标准及术语

总谐波畸变率 total harmonic distortion (THD) 周期性交流量中的谐波含量的方均根值与其基波分量的方均根值之比(用百分数表示)。电压总谐波畸变率以THDu 表示电流总谐波畸变率以THDi 表示。 THD一般指的是以2次~39次谐波总量与基波的百分比,再高次的谐波因绝对值太小而忽略不计。 电能质量公用电网谐波时间: 2003-12-22 13:08:44 中华人民共和国国家标准 电能质量公用电网谐波GB/T 14549 93 Quality of electric energy supply Harmonics in public supply network 国家技术监督局1993-07-31 批准 1994-03-01 实施 1 主题内容与适用范围 本标准规定了公用电网谐波的允许值及其测试方法 本标准适用于交流额定频率为50Hz 标称电压110kV 及以下的公用电网 标称电压为220kV 的公用电网可参照110kV 执行 本标准不适用于暂态现象和短时间谐波 2 引用标准 GB 156 额定电压 3 术语 3.1 公共连接点point of common coupling 用户接入公用电网的连接处 3.2 谐波测量点harmonic measurement points 对电网和用户的谐波进行测量之处 3.3 基波(分量) fundamental (component) 对周期性交流量进行付立叶级数分解得到的频率与工频相同的分量 3.4 谐波(分量) harmonic (component) 对周期性交流量进行付立叶级数分解得到频率为基波频率大于1 整数倍的分量 3.5 谐波次数(h) harmonic order(h) 谐波频率与基波频率的整数比

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

电压电流 畸变率

电压谐波畸变率 高次谐波的分量 在理想状况下,电压波形应是周期性标准正弦波,但由于电力系统中存在有大量非线性阻抗特性的供用电设备,这些设备向公用电网注入谐波电流或在公用电网中产生谐波电压,称为谐波源。谐波源使得实际的电压波形偏离正弦波,这种现象称为电压正弦波形畸变。通常以谐波来表征。电压波形畸变的程度用电压正弦波畸变率来衡量,也称电压谐波畸变率。 电压谐波畸变率以各次谐波电压的均方根值与基波电压有效值之比的百分数来表示。 电压谐波畸变率=√(U2*U2+U3*U3+...+Un*Un)*100%/ U1 式中Un--第n次谐波电压有效值,V U1--基波电压有效值,V 什么是电流畸变率? 谐波电流与基波电流的比值% 谐波畸变出现电压频率整倍数频率分量的一种非线性失真,即正弦波形的周期性畸变现象。 谐波畸变产生的主要危害 (1)导致电力变压器发热谐波导致电力变压器发热源于两方面原因,其一是谐波电流能增加变压器的铜损和漏磁损耗;其二是谐波电压能增加铁损。变压器的发热程度直接影响了变压器使用容量的降低程度。 (2)导致电力电缆发热在三相对称回路中,三次谐波在三相导线中相位相同,在中性线上叠加后产生了3倍于相线的谐波电流和谐波电压,导致中性线温度升高。智能建筑中大量的OA设备及电子式荧光灯均使三次谐波在系统中的占有率增大,因此谐波引起中性线发热问题值得关注。当高频电流通过导线时,电流具有集肤效应,显然高次谐波电流的存在使线路集肤效应加重,线路外表面电流密度加大,从而导致线路(相线及中性线)发热。 (3)导致对电子设备的干扰智能建筑中自动化及电子信息设备均要求有较高的电源质量,且都工作于低电压水平,极易受到谐波的干扰而使控制失常。控制失常可能引发三A 系统的严重故障。 (4)导致低压配电设备工作异常谐波畸变可使配电用低压电器设备(断路器、漏电保护器、接触器、热继电器等)发生故障。谐波电流使低压电器设备铁损、铜损增加,集肤效应加剧,从而产生异常发热,误动作等故障。 谐波畸变的防范措施鉴于智能建筑对三A系统运行的高可靠性要求,应适当采取消除或抑制谐波危害的防范措施如下: (1)在根据负载确定电力变压器额定容量时,应考虑谐波畸变而留有格量。在民用建筑设计中一般应保证变压器负荷率为70%~80%左右,该负荷率的工程裕量即可防范谐波

谐波测试分析报告参考样本

测试报告 委托单位: 检测项目: 谐波测试 报告日期: 温州清华电子工程有限公司测试组 送:

目录 一、测试目的 (2) 二、测试依据 (2) 三、测试内容 (3) 四、测试信号与接线方式 (3) 采样信号 (4) 测试工况 (4) 接线方式 (4) 测试时间 (4) 五、测试结果 (5) 六、结论 (8) 附件测试数据

一、测试目的 XXXXXXX 一家工程用塑料管材制造商,是国内从事 PP-R 管道的龙头企业,目前35KV 变电所共有 3 台主变,1#,2#主变容量为 1250KVA,采用并联运行方式,3#主变容量为1600KVA,分别供挤出,注塑,波纹管,破碎造粒车间的供电,而大部分的电机都采用直流调速,工作时不同程度的产生谐波注入 35KV 母线,故通过对伟星新型建材有限公司三台主变 0.4KV 侧的谐波测试,了解该变低压母线上的谐波情况,来评估 0.4KV 级别电源的电能质量是否符合国标《GB14549-93 电能质量公用电网谐波》。 二、测试依据 綷◆●? GB14549-93《电能质量公用电网谐波》 表 1 公用电网谐波电压(相电压)限值 电网标称电压电压总谐波畸变各次谐波电压含有率% KV 率% 奇次偶次 0.38 5.0 4.0 2.0 6 10 4.0 3.2 1.6 35 66 3.0 2.4 1.2 110 2.0 1.6 0.8 表 2 1250KVA0.4KV 公用电网谐波电流限值 谐波次数 5 7 11 13 23 25 允许值129 91 58 50 29 25 表 3 1600KVA0.4KV 公用电网谐波电流限值 谐波次数 5 7 11 13 23 25 允许值165 118 75 64 37 32 谐波电流允许值计算见 GB14549-93 中公司(B1),其中变压器 1600KVA,短路容量为 26.7MVA, 1250KVA,短路容量为 20.8MVA。 綷◆●? GB/T 12326-2000 《电能质量电压波动和闪变》 电力系统公共连接点,由波动负荷产生的电压变动限值和变动频度、电压等 级有关,如表 3。 表 4 电压变动限值 频度 r,h-1 电压变动限值d,%LV、MV HV r≤1 4 3 1<r≤10 3 2.5 10<r≤100 2 2 1.5 100<r≤1000 1.25 1

电能质量及谐波标准

电能质量及谐波标准 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

电能质量及谐波标准 内容提纲 1.电能质量基本概念 2.电能质量的影响 3.电能质量国家标准综述 4.电能质量国家标准摘要 5.电能质量国外标准简介 6.谐波国家标准基本内容 7.国外谐波标准介绍 1 电能质量的基本概念 (1)电力系统概况:结构、有功和无功平衡,各种干扰 (2)电能质量——关系到电气设备工作(运行)的供电电压指标。 (3)电能质量指标:电压偏差、频率偏差、谐波、电压波动和闪变、三相电压不平衡度、暂时过电压和瞬态过电压、电压暂降、波形缺口、…… (4)电能质量指标特点: a. 空间上、时间上不断变化 b. 需要供、用电双方共同合作维护 (5)电能质量问题的由来 随电力工业诞生而存在的一个传统问题; 现代用电负荷结构发生了质的变化。电力电子技术广泛应用,家用电器普及,炼钢电弧炉和轧机的发展等,由于其非线性、冲击性以及不平衡的用电特性引起电能质量的恶化。 计算机的普及、IT产业的发展、微电子控制技术应用导致对电能质量要求越来越高。 例如:一个计算中心失电2s就可能破坏几十个小时数据处理结果,导致几十万美元产值损失; 1~2周波供电电压暂降,就可能破坏半导体生产线,导致上百万美元损失。 据统计美国因电能质量问题造成的损失每年高达260亿美元。 2005年由国际铜业协会(中国)的一次“中国电能质量行业现状与用户行为调研报告”中,调查了32个行业,共92个企业中有49个企业,因电能质量问题,在经济上损失~亿元(人民币),每个企业年经济损失约10万~100万(人民币)(其中有四家年损失1000万元以上)。 (6)关于电能质量的定义 Power Quality——电能质量(电源质量、电力质量、电力品质) 导致用户设备故障或不能正常工作的电压、电流或频率偏差。 合格电能质量的概念是指给敏感设备提供的电力和设置的接地系统是都适合于该设备正常工作的。 在电力系统中某一指定点上电的特性,这些特性可根据预定的基准技术参数来评价。 电压质量、电流质量、供电质量、用电质量。 实际上电能质量就是供电电压特性,即关系到用电设备工作(或运行)的供电电压各种指标偏离理想值(额定值或标称值)的程度。 2 电能质量的影响 各种指标的影响: (1)供电电压偏差 照明设备的发光和寿命;电动机的力矩、转速、发热、工效以及产品质量;变压器的发热、温升、损耗;并联

FFT谐波频谱相谱分析Matlab程序二则

FFT谐波频谱相谱分析Matlab程序二则 by ggihhimm 程序一:从Excel表中读取数据,然后分析其频谱、相谱和总谐波畸变率,并画出茎状图(stem),图示如下(测试数据含直流分量): %该程序从Excel表中读取数据,然后分析其频谱、相谱和总谐波畸变率 %一组数据+采样率显示频谱下面的阀值应适当调大注意I1rms的定义 clear all; close all; clc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% y=xlsread('HCwithDI_2.xls'); %一列数据:excel表格的第一列要知道数据的采样率,为 %保证结果的准确性,最好为整数倍周期 L=length(y); mdflag=1; %是否标点,1是,0否 del=1e-1; %删除的阀值,根据数据幅值大小来设置 Fs=50*L; %采样率 f0=50; %信号基波频率%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% f=0:L-1;

f=f*Fs/L/f0; %输出图像横轴为谐波次数 yfft=fft(y); yfft(L/2+1:L)=[]; f(L/2+1:L)=[]; mag=abs(yfft)/L*2; %各次谐波幅值 ang=angle(yfft)*180/pi; mag(1)=mag(1)*0.5; %直流分量幅值 mag1=mag; mag1(mag<=del)=[]; %去掉偶数次谐波 ang1=ang; ang1(mag<=del)=[]; %去掉相应相角 f1=f; f1(mag<=del)=[]; %去掉相应序号 L1=length(f1); subplot(211); hdl1=stem(f1(1:L1),mag1(1:L1),'b:o'); set(hdl1,'MarkerFaceColor','red','Marker','square'); ylabel('各次谐波幅值/A'); tem=get(gca,'XLim'); xwidth=tem(end)-tem(1); x=zeros(1,L1); zhi=zeros(2,L1); dotstr=cell(2,L1); xright=1.5; %右调因子x(1)=f1(1)+xwidth/100*xright; %调整位置 if f1(L1)

电能质量及谐波标准

电能质量及谐波标准 内容提纲 1.电能质量基本概念 2.电能质量的影响 3.电能质量国家标准综述 4.电能质量国家标准摘要 5.电能质量国外标准简介 6.谐波国家标准基本内容 7.国外谐波标准介绍 1 电能质量的基本概念 (1)电力系统概况:结构、有功和无功平衡,各种干扰 (2)电能质量——关系到电气设备工作(运行)的供电电压指标。 (3)电能质量指标:电压偏差、频率偏差、谐波、电压波动和闪变、三相电压不平衡度、暂时过电压和瞬态过电压、电压暂降、波形缺口、…… (4)电能质量指标特点: a. 空间上、时间上不断变化 b. 需要供、用电双方共同合作维护 (5)电能质量问题的由来 ? 随电力工业诞生而存在的一个传统问题; ? 现代用电负荷结构发生了质的变化。电力电子技术广泛应用,家用电器普及,炼钢电弧炉和轧机的发展等,由于其非线性、冲击性以及不平衡的用电特性引起电能质量的恶化。 ? 计算机的普及、IT产业的发展、微电子控制技术应用导致对电能质量要求越来越高。 例如:一个计算中心失电2s就可能破坏几十个小时数据处理结果,导致几十万美元产值损失; 1~2周波供电电压暂降,就可能破坏半导体生产线,导致上百万美元损失。 据统计美国因电能质量问题造成的损失每年高达260亿美元。 2005年由国际铜业协会(中国)的一次“中国电能质量行业现状与用户行为调研报告”中,调查了32个行业,共92个企业中有49个企业,因电能质量问题,在经济上损失2.5~3.5亿元(人民币),每个企业年经济损失约10万~100万(人民币)(其中有四家年损失1000万元以上)。 (6)关于电能质量的定义 Power Quality——电能质量(电源质量、电力质量、电力品质) ? 导致用户设备故障或不能正常工作的电压、电流或频率偏差。 ? 合格电能质量的概念是指给敏感设备提供的电力和设置的接地系统是都适合于该设备正常工作的。? 在电力系统中某一指定点上电的特性,这些特性可根据预定的基准技术参数来评价。 ? 电压质量、电流质量、供电质量、用电质量。

谐波危害分析 (1)

谐波危害的详细分析 一、对输电线路的影响 谐波对电晕起始和熄灭的影响是峰一峰电压的函数。峰值电压与 谐波和基波的相角关系有关,所以即使有效值电压在限值以内而峰值 电压高出额定值也是可能的。因此,在输电线路的设计中要适当考虑 这一影响,以降低事故的可能性。 超高压长距离输电线路,常采用单相自动重合闸来提高电力系 统稳定性。较大的高次谐波电流(几十安培以上)能显着地延缓潜供电 流的熄灭,导致单相重合闸失败或不能采用较小的自动重合闸时间,不利于系统稳定运行。 在电缆输电的情况下,谐波电压以正比于其幅值电压的形式增加 了介质的电场强度。这一影响增大了局部放电、介损和温升,缩短了 电缆的使用寿命,增加了事故次数。电缆的额定电压等级越高,谐波 引起的上述危害也越大。 谐波电流流过导体表面时会产生集肤效应和邻近效应。集肤效应 是指导体中有交流电流流过或者处于交变电磁场中,由于电磁感应使 电流或磁通在导体中分布不均匀,越接近表面处电流密度或者磁通密 度越大的现象。电流频率越高,导体的电导率和磁导率越大,趋肤厚 度就越小,这时只要导体的截面积稍大,集肤效应就会相当严重,使 导体的电阻增大。 互靠近的导体中流过交流电流时,每一个导体不仅处于自身电流 产生的磁场中,同时还处于其他导体产生的磁场中,这时各个导体中 电流的分布和它单独存在时不一样,会受到邻近导体的影响,这种现 象叫做邻近效应。电流频率愈高,导体靠得愈近,邻近效应愈显着。邻近效应和集肤效应是共存的,它会使导体中电流的分布更加不均匀,使导体的电阻更加增大。 以上两种现象都会使线路或设备产生更多的附加发热,从而影响 绝缘寿命。除此之外,由于谐波电流会产生较高频率的电场,这种情 况下绝缘的局部放电加剧,介质损耗显着增加,致使温升增加,也会 影响绝缘寿命。 电流流过导体,其热效应会引起导体发热,其大小由下面的公式 决定: I为线路电流的有效值,用下式表示: 式中:THDi-谐波电流的畸变率;

10kV系统的电压谐波分析

10kV系统的电压谐波分析 摘要:本文对10kV小电流接地系统的电压谐波,由于10kV电压互感器中性点的消谐电阻,及接地变一侧的灭弧线圈等原因,而造成的错误测试结果,进行了分析,并针对这种现象提出改进的测试方法。 1、前言 由于生产发展的需要和国家电力总公司及江苏省公司的要求,我市公司对所辖范围内的电网,配网电能质量,(电压谐波占有率)进行了一次普测、普查。 由于10kV配网系统采用了小电流接地的运行方式,10kV配网的电压互感器接线方式如图1所示。在PT的一次侧中性点到地串接一只电阻,称消谐电阻。此电阻一般由氧化锌阀片构成,在正常运行方式下,无电流通过此电阻。一次侧中心点与地等电位。近似与Y/Y 型接法。而主变接线方式则是Y/Δ型接法。所以在10kV母线上并一只接地变,采用Y/Y 型接法。在变一侧中心点串一只电抗器,俗称灭弧线圈。在10kV系统形成中心点接地的运行方式。 国标规定电压失谐率是相电压的谐波百分比含量做为判别限值的标准。从而规范了测试信号是相电压,与之相应的测试设备的接线方式是“Y”型接法。若取线电压为取样信号。测试设备需按“△”接法,结果将造成取样信号中的3n次谐波被抵消,抵消量大小,与3n 次谐波电压与同相的基波电压相位及相电压的不平衡度有关。 在普查进程中,我们发现有6座110kV变电站中的9条10kV母线严重超标。共同特征是3次电压畸变率是造成超标的最主要因素。其余各次谐波含量不大。且占比例极低。同时所有电压谐波超标的10kV母线,电压三相不平衡度也接近或超过国标值。(国标Σu <2%)切除变电站10kV侧的补偿电容器组,仅五次谐波有所下降,三次谐波下降量不大总畸变率仍居高不下。在10kV电源侧110kV测得,3次电压谐波仅有1%左右。而在这9条母线供电范围内,并无大型工矿企业,和大型非线性生产用户。基本负荷是大型商场、高层写字楼及居民小区。仅照明、家用电器、电梯,难以形成如此高的仅以三次谐波为主要因素的电压畸变特征。 现场使用测试设备,经校验完全符合国标规定要求,同时也达到制造厂的技术规定。为搞清这9条10kV母线电压谐波严重超标的真正原应所在,我们运用了理论分析,现场测试二种方法。 2、理论分析 2.1谐波电流换算谐波电压法

高频开关电源谐波测试数据及计算方法--浙江大学报告

浙江大学电气工程学院 谐波测试报告浙江华友电子有限公司 2010-08-30

1监测背景 浙江华友电子有限公司地处浙、皖、赣三省七县交界处的开化县,成立于2004年11月,主要生产Ф63.5—200mmCZ单晶硅和Ф63.5—200mm单晶硅片等;公司原有的单晶炉电源由苏州盈科公司生产,安装有滤波设备。近期又新引进北京动力源科技有限公司制造的新型单晶炉电源。华友公司的测量数据初步结果显示,动力源生产的单晶炉电源和传统的单晶炉电源相比更加节能,但存在谐波不符合国家标准的可能性。 图 1.1华友电子有限公司测量时用电简图 测量时的用电简图如图 1.1所示。测量点所在的华友专变由两台1250KV A的变压器并联,共有24台单晶炉。其中22台单晶炉的电源由盈科公司制造,无源滤波器自动运行。两 台单晶炉电源由动力源生产,无滤波装置。 为了考查动力源公司生产的单晶炉电源工作时产生的谐波对电网的影响,故监测点选择在其中一台正在工作中的单晶炉电源计量柜,单晶炉采用三相四线制供电,监测A、B、C 三相的相电压和相电流。监测过程中,单晶炉经过了引晶、放肩、等径、高温回炉、收尾等工作状态。

2 监测仪器及监测设置 2.1 监测仪器 监测仪器采用日本富士电机公司开发的新型电能计测终端PowerSATELITE Ⅱ进行测量记录采样数据,可以对三相电压/电流进行监测,利用相关对监测数据进行综合分析。该设备带有LAN ,所以可以和各种带有网络的设备相连,实现远距离操作、监视和数据采集。 图 2.1 PSⅡ的外观 功能介绍: 采用32位浮点处理器和16A/D 转换器,可以进行交流电量的测量,按最大采样频率4860Hz 进行交流数据的采样,能够计算、记录有效值等各种信息。可以同时测量能量和记录波形。 具有GPS 电波的时间同步功能,在不同地点安装的终端也能记录同一时刻的信息,避免故障信号在网络传播中的时延。 除了传统的RS-485接口和RS-232接口,该装置提供了10BASE-T 接口,可以利用以太网组成测量网络。通过终端间的网络连接,可实现测量状态监视、各种设定值变更、波形记录的触发同步等功能。 提供CF 卡插槽,使得数据存储量大大增加(可达2GByte )。 提供工作站的数据收集管理软件,及数据分析软件。 典型接线如图 2.2所示。 侧面 正面

电气化铁路的谐波标准问题

电气化铁路的谐波标准问题 1问题的由来礼经电器 改革开放以来我国电气化铁路(以下简称电铁)获得迅速发展。目前全国电铁通车里程已逾万里,遍及18个省(自治区、直辖市)电网。 电力机车整流负荷中含有较大的谐波,由于滤波措施不得力,电铁大量谐波注入公用电网。据不完全统计,自电铁投运30多年来,其谐波和负序已引发200MW发电机跳闸,山西、河南和贵州等省电网大面积停电或系统解列,电网产生局部谐振,网损明显加大,发电机转子损坏,继电保护和自动装置非正常频繁启动,用户电动机和电容器大量烧坏或不能正常运行,小火电厂不能就近并网等一系列危害,使国民经济蒙受了巨大的损失。随着电铁运量增加和向东部发达地区扩展,如电铁谐波仍不能得到及时治理,其产生的危害将会更加严重,对此应有足够的估计。 关于电铁的谐波标准,一直是电力和铁道2大部门争论的焦点。电铁谐波实际上长期处于失控状态。几乎每个电铁工程均引发了谐波标准的争议,为此国家计委委托中国国际工程咨询公司协调此事。1997年5月成立了专家工作组(由电力、铁道2部及一些高等院校的专家、教授组成),在中咨公司的领导下开展工作已达1年多,尚未得出结果。本文试图结合对国外有关标准的介绍,指出谐波国标用于电铁的问题,并以电铁南昆线和京广线上6个牵引站作为计算实例,提出确定电铁谐波限值计算方法,希望能为解决此问题起抛砖引玉的作用。

2国外的有关情况 从收集到的英国、加拿大、新西兰、澳大利亚、美国、南非等国家和地区的有关标准[1~8]可以看出: (1)目前电气化铁路的谐波问题已经普遍受到各国的关注。在电铁规划设计阶段,均应作为一个必须认真对待的技术问题。 (2)电铁的谐波限值一般服从各国电力部门制定的谐波标准,铁路部门努力采取措施,力求达到要求。 (3)针对电铁的特点,各国在贯彻标准上有不同的做法。例如,英国制定了专门工程导则(P.24),对电铁负荷的取法及波形作出规定;有些国家对电铁谐波标准作些弹性处理。对于110kV及以上系统,电压总畸变率不超过3%,单次谐波不超过1%(这里是否包括背景谐波似乎不太一致);有的国家按本国谐波国标执行。 3谐波国标用于电铁的问题 GB/T14549-93《电能质量公用电网谐波》是在总结执行原水电部《电力系统谐波管理暂行规定》(SD126-84)的经验,系统地研究了标准的有关问题,结合国情,吸收国外谐波标准研究成果的基础上提出的,作为推荐性国家标准,于1994年3月实施。实际上,此标准为国内唯一的公用电网谐波标准,经《电力法》规定为保证电能质量的依据(当然只限于谐波指标)之后,就带有权威性,因此应当严肃执行。但是必须指出: (1)从总体上讲,电网谐波水平是由各级谐波电压来表征的(即各次谐波电压含有率和电压总谐波畸变率)。尽管国际上对此尚未统一,但

电力系统电压正弦波形畸变率极限值

电力系统电压正弦波形畸变率极限值(相电压) 标称电压(千伏)电压总谐波畸变 率% 各次谐波电压含有率% 奇次偶次 0.38 5.0 4.0 2.0 6 4.0 3.2 1.6 10 35 3.0 2.4 1.2 66 110 2.0 1.6 0.8 表2 用户注入电力系统的谐波电流允许值 基准电压(kV) 基 准 短 路 容 量 (MVA) 谐波次数及谐波电流允许值 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0.38 10 78 62 39 62 26 44 19 21 16 28 13 24 11 12 9.7 18 8.6 16 7.8 8.9 7.1 14 6.5 12 6 100 43 34 21 34 14 24 11 11 8.5 16 7.1 13 6.1 6.8 5.3 10 4.7 9.0 4.3 4.9 3.9 7.4 3.6 6.8 10 100 26 20 13 20 8.5 15 6.4 6.8 5.1 9.3 4.3 7.9 3.7 4.1 3.2 6.0 2.8 5.4 2.6 2.9 2.3 4.5 2.1 4.1 35 250 15 12 7.7 12 5.1 8.8 3.8 4.1 3.1 5.6 2.6 4.7 2.2 2.5 1.9 3.6 1.7 3.2 1.5 1.8 1.4 2.7 1.3 2.5 66 500 16 13 8.1 13 5.4 9.3 4.1 4.3 3.3 5.9 2.7 5.0 2.3 2.6 2.0 3.8 1.8 3.4 1.6 1.9 1.5 2.8 1.4 2.6 110 750 12 9.6 6.0 9.6 4.0 6.8 3.0 3.2 2.4 4.3 2.0 3.7 1.7 1.9 1.5 2.8 1.3 2.5 1.2 1.4 1.1 2.1 1.0 1.9 公共连接点的全部用户向该点注入的谐波电流分量(方均根值) 不应超过表2中规定的允许值。当公共连接点处的最小短路容量不同 于表2基准短路容量时,按下式修正表2中的谐波电流允许值: I h=(S k1/S k2)×I hp 式中:S k1――公共连接点的最 小短路容量,MVA。 S k2――基准短路容量,MVA。 I hp――表2中的第h次谐波电流允许值,A。

FFT 谐波分析

电能质量作业 学生姓名:王朝斌李洋刘佳滢王诗清 学号: 23、58、93、123 作业题目: FFT谐波分析 2013 年 6月6日

1.作业内容: 通过构建谐波源,对系统中出现的谐波电流进行分析,计算0~63次谐波电流含有率THDi 。 2.理论分析 2.1傅立叶变换 设有周期信号分f(t),它的周期是T ,角频率2=2F T ππΩ= ,它可分解为 01212()co s()co s(2)sin ()sin (2)2 a f t a t a t b t b t = +Ω+Ω+???+Ω+Ω+??? 01 1 co s()sin () 2 n n n n a a n t b n t ∞∞ ===+ Ω+ Ω∑∑ (1) 式中的系数n a ,n b 称为傅立叶系数。考虑到正、余弦函数的正交条件,可得傅立叶系数: 2 2 2()co s()T T n a f t n t d t T -= Ω?, n=0,1,2??? 22 2()sin ()T T n b f t n t d t T -= Ω? , n=1,2??? 傅立叶系数n a 和n b 都是n (或n Ω)的函数,其中n a 是n 的偶函数,即n n a a -=; 而n b 是n 的奇函数,即n n b b -=-。 将式(1)中同频率项合并,可写成如下形式: 01122()co s()co s(2)2 A f t A t A t ??= +Ω++Ω++??? 01 co s()2 n n n A A n t ?∞ ==+ Ω+∑ (2) 式中 00A a =

n A = n=1,2??? arctan ( ) n n n b a ?=- 将式(2)的形式化为式(1)的形式,它们系数之间的关系为 00a A = c o s n n n a A ?=, n=1,2??? sin n n n b A ?=- 式(2)表明,任何满足狄里赫利条件的周期函数可分解为直流和许多余弦(或正弦)分量。其中第一项 02 A 是常数项,它是周期信号中所包含的直流分量; 式中第二项11cos()A t ?Ω+称为基波,它的频率与原周期信号相同,1A 是基波振幅,1?是基波初相角;式中第三项22co s(2)A t ?Ω+称为二次谐波,它的频率是基波频率的二倍,2A 是基波振幅,2?是基波初相角。以此类推,还有三次、四次、 ???谐波。 2.2时域取样定理 一个频谱在区间(m ω-,m ω)以外为零的频带有限信号()f t ,可唯一的由其在均匀间隔1()2s s m T T f < 上的样点值() s f nT 确定。 为了能从取样信号 ()s f t 中恢复原信号()f t ,需满足两个条件: ① ()f t 必须是带限信号,其频谱函数在m ωω>各处为零; ② 取样频率不能过低,必须满足 2s m f f >(即2s m ωω>),或者说取样间隔不能 太长,必须满足12s m T f < ,否则将会发生混叠。 通常把最低允许取样频率2s m f f =称为奈奎斯特(Nyquist )频率,把最大允

相关文档
最新文档