用ZEMAX模拟五棱镜误差对平行度检测的影响

用ZEMAX模拟五棱镜误差对平行度检测的影响
用ZEMAX模拟五棱镜误差对平行度检测的影响

文章编号:100222082(2007)0520649205

用ZEM A X 模拟五棱镜误差对平行度

检测的影响

闫亚东1,2,何俊华1,仓玉萍1,2,陈良益1

(1.中国科学院西安光学精密机械研究所,陕西西安710119;

(2.中国科学院研究生院,北京100039)

摘 要: 介绍了用五棱镜法检测大口径光束平行度的原理。分析了五棱镜加工的角度误差及面形误差对检测结果的影响,得出了五棱镜角度误差不影响检测结果,2个折射面的面形误差对检测结果的影响较小,2个反射面的面形误差对检测结果影响最大的结论。介绍了选择五棱镜的方法和减小面形误差影响的方法。最后,给出了用五棱镜法检测单星模拟器出射光束平行度的应用实例。

关键词: 五棱镜法;平行度检测;ZE M A X 模拟;角度误差;面形误差

中图分类号:O 435;TH 74 文献标志码:A

Effect of pen ta pr is m error on para llel is m detection

YAN Ya 2dong

1,2

,H E Jun 2hua 1,CAN G Yu 2p ing 1,2,CH EN L iang 2yi

1

(1.X i ′an Institute of Op tics and P recisi on M echanics of CA S ,X i ′an 710119,Ch ina ;

2.Graduate Schoo l of CA S ,Beijing 100039,Ch ina )

Abstract :T he detecti on concep t fo r large diam eter beam parallelis m w ith pen ta p ris m is

in troduced .T he effect of p en ta p ris m angle and su rface p rofile erro rs on parallelis m detecti on w as analyzed .It is concluded that the angle erro r has no i m pact on the detecti on resu lts and the p rofile erro rs of the tw o refracti on su rfaces have little effect ,bu t the p rofile erro rs of the tw o reflecti on su rfaces have great influence on the detecti on .T he m ethods fo r selecting pen ta p ris m and reducing the effect of su rface p rofile erro r on detecti on are in troduced .A t the end ,an exam p le is given to illu strate the detecti on of the p arallelis m erro r of a single star si m u lato r w ith p en ta p ris m .Key words :

p en ta p ris m m ethod ;parallelis m detecti on ;ZE M A X si m u lati on ,angle erro r ;

su rface p rofile erro r

引言

大口径平行光管及单星模拟器出射光的平行

度指标的检测非常重要。常用的大口径光束平行度检测方法有:远物法、可调前置镜法、自准直法、五棱镜法和三管法以及近年来提出的剪切干涉法、塔耳波特成像法[1]等。这些方法中五棱镜法因设备简

单,检测精度较高而广泛应用。对五棱镜法检测平行度的原理报道较多,对五棱镜法检测平行度的导轨运动误差的影响分析[2]也有报道,但是在对检测结果的误差分析中往往忽视了五棱镜本身带来的误差,而在实际使用该方法过程中,五棱镜的选取是十分关键的。若五棱镜精度太低,则会给检测结

收稿日期:2006212215; 修回日期:2007203202

作者简介:闫亚东(1979-),男,河南周口人,中科院西安光学精密机械研究所博士生,主要研究方向光学设计和光学检测。E 2m ail :yyd @op t .ac .cn

第28卷第5期2007年9月 应用光学Journal of A pp lied Op tics

V o l .28N o.5

Sep.2007

果带来较大误差。然而,五棱镜加工误差对检测结果的影响分析较为困难。本文建立了五棱镜误差分析模型,用光学设计软件ZE M A X 对分析模型进行了模拟,完善了五棱镜法检测结果的误差分析,并

给出了减小误差的方法以及五棱镜法应用实例。

1 五棱镜法平行度检测的原理

五棱镜法检测平行度的原理[3]如图1所示

。将

图1 五棱镜法原理示意图

F ig .1 Pr i nc iple of pen t a pr is m m ethod

五棱镜固定于待检平行光束前的平移台上,平移台可以沿垂直于待检光束光轴的方向平移。用高精度数显自准直仪观察经五棱镜取样的待检光束的分划像,使之和自准直仪的分划线对准。沿垂直于光束光轴方向移动五棱镜,由于理想五棱镜使出射光线严格垂直于入射光线,即将光线折转90°,若待检光束严格平行,如图1(b 1,b 2)所示。在棱镜移动过程中,光束的分划像相对于自准直仪分划线不会产生横向移动。否则,如图1(a 1,a 2,c 1,c 2)所示,五棱镜从光束孔径一侧移到另一侧,自准直仪相当于对物距一定、距离光轴不同的物点分别成像,像将会有横向移动;重新调整自准直仪使光束分划像再次与分划线对准,自准直仪将显示光束的平行度误差。

该方法主要应用了五棱镜将光束折转90°的特性,然而五棱镜自身加工中的角度误差和面形误差将影响五棱镜90°折转特性,从而可能影响五棱镜法检测的结果。下面详细分析角度误差和面形误差对检测结果的影响。

2 五棱镜加工误差对检测结果的影响

2.1 角度误差对检测结果的影响

实际的五棱镜不可能是理想的五棱镜,它的5

个角度都不同程度地存在一定的加工误差,因而光

束转向并非绝对的90°。一般认为该误差会影响检测结果,事实并非如此。譬如五棱镜工作误差为

±2″(即将入射光束偏转90°±2″),这将使所有通过五棱镜的光线都向一个方向偏转2″,而不会改变光线之间的相对偏角。而检测的正是光束的一个边缘到另一边缘各个孔径光线的相对不平行度,因此五棱镜的角度加工误差不会影响检测结果。图2是五棱镜45°角存在误差时对光束的转向情况,

实际

图2 棱镜角度误差对出射光束方向的影响 F ig .2 Effect of pr is m angle error on

direction of e m ergen t beam

?056? 应用光学 2007,28(5) 闫亚东,等:用ZE M A X 模拟五棱镜误差对平行度检测的影响 

上,无论是哪一角度存在误差或是几个角度同时存在误差,最终结果都是将出射光束整体向某个方向偏转,不会影响光束的相对结构,也就不会影响检测结果。因此,在应用五棱镜法时没有必要过高要求五棱镜的角度加工精度。2.2 面形误差对检测结果的影响

五棱镜的加工面形要求包括光圈N 和局部光

圈?N 。在分析面形误差对检测精度的影响时,因为光学元件表面面形较复杂,需要建立既简单又能反映出主要问题的分析模型。一般局部光圈?N 较小,为简化分析可以忽略其影响[4],只考虑光圈N 的影响,为此建立了如图

3所示的分析模型。

图3 五棱镜面形误差分析模型

F ig .3 Analytical m odel for surface -shape

m is mach i ned error of pen t a pr is m

用光学设计软件ZE M A X 对模型a (各面同为高光圈)和模型b (同为低光圈)2种极端情况进行了光线追迹分析[526]。若折射面取光圈N 1=1(中等精度),反射面取N 2=0.5(高精度),Κ=0.555Λm ,由棱镜口径D 根据公式(1)算出各面的曲率半径R (玻璃材料取K 9,通光口径为Υ5)。

R =

D

2

8h =D 2

4ΚN

(1)

对子午面内各孔径的光线进行追迹,在离棱镜400mm 处考察光线的偏角,结果见表1。

表1 模型a 光线追迹结果

Table 1 Ray trac i ng results of m odel a

Aperture Ray deviation

angle ″

Reflection surface component ″Refraction surface

component ″

0.10.040.030.010.20.090.030.010.30.130.100.030.40.170.140.030.50.220.170.050.60.260.200.060.70.300.240.060.80.340.270.070.90.390.310.081.0

0.46

0.34

0.12

表2 模型b 光线追迹结果

Table 2 Ray trac i ng result of m odel b

Aperture Ray deviation angle ″

Reflection surface component ″Refraction surface

component ″

0.10.040.030.010.20.090.070.020.30.130.100.030.40.170.140.030.50.220.170.050.60.260.200.060.70.300.240.060.80.340.270.070.90.390.310.081.0

0.43

0.34

0.09

由表1和表2可以看出:虽然折射面面形精度要求较低,反射面面形精度要求较高,但在结果误差中,反射面对误差的贡献量比折射面的贡献大3倍多,且误差随着通光口径的增大而相应地增大。在折射面光圈N 1=1、反射面光圈N 2=0.5的情况下,模型a 和模型b 面形误差引起的最大角度误差分别是0.46″和0.43″。一般五棱镜各面的光圈高低是随机的,相互之间可能互相抵消一部分,实际面形误差引起的角度误差要小于极端情况。图5(a )组是抵消最好的2种情况,(b )组是抵消较好

的2种情况。

图5 五棱镜各面误差相互抵消示意 F ig .5 Sketch of error coun teraction on

all surfaces of pen t a pr is m

在实际选择五棱镜时,有时检测各个面的面形

误差受到各种条件的限制,不易做到。另外,一个更有效的方法就是对五棱镜的成像鉴别率进行检验。

3 减小面形误差影响的方法

五棱镜加工完成以后,其面形误差是固有的定

?

156? 应用光学 2007,28(5) 闫亚东,等:用ZE M A X 模拟五棱镜误差对平行度检测的影响 

值,但是可以通过在五棱镜前加1个小孔光阑,以减小通光口径,来减弱面形误差的影响。应用中尽量使用五棱镜中心面部分,以减小棱镜面塌边、勾边造成的影响。另外,小孔光阑的应用可以对待检光束进行更多更精确的采点,提高了检验精度。但是,有时光阑的大小受到待检光束照度的限制,光阑太小,采样光束太弱,不利于自准直仪对准,因此光阑的大小要根据实际情况权衡而定。

4 五棱镜法应用实例

用五棱镜法对单星模拟器模拟的无穷远星光

的平行度进行了检测、调试,检测装置如图6所示。

图6 单星模拟器检测装置

F ig .6 D etection equip m en t of si ngle -st ar si m ulator

单星模拟器出射光束口径100mm ,五棱镜小孔光阑直径5mm 。

数字显示自准直仪指标为a )自准直仪示值误差1′内±0.3″;b )自准直仪瞄准精度±0.1″

;c )自准直仪读数误差±0.02″

。五棱镜放在1个导轨平行度经过严格调校的平移台上,导轨平行度误差0.8″,平移台能够在垂直星模拟器出射光束方向移动。4.1 检测装置系统误差

系统误差来源主要有:①五棱镜加工面形误差?1;②导轨平行度误差?2;③自准直仪总误差为 ?3=±

(±0.3″)2+(±0.1″)2+(±0.02″)2≈

±0.32″(2)

根据误差理论,可算出五棱镜法调校单星模拟

器的极限误差为

?=±?2

1

+?22

+?23

=

±0.462+0.802+0.322=±0.98″(3)

4.2 检测、调校方法与步骤

首先将五棱镜移到星模拟器出射光束的一侧,将自准直仪的像点调到十字丝中心,并将自准直仪清零。当五棱镜从光束口径一个边缘以步长10mm 移到另一边缘时,记录自准直仪读数。

若平行度误差过大,则通过调整星模拟器修切圈的厚度,调节星点板到物镜之间的距离,然后再进行检测,反复进行此过程,直到检测结果满足要求为止。4.3 调校结果

用上述方法经过2次调整之后,检测结果如表3中 组数据。可以看出,全口径内最大平行度误

差为1.83″,考虑到系统误差±0.98″仍然满足±2″的平行度误差要求。为防止物镜偏心引起出射光束不对称,将星模拟器翻转90°再进行测量,记录结果如表3中 组数据,可以看出,由于偏心引起的光束不对称度,考虑到系统误差后,数据仍在允许的范围之内。

表3 单星模拟器检测结果数据

Table 3 D etected results of si ngle -st ar si m ulator Guide po siti on

mm

R ay deviati on

angle ″

R ay deviati on

angle ″

2000300.880.70400.801.10501.030.95600.921.24701.141.68801.571.37901.831.75100

1.68

1.96

5 结论

用五棱镜法进行平行度检测,检测精度受下列很多因素的影响:平移台导轨精度、自准直仪误差及环境影响等,但在五棱镜加工误差的因素中,2个反射面面形误差的影响起着主要作用。选择五棱镜时必须注意,在面形精度相同的情况下,大尺寸的五棱镜要比小尺寸的五棱镜面形更好。检测中要

尽量减小五棱镜小孔光阑尺寸,并利用五棱镜面中间部分,以减小五棱镜加工面形误差对检测结果的

?256? 应用光学 2007,28(5) 闫亚东,等:用ZE M A X 模拟五棱镜误差对平行度检测的影响 

影响,提高检测精度。

参考文献:

[1] 王之江.光学技术手册[M].北京:机械工业出版社,

1987:3402341.

WAN G Zh i2jiang.Op tical technique m anual[M].

Beijing:M echanical Industry Publish ing House,

1987:3402341.(in Ch inese)

[2] 常山,曹益平,陈永权.五棱镜的运动误差对波前测

量的影响[J].光学仪器,2005,27(3):12216.

CHAN G Shan,CAO Y ing2p ing,CH EN Yong2Q uan.

Effect of p rocessed angle erro r of pentagonal p ris m

on front w ave m easurem en[J].Op tical Instrum ents,

2005,27(3):12216.(in Ch inese)

[3] 李松.用五棱镜法检测光束准直性的原理分析[J].测

绘信息与工程,1999(2):30231.

L I Song.T heo ry analysis of detecti on cco lli m ati on

using pentagonal p ris m[J].Journal of Geom atics,

1999(2):30231.(in Ch inese)

[4] 房启勇,施浣芳,高洪尧.直角棱镜平面反射衰减在激

光光束诊断中的应用研究[J].光子学报,2003,32

(10):122021224.

FAN G Q i2yong,SH I H uan2fang,GAO Hong2yao.

A pp licati on of righ t angle p ris m p lane reflecti on

attenuati on in laser beam diagno stic[J].A cta

Pho tonica Sinica,2003,32(10):122021224.(in

Ch inese)

[5] 张斌,张晓晖,韩昌元.光学系统计算机辅助装调中的一

种优化算法[J].光学精密工程.2000,8(3):2732277.

ZHAN G B in,ZHAN G X iao2hui,HAN Chang2yuan.

A lgo rithm fo r m isallgnm ental deter m inati on in

computer2aided alignm ent of op tical system[J].

Op tics and P recisi on Engineering.2000,8(3):2732 277.(in Ch inese)

[6] 杨晓飞,张晓辉,韩昌元.Zem ax软件在离轴三反射

镜系统计算机辅助装调中的应用.光学精密工程,

2004,12(3):2702274.

YAN G X iao2fei,ZHAN G X iao2hui,HAN Chang2

yuan.A pp licati on of Zem ax softw are in alignm ent of

th ree2m irro r off2axis aspherical op tical system[J].

Op tics and P recisi on Engineering.2004,12(3):2702 274.(in Ch inese)

(上接第644页)

GAO Zh i2shan.A pp licati on of Zem ax in aberrati on design[D].N anjing:N JU ST,2006.(in Ch inese) [11] 徐渊,赵炜,惠延年.波前像差与屈光矫正[J].世界

核心医学期刊文摘,2005,1(3):125.

XU Yuan,Zhao W ei,HU I Yan2nian.W avefront

aberrati on and refracti on rem edy[J].W o rld Co re

M edical Journal,2005,1(3):125.(in Ch inese) [12] CU RA TU E O,PET T IT G H,CAM P I N J A.Cus2

tom ized schem atic eye model fo r refracti on

co rrecti on design based on ocular w avefront and

co rneal topography m easurem ents[J].SP IE,2002,

4611:1652175.[13] HW EY2LAN L,NOBEL A B.A natom ically accu2

rate,finite model eye fo r op tical modeling[J].J.

Op t.Soc.Am.A.,1997,14(8):168421695. [14] ESCUD ERO2SAN Z I,NAVA RRO R.O ff2axis

aberrati ons of a w ide2angle schem atic eye model

[J].J.Op t.Soc.Am.A.,1999,16(8):18812

1891.

[15] 郁道银,谈恒英.工程光学[M].北京:机械工业出版

社,2002.

YU D ao2yin,TAN H eng2ying.Engineering op tics

[M].Beijing:Ch ina M ach ine P ress,2002.(in

Ch inese)

?

3

5

6

?

 应用光学 2007,28(5) 闫亚东,等:用ZE M A X模拟五棱镜误差对平行度检测的影响 

三坐标测量位置度的方法及注意事项

摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 关键词:三坐标;位置度;方法 一、位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。 ③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 二、三坐标测量位置度的注意事项

塔吊垂直度检测、安全检查标准

塔吊垂直度检测塔吊安全检查标准 一、塔吊垂直度检测 1、塔吊垂直度的允许偏差范围 JGJ196-2010《建筑施工塔式起重机安装、使用、拆卸安全技术规程》第30页对塔机垂直度要求规定如下:独立状态或附着状态下最高附着点以上塔身轴线对支承面垂直度不得大于4/1000,最高附着点下塔身轴线对支承面垂直度不得大于相应高度的2/1000, 2、塔吊垂直度的计算 塔机垂直度<4/1000,。 安装附着装置后,附着以下<2/1000,附着以上<4/1000 例:标准节的高度为30m,则最大偏差不能超过30*4=120mm=12cm 注:塔吊的一节标准节长2.5m,一个角铁宽15cm。高度为:从第一个标准节到驾驶室下面的标准节。观测距离为:距塔吊高度1.5倍的距离架设仪器观测。 例:宁晋****项目1#、2#、3#、4#塔吊垂直度检测 1# 塔吊21m,距离塔吊1.5倍距离观测,限差按最小值2/1000 A、大臂朝北仪器顺着大臂方向,架在北侧,测得向东偏1cm B、大臂朝西仪器顺着大臂方向,架在西侧,测得向南偏5cm,限差 4.2cm,超限,调整后,测得向南偏1cm,符合要求。 2# 塔吊27m,距离塔吊1.5倍距离观测,限差按最小值2/1000 A、大臂朝西仪器顺着大臂方向,架在东侧,测得向北偏7cm,限差 5.4cm,超限,调整后,测得向北偏1.3cm,符合要求。 B、大臂朝北仪器顺着大臂方向,架在北侧,测得向东偏3.5cm,限差5.4cm,符合要求

3# 塔吊33m,距离塔吊1.5倍距离观测,限差按最小值2/1000 A、大臂朝西仪器顺着大臂方向,架在西侧,测得向北偏16.5cm,限差6.6cm,超限,调整后,测得向北偏cm,符合要求。 B、大臂朝南仪器顺着大臂方向,架在北侧,测得向西偏25cm,限差6.6cm,超限,调整后,测得向北偏cm,符合要求。 A′大臂朝北仪器顺着大臂方向,架在北侧,测得向东偏1cm,符合要求。 B′大臂朝西仪器顺着大臂方向,架在西侧,测得向北偏4cm,符合要求。 4# 塔吊37.5m,距离塔吊1.5倍距离观测,限差按最小值2/1000 A、大臂朝东仪器顺着大臂方向,架在东侧,测得向南偏1cm,限差 7.5cm,符合要求。 B、大臂朝北仪器顺着大臂方向,架在北侧,测得向东偏7.5cm,限差7.5cm,符合要求,调整后,测得向东偏cm,符合要求。 二、塔吊安全检查标准 (一)力矩限制器 塔吊应安装灵敏可靠的起重力矩限制器。当达到额定起重力矩时,限制器应发出报警信号;当起重力矩超过额定值的8%时,限制器应切断上升和增幅电源,但塔吊可做下降和减幅运动。 (二)限位器 塔吊根据不同型号应装设行程限位(包括小车和驾驶室)、起重臂变幅限位和起升超高限位,各限位装置灵敏可靠。 (三)保险装置 1、塔吊吊钩应设置防止吊物滑脱的保险装置。 2、卷扬机卷筒应设置防止钢丝绳滑出的防护保险装置。 3、当爬梯高度超过5M时,从25M处开始应设置直径0.65—0.8M,间距

垂直度误差检测

任务一垂直度误差检测 知识目标 理解直线度公差的含义 了解自准直仪的工作原理 技能目标 掌握自准直仪测量直线度误差的方法 熟悉直线度误差的评定方法 1、任务描述 2、任务分析 3、相关知识 (1)垂直度公差 限制实际要素对基准在垂直方向上变动量的一项指标。 垂直度公差也有面对面、面对线、线对面、线对线等情形,如图,面对面的垂直度公差带是间距等于公差值且与基准面垂直的两平行平面之间的区域。

线对面的垂直度公差带是直径等于公差值且与基准面垂直的圆柱面内的区域。 (2)检测原则 测量特征值的原则。 (3)方箱 是平台测量的主要辅助工具,具有垂直度精度很高的四个相邻平面,用作测量的辅助基准,也可用作划线使用。 (4)塞尺 也称厚薄规,测量精度一般为0.01mm,每把13、14、17、20片不等,当遇到测量很小的两个平面之间的距离时,塞尺可以测出缝隙的大小,使用时可以单片使用也可以不同厚度尺片组合一起。 使用时要注意用力适当,方向合适,不可强塞,防止弯曲过度甚至折断和操作,只检查某一间隙是否小于规定值时,则用符合规定的最大值的塞片塞该间隙,如果不能塞入即合格,反之不合格。 4、任务实施 (1)操作步骤 1)清洁工件、平板、方箱,检查百分表零位偏差 2)将方箱放在平板合适位置,将工件基准平面旋转在平板上 3)调整被测平面靠近方箱,保持基准平面与平板稳定接触 4)用塞尺测量间隙的最大值,并记录 5)塞尺读数的最大值就是垂直度误差,填写检测报告,给出合格性结论

6)仪器清洁保养并归位。 (2)注意事项 在检测过程中,实际基准平面要与平板保持稳定接触,用平板模拟理想基准平面。 5、知识拓展 (1)垂直度公差值 (2)垂直度误差其他检测方法介绍 垂直度误差可用平板和带指示表的表架、自准直仪和三坐标测量机等测量。主要有打表法、间隙法和水平仪光学仪器法。 1)先用直角尺调整指示表,当直角尺与固定支撑接触时,将指示表的指针调零,然后对工件进行测量,使固定支撑与被测实际表面接触,指示表的读数即该测点相对于理论位置的偏差。改变指示表在表架上的高度位置,对被测表面的不同点进行测量,取指示表读数的最大值与最小值之差作为被测表面对基准平面的垂直度误差。 2)面对线的垂直度误差测量 用导向块模拟基准轴线,将被测零件旋转在导向块内,然后测量整个被测表面,取指示表读数的最大值与最小值之差作为垂直度误差。 3)将被测零件的基准面固定在直角座上,同时调整靠近基准的被测表面的读数差为最小值,取指示表在整个表面各点测得的最大与最小读数之差,作为该零件睥垂直度误差。 4)将准直仪放置在基准实际表面上,时间调整准直仪使其光轴平行于基准实际表面,然后

平行度误差的测量

实验四 测量平行度误差 一、实验目的 熟悉用水平仪测量垂直平面内的直线度误差的方法,和用作图法求直线度误差的方法。 二、实验内容 1、测量面对面平行度误差; 2、测量线对面平行度误差; 3、测量线对线平行度误差。 三、实验方法和步骤 1、测量面对面平行度误差 公差要求是测量面相对于基准平面的平行度误差。基准平面用平板体现,如图4-1所示。 测量时,双手推拉表架在平板上缓慢地作前后滑动,用百分表或千分表在被测平面内滑过,找到指示表读数的最大值和最小值。 图4-1 面对面平行度误差测量示意图 被测平面对基准平面的平行度误差可按公式计算为: f //=Mb Ma l 1 2 1 mm 2、测量线对面平行度误差 公差要求是测量孔的轴线相对于基准平面的平行度误差。需要用心轴模拟被测要素,将心轴装于孔内,形成稳定接触,基准平面用精密平板体现,如图4-2所示。 测量时,双手推拉表架在平板上缓慢地作前后滑动,当百分表或千分表从心轴上素线滑过,找到指示表指针转动的往复点(极限点)后,停止滑动,进行读数。 在被测心轴上确定两个测点a 、b ,设二测点距离为12,指示表在二测点的读数分别

图4-2 线对面平行度误差测量示意图 为Ma 、Mb ,若被测要素长度为l 1,那么,被测孔对基准平面的平行度误差可按比例折算得到。计算公式为: f //=Mb Ma l 12 1 mm 3、测量线对线平行度误差 公差要求是测量孔的轴线相对于基准孔的轴线的平行度误差。需要用心轴模拟被测要素和基准要素,将两根心轴装于基准孔和被测孔内,形成稳定接触,如图4-3所示。 测量前,要先找正基准要素,找正基准心轴上素线与平板工作面平行。实验时用一对等高支承支承基准心轴,就认为找正好了。也可以用一个固定支承和一个可调支承支承基准心轴,双手推拉表架在平板上缓慢地作前后滑动,调整可调支承,当指示表在基准心轴上素线左右两端的读数相同时,就认为找正好了。 图4-3 线对线平行度误差测量示意图 测量方法与计算公式与线对面平行度误差的测量方法与计算公式相同。

直线度测量计算方法

1引言 在工程实际中,评定导轨直线度误差的方法常用两端点连线法和最小条件法。两端点连线法,是将误差曲线首尾相连,再通过曲线的最高和最低点,分别作两条平行于首尾相连的直线,两平行线间沿纵坐标测量的数值,通过数据处理后,即为导轨的直线度误差值;最小条件法,是将误差曲线的“高、高”(或“低、低”)两点相连,过低(高)点作一直线与之相平行,两平行线间沿纵标坐测量的数值,通过数据处理后,即为导轨的直线误差值。 最小条件法是仲裁性评定。两端点连线法不是仲裁性评定,只是在评定时简单方便,所以在生产实际中常采用,但有时会产生较大的误差。本文讨论这两种评定方法之间产生误差的极限值。 2误差曲线在首尾连线的同侧 测量某一型号液压滑台导轨的直线度误差,得到直线度误差曲线,如图1所示。由图可知,该误差曲线在其首尾连线的同侧。下面分别采用最小条件法和两端点连线法,评定该导轨直线度误差值。 (1)最小条件法评定直线度误差 根据最小条件法,图1曲线的首尾分别是低点1和低点2(低点1与坐标原点重合),用直a1a1线相连,如图2所示。通过最高点3作a1a1直线的平行线a2a2。

在a1a1和a2a2两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值

δ最小法。 (2)两端点连线法评定直线度误差 根据两端点连线法,图1曲线的首尾也分别是曲线的两端点1和2,如图3所示。将曲线端点1和端点2,用直线b1b1相连,再通过高点作b1b1的平行线b2b2。在b1b1和b2b2两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值δ两端点。 (3)求解两种评定方法产生的误差极限 由于是对同一导轨误差曲线求解直线度误差,图2中的“低点1”、“低点2”和“高点3”分别对应图3中的“端点1”、“端点2”和“高点3”,即直线 a1a1与直线b1b1重合,直线a2a2与直线b2b2重合,因此两种评定方法产生的误差值为零

建筑物垂直度的规定及要求

建筑物垂直度的规定 1.相关规范:《建筑变形测量规程》、《工程测量规范》。 2.在土木工程施工中,测量工作是贯穿整个施工过程各个阶段的基础性技术工作。施工测量工作的内容及其完成情况的准确程度,对工程能否顺利施工及其质量水平起着至关重要的作用。为此,国家颁布了系统的工程测量和施工验收规范、规程,以指导和规范工程测量技术工作。应高度的重视施工测量技术、测量管理。 3.施工测量的主要内容: (1)工程场地施工控制测量,主要包括建立建筑平面控制网和高程控制网。 (2)建筑主轴线测量及定位放线。 (3)主体施工测量,包括轴线投测及高程传递。高层(超高层)建筑物主体施工测量中的主要问题是控制垂直度,即是须将基准轴线准确地向高层引测,要求各层相应轴线位于同一竖直平面内。因此,控制轴线投测的竖向偏差,并使其偏差值不超过规范、规程允许的限值,是高层建筑施工测量中一件很重要的工作。 (4)建筑变形测量。其主要内容包括对建筑物实体的沉降观测、倾斜观测、位移观测及裂缝观测等。 (5)施工偏差检测。各种结构构件及建筑设备,其就位、垂直度、标高等状态,难免会因施工及环境等原因出现偏差。因此,施工规范、规程及质量验评标准都规定了要对结构施工偏差情况进行检查,并规定了允许偏差值。 4.关于高层建筑施工竖向(垂直度)控制的规定要求。从以上对建筑施工测量有关内容分类可看出,对于建筑物施工过程,其施工过程的竖向(垂直度)控制,也即轴线投测的控制是非常重要的一环。轴线投测的准确度直接关系到建筑结构施工质量及安全性。对于超高层建筑物来讲尤其重要。因此,《高层建筑混凝土结构技术规程》(JGJ 3—2002)对高层建筑结构施工的测量放线作业及其允许误差作了明确的规定。其中第7.2.3条,规定了测量竖向垂直度时,必须根据建筑平面布置的具体情况确定若干竖向控制轴线,并应由初始控制线向上投测。对于轴线投测的误差,规定了层间测量偏差不应超过3mm;建筑全高垂直度测

位置度测量方法

1.基准﹔ 2.理論位置值﹔ 3.位置度公差 三、位置度公差帶 位置度公差帶是一以理論位置為中心對稱的區域。

四、位置度的標注與測量方法

3﹑以中心线左边第二根端子为例﹐测出实际尺寸D1(0.82)﹑D2(1.02)﹐根据位置定义﹐ DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} =abs[(0.85+1.00)/2-0.90}] =0.025<0.05 其中﹐DE表示实际偏差 abs表示绝对值 Da表示实际位置尺寸 Dt表示理论位置尺寸﹐对于不同的端子﹐它们的理论位置尺寸是不测量时测量者须自行计算 DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} =abs{[(d1+Dt)+(Dt-d2)]/2-Dt)} =abs[(d1-d2)/2]

(二)﹑IDE44P垂直位置度的标注与测量 如图﹐IDE44P端子在垂直方向上具有以下特点﹕排数少(只有两排)﹐每排端多(达22PIN)﹐长度值为端子材厚值﹐对于不同的端子﹐其值差异极小﹐因此我们排端子和下排端子分别看成两个整体。下面以下排端子为例介绍其测量方法。 一、测出角柱垂直方向上Φ1.70的实际尺寸﹐然后置中归零﹔ 二、往下偏移2.00﹐然后归零﹔ 三、

为基准﹐用于控制端子锡脚与与PCB板的配合﹐现其位置度公差0.18﹔另一个是端子域的位置度﹐此位置度以KEY为基准﹐用于控制端子接触区域与对插件的配合﹐现其度公差0.3。对于第一个位置度﹐其标注方式已统一﹔对于第二个位置度﹐有如下两种式﹕

以上两种标注方式中﹐第一种直接对124根端子接触区域一一测量其位置度﹐由接触区域是包在主体内部﹐若采用这种方式﹐测量繁琐困难﹔对于第二种测量方式﹐子是下料成型﹐且插在主体插槽中﹐插槽控制了端子的平面度﹐因此只须控制KEY相POST的位置度与端子锡脚相对POST的位置度﹐相应地也就控制了端子接触区域相对 水平位置度Th和垂直位置度Tv后﹐須再驗証其是否滿足公式Th2+Tv2≦0.152。

10第十单元平行度误差、平面度误差的测量

第十单元平行度误差、平面度误差的测量 一、单项选择题 1.被测平面必须位于距离为公差值t且平行于基准平面的两平行平面之间的区域的公差是 D A线对线的平行度公差 B.线对面的平行度公差 C.面对线的平行度公差 D.面对面的平行度公差 2可调千斤顶适用检查 B A.平行度公差 B.平面度公差 C.直线度公差 D.圆度公差 3测量平面度误差需要()可调千斤顶建立测量基面。 B A.2个 B.3个 C.4个 D.5个 4涂色法检测大平面时如果基准块在平面上滑动后平面中间呈现亮点,说明工件B A.表面平整 B.中间凸起 C.中间凹陷 D无法判别 5.下列()公差带形状不是距离为公差值t的两平行平面内区域。B A.平面度 B任意方向的线对线的平行度 C.给定方向的线的倾斜度 D面对面的平行度 6公差带形状可能是直径为公差值t,且平行于基准轴线的圆柱面内的区域。()A A.线对线的平行度 B线对面的平行度 C.面对线的平行度 D.面对面的平行度 7根据如图回答下列问题

第7题图 (1)测量项目是 B A线对线的平行度 B线对面的平行度 C.面对线的平行度 D.面对面的平行度 (2)图中被测要素是(),基准要素是() BA A.轮廓要素 B.中心要素 (3)测量时需用心轴模拟体现的是 C A.被测孔的素线 B.基准孔的轴线 C.被测孔的轴线 D基准平面 (4)测量此几何误差最后的数据处理公式是()。 A 8.根据图示回答下列问题 (1)测量项目是A A线对线的平行度

B线对面的平行度 C.面对线的平行度 D.面对面的平行度 (2)图中被测要素是 (),基准要素是()BB A轮廓要素 B.中心要素 (3)测量时需用心轴模拟体现的是 B A.被测孔的素线 B.基准孔的轴线 C.被测孔的轴线 D.基准孔的素线 (4)测量此几何误差最后的数据处理公式是 B 第8题图 二、是非选择题 X1.平行度是限制被测实际要素对基准要素在垂直方向上变动量的一项指标。() X2面对面的平行度公差带是距离为公差值t且平行于基准直线的两平行平面之间的区域 3测量面对面平行度误差常采用打表法 4.面对线平行度误差的测量可以采用心轴来模拟基准轴线,用支座支承心轴,采用打表法测量。 X5.平行度公差带是距离为公差值t且平行于基准的两平行平面之间的区域。( 6.平面度是指平面加工后实际形状的不平程度。 X7.平面度的公差带是距离为公差值t的两平行直线之间的区域。 X8.平行度分线对线,线对面、面对线、面对面等情况,但它们测量时的数据处理方法都一样。 9钳工车间对于较小平面的平面度误差通常采用刀口形直尺通过透光法来检测10.刮削平面的平面度误差生产现场多用涂色法做合格性检验。 三、分析、计算题 量公 如图所示,测量该零件平行度误差时采用心轴模拟孔的轴线。已知该零件孔的长

导轨直线度误差检测方法介绍

导轨直线度误差检测方法介绍

一、直经度的定义 限制实际直线对理想直线变动量的一种形状公差。由形状(理想包容形状)、大小(公差值)、方向、位置四个要素组成。用于限制一个平面内的直线形状偏差,限制空间直线在某一方向上的形状偏差,限制空间直线在任一方向上的形状偏差。 几何误差是指零件加工后的实际形状、方向和相互位置与理想形状、方向和相互位置的差异。在形状上的差异称形状误差,在方向上的差异称方向误差,在相互位置上的差异称位置误差。直线度在几何公差中是最基础的部分,按检测关系分直线度属于被测要素中的单一要素——指对要素本身提出形状公差要求的被测要素。 二、导轨直线度误差检测方法 直线度误差的检测方法很多。工件较小时,常以刀口尺、检验平尺作为模拟理想直线,用光隙法或间隙法确定被测实际要素的直线度误差。当工件较大时,则常按国标规定的测量坐标值原则进行测量,取得必要的一组数据,经作图法或计算法得到直线度误差,还有种高效的测量方法就是直接利用太友科技的数据采集仪连接百分表来测量,无需人工读数、作图、分析,采集仪会自动读数数据并进行数据分析,一旦测量结果不合格还会自动产生报警功能。 测量直线度误差常用的仪器有:框式水平仪、合象水平仪、电感式水平仪、自准直仪以及数据采集分析仪等。这类仪器的特点是:测定微小角度的变化,换算为线值误差。本实验用合象水平仪和数据采集分析仪来进行直线度测量。 1、利用合象水平仪测量直线度法 1)合象水平仪的介绍 合象水平仪采用光学放大,并以对称棱镜使双象重合来提高读数精度,利用杠杆和微动螺杆传动机构来提高测量精度和增大测量范围。将合象水平仪置于被测工件表面上,当被测两点相对水平线不等高时,将引起两气泡象不重合,转动度盘,使两气泡重合,度盘转过格数代表被测两点相对水平线的高度差,见图2-3。

垂直度误差、位置度误差的测量教程文件

任务五垂直度误差、位置度误差的测量 【课题名称】 平面零件的误差测量 【教学目标与要求】 一、知识目标 了解线、面垂直度误差和面对称度误差的检测工具及测量方法。 二、能力目标 能够正确使用百分表进行测量,并准确计算误差值。 三、素质目标 熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。 四、教学要求 能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确的测量。 【教学重点】 百分表的使用,各种形位误差的检测方法。 【难点分析】 百分表的使用,各种形位误差的检测方法。 【分析学生】 该内容的难度较大,比较难理解,需要多做解释,学生才能够掌握。 【教学设计思路】

本次课内容较多,且内容难懂,建议分成2学时,以保证有更多的练习机会,由于实训条件所限,可以分组进行测量,对于垂直度的检测也应先讲测量原理和方法,再让学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。 【教学安排】 2学时 先讲后练,以练为主,加强巡视指导。 【教学过程】 一. 复习旧课 在形状和位置误差中,直线度、平面度的误差在平面零件中出现比较多,大家是否还能记住这些形位公差的含义呢? 二、导入新课 需要应用什么测量工具来检测零件的垂直度和对称度呢?对于测量出来的数值又需要进行怎么样的处理才能得出正确的误差值?这是本次课程的主要内容。 三、讲授新课 垂直度和对称度误差的测量应用百分表或千分表作为量具,用标准平扳为基准面,借助于表座、方箱或直角尺座工具,将被测工件安放在基准面上进行检测。 线与面和面与面之间垂直度的检测方法相同,后者需要多测量几次。 1.测量平面之间的垂直度,需要借助于方箱或直角尺座,将被

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

形位误差测量与实验

形位误差测量与实验 实验3-1直线度误差的测量 (一)实验目的 1.掌握用水平仪测量直线度误差的方法及数据处理。 2.加深对直线度误差含义的理解。 3.掌握直线度误差的评定方法。 (二)实验内容 用合象或框式水平仪按节距法测量导轨在给定平面内的直线度误差,并判断其合格性。(三)实验器具: 1.合象水平仪或框式水平仪 2.桥板 (四)测量原理及器具介绍 为了控制机床、仪器导轨及长轴的直线度误差,常在给定平面(垂直平面或水平平面)内进行检测,常用的测量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等测定微小角度变化的精密量仪。 由于被测表面存在直线度误差,测量器具置于不同的被测部位上时,其倾斜角将发生变化,若节距(相邻两点的距离)一经确定,这个微小倾角与被测两点的高度差就有明确的函数关系,通过逐个节距的测量,得出每一变化的倾斜度,经过作图或计算,即可求出被测表面的直线度误差值。合象水平仪因具有测量准确、效率高、价格便宜、携带方便等特点,在直线度误差的检测工作中得到广泛采用。 合象水平仪的结构,主要由微动螺杆、螺母、底盘水准仪、棱镜、放大镜、杠杆以及具有平面和V形工作面和底座等组成。 合象水平仪是利用棱镜将水准器中的气泡像复合放大,以提高读数时的对准精度,利用杠杆和微动螺杆传动机构来提高读的精度和灵敏度,其工作原理见本指导书第二篇。合象水平仪置于被测工件表面上,若被测两点相对自然水平线不等高时,将引起两端的气泡像不重合,转动度盘使气泡像重合,此时合象水平仪的读数值即为该两点相对自然水平面的高度差,刻度盘读数与桥板跨距L之间的关系为: h=i·L·a 框式水平仪是一种测量偏离水平面的微小角度变化量的常用量仪,它的主要工作部分是水准器。水准器是一个封闭的玻璃管,内表面的纵剖面具有一定的曲率半径,管内装乙醚或酒精,并留有一定长度的气泡。由于地心引力作用,玻璃管内的液面总是保持水平,即气泡总是在圆弧玻璃管的最上方。当水准器的下平面处于水平时,气泡处于玻璃管外壁刻度的正中间,若水准器倾斜一个角度α,则气泡就要偏离最高点,移动的格数与倾斜的角度α成正比。由此,可根据气泡偏离中间位置的大小来确定水准器下平面偏离水平的角度。 框式水平仪的分度值有0.1mm/m,0.05mm/m,0.02mm/m三种。如果水平仪分度值为0.02mm/m,则气泡每移动一格,表示导轨面在1m长度上两测量点高度差为0.02mm(或倾斜角为4〞)。

用打表法测量阀体的平面度及平行度.doc

用打表法测量阀体的平面度和平行度的方法 一 实验目的 本实验所用测量方法是工厂里常用的方法,有助于学生对平面度公差、面对面的平行度公差概念的理解,训练学生的动手能力(仅一台三坐标测量机,做不到人人动手操作),训练学生数据处理能力,以及对平面度评定方法的理解。 二 实验仪器 测量平台,作为测量的基准使用,精度要求高。磁力表架和表座、千分表、V 型块、被测零件阀体。 三 操作过程 1 将磁力表架和V 型块放置于测量平台上,将被测零件阀体放置于V 型块上。 2 将千分表安装在磁力表架上,调整磁力表架,使千分表的测头与阀体的被测平面垂直接触,且具有一定的接触力,并保证测量过程中千分表不超量程。 3 固定磁力表座,推动V 型块,并保证其与测量平台稳定接触,使千分表测头与 测量平台 阀体 表架 表座 千分表 V 型块

被测平面上3X3分布的点接触,记录9个数据,如下所示。 四数据处理 1 误差评定准则(见教材) 将测得数据处理成上述三个准则中的任意一种,各点数据中的最大值减去最小值即为平面度误差。而平行度误差评定较简单,在测得原始数据中,用最大值减去最小值即是。 2 平面度数据处理方法(见学习指导) 测得数据不会是三个准则中的任意一种,需要进行处理才行,处理方法按照如下例题所示。 例用打表法测量一块350mmx350mm的平板,各测点的读数值如下图所示。试用最小包容区域法求平面度误差值。 解:此题旨在训练培养大家进行数据处理,求解几何误差的能力。观察检测数据,最大值为20,最小值为-12 ,次小值为-10,决定采用三角形准则求解平面度误差。保留中间的最大值,求出3个相等的最小值,三个最小值位置选定-12、-10、+7,将3个数值相加除3等于-5,即3个数的平均值。利用矩阵变换方法,将3个最小值变为-5,即将第1列的数都加+7,而将第三列的数都加-7,将结果列表后,再将第一行都加-5,而第三行都加+5,再将结果列表,即得下图所示。 经过两次坐标变换后,故平面度误差值为() f=+--= 205μm25μm

实验二 框式水平仪测量直线度误差

实验二 框式水平仪测量直线度误差 一、实验目的: 1、掌握用水平仪测量垂直平面内的直线度误差的方法。 2、掌握用作图法求直线度误差,用最小区域法评定直线度误差的方法。 3、了解其他测量直线度误差的方法。 二、实验内容: 测量导轨直线度误差或测量平板一对角线的直线度误差。 三、框式水平仪的结构、工作原理、读数方法: 1、 框式水平仪的结构 框式水平仪一般是制成200mm×200mm 的矩形框架,它们互相垂直平行,下方框边的上面装有一个水准器(密封的玻璃容器),本实验用 i=0.02mm /l000mm 框式水平仪。 水准器是一个具有一定曲率半径的圆弧形玻璃管,管内装有粘度很小的液体如乙醚或乙醇,不装满,留有一定长度的气泡,称水准气泡。我们就利用液体往低处流,气泡往高处跑的道理进行测量的。水准器玻璃管表面上的刻度相等,以圆弧中心相对称,其刻线间距为2 mm 。 2、测量工作原理: 以自然水平面为测量基准(摸拟理想要素)。用节距法(又称跨距法)对被测直线进行逐段测量,得到各段的读数然后经过数据处理,就可以用作图法或计算法求出误差值。 3、水平仪的读数方法: 实验采用双向读数法。双向读数法读数较准确。具体方法是:把水准器的刻度分成两大区间:二基线内为负区闭,二基线外为正区间。如下图所示。 正区间 正区间 读数时.看气泡左基线相距几格,气泡右端相距右基线几格,分别以n 左、n 右表示,并带上“十”、“一”符号。气泡相对水平位置移动的格数由公式算出: N=± 2 n n (右)左 (格) 式中: n 左一一气泡左端相距左基线几格

n 右一一气泡左端相距右基线几格 N 一一水平仪的实际移动格数(水平仪读数)。 绝对值前面的“+”、“-”符号的确定:我们约定,当整个气泡移向对称线的右边,绝对值前冠“+”号,反之为“-”号。 (b) 例如上图a 的读数为:格—)(—12 20N =--= 上图b 的读数:格32 5.25.3N +=--+= 四、实验步骤 1.将水平仪、桥板擦干净,将被测面去毛刺并擦净。 2.初步调平被测表面(导轨、平尺、平板、工作台)。 3.用节距法测量。桥板节距(跨距)l 由被测长度L 划分成若干等分段确定之,跨距l 一般为100~250mm 。将水平仪置于桥板上,从一端开始,逐段测量,做到相邻两段首尾相接。为使所作误差曲线图为实际形状误差的一致性,我们从左向右逐段进行测量。第一段的起点称为原点,第一段的末点是第1点,测得的读数表示该段末点相对起点的升降,将水平仪读数记于实验报告相应栏目中,然后将桥板连同水平仪滑移至第二段,使第一段末点(1点)与第二段的起点相衔接,就可测得第二点的读数。依此类推,直至测量完毕。 4.对测得值进行数据处理,用作图法求直线度误差f_。 例如水平仪的分度值为mm 1000mm 02.0i = ,桥板L=200mm ,水平仪读数如下:第1段, +1.5格;第2段,+2格;第3段,0;第4段,-2格;第5段,-2格,试求该被测素线的f_。 用包容区域为格值的数据处理法。根据下表作图3-5,从误差曲线图中可看出误差形状是向材料外凸起呢,还是向材料中凹下。

平行度误差平面度误差的测量

任务四平行度误差、平面度误差的测量 【课题名称】 零件的平行度、平面度误差测量 【教学目标与要求】 知识目标 了解平面度误差、平行度误差的检测工具及测量方法。 能力目标 能够正确使用框式水平仪、自准直仪和百分表进行测量,并准确计算误差值。 素质目标 熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。 教学要求 能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确的测量。 【教学重点】 框式水平仪、自准直仪和百分表的使用,各种形位误差的检测方法。 【难点分析】 平面度测量出9点误差值的调零方法及误差值计算。 【分析学生】 该内容的难度较大,特别是直线度误差值的计算和平面度零位调整比较难以理解,需要多做解释,学生才能够掌握。尤其是零位调整的方法更难懂,一定要把原理讲透。 【教学设计思路】 本次课内容较多,且内容难懂,建议分成4学时,以保证有更多的练习机会,由于实训条件有限,可以分组进行测量,然后按结果来讲述如何计算平行度和平面度的误差值。对于平面度的检测也应先讲测量原理和方法,再给学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。本次课教学一定要做好预习工作。 【教学安排】 4学时 先讲后练,以练为主,加强巡视指导。 【教学过程】 一. 复习旧课 在形状和位置误差中,直线度误差在零件中出现比较多,大家是否还能记住这些形位公差的含义呢? 二、导入新课 需要应用什么测量工具来检测零件的直线度、平面度、平行度、呢?对于测量出来的数值又需要进行怎么样的处理才能得出正确的误差值呢?这是本次课程的主要内容。 三、讲授新课 1. 平行度误差的测量 平行度误差是工件的位置误差,一般是指工件两直线之间的平行度偏差值。它影响加工工件的精确度,因此控制平行度误差在允许的范围内就显得更为重要。 平行度误差分线与线和线与面之间的误差两种。 平行度误差的测量主要使用百分表。以一条线或面为基准,将百分表座放在基准上,沿基准来回移动,百分表针的最大值与最小值之差就是平行度误差值。

直线度误差的测量.

实验五直线度误差的测量 一.实验目的 1、熟悉用光学准直仪检测直线度的测量方法。 2、加深对直线度误差定义的理解,掌握被测物直线度合格性判断的方法。 3、进一步理解形状误差的评定准则一最小条件。 二. 测量仪器 42J光学准直仪, “0”级平尺(1.5m) 三.测量原理 机床、仪器导轨或其他窄而长的平面,为了控制其直线度误差,常在给定平面(垂直平面、水平平面)内进行检测。常用的计量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等。使用这类器具有共同特点是测定微小角度的变化。由于被测表面存在着直线度误差,计量器具置于不同的被测部位上,其倾斜角度就要发生相应的变化。如果节距(相邻两测点的距离)一经确定,这个变化的微小倾角与被测相邻两点的高低差就有确切的对应关系。通过对逐个节距的测量,得出变化的角度,用作图或计算,即可求出被测表面的直线度误差值。 四、实验步骤 1.量出被测导轨表面总长,确定相邻两测点之间的距离(节距),将被测平尺或平板调整到基本水平位置(水平仪). 2.量出被测物的点距Lx(钢板尺). 3.调整光学平直仪及反光镜位置(光学平直仪基准线). 4. 逐段测量,在草稿纸上记录“n”次后取点位平均值。 5.将其各点位平均值(正,反向)逐位记入数据表格内,并计算出相对误差及 累积误差(f-). 6.跟据计算出的实际相对误差及累积误差值,采用适当的比例和坐标,画出被 测物直线度的误差放大图。 7采用最小条件法作两条平行线将被测物直线度的误差折线紧紧包容起来。 8垂直于X坐标,量出由最小条件法评定出的误差值f _ 。 9.对照相应直线度公差值t,判断是否f_≤t . 提示; 学生所作实验报告内容为(1.5m平尺)直线度检测,(0.6x0.9m)平板直线度检测作为实验辅助内容不记入实验报告。 如此顺测(从首点至终点)、回测(由终点至首点)各一次。回测时桥板不能调头,各测点两次读数的平均值作为该点的测量数据。必须注意,如某测点两次

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项 位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 标签:三坐标;位置度 1 位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基準元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 2 三坐标测量位置度的注意事项 2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。如果这些元素不存在,可以用构造功能套用、生成这些元素。 2.2 对位置度公差的理解。如位置度公差值t前加注φ,表示公差带是直径

轨道直线度误差的测量

轨道直线度误差测量 一、实验目的: 1、掌握用水平仪测量垂直平面内的直线度误差的方法。 2、掌握用作图法求直线度误差,用最小区域法评定直线度误差的方法。 3、了解其他测量直线度误差的方法。 二、实验内容: 测量导轨直线度误差或测量平板一对角线的直线度误差。 三、水平仪的结构、工作原理: 1、水平仪的结构 框式水平仪一般是制成矩形框架,它们互相垂直平行,下方框边的上面装有一个水准器(密封的玻璃容器),本实验用i=0.01mm/l000mm水平仪。 2、测量工作原理: 以自然水平面为测量基准。用节距法(又称跨距法)对被测直线进行逐段测量,得到各段的读数然后经过数据处理,就可以用作图法或计算法求出误差值。 四、测量时注意事项 1、使用水平仪要尽量避免人的体温对它的影响。 2、测好一段.应推动板桥向后一测量段滑进,等气泡完全静止下来再读数。水平仪置于板桥上是作为一整体使用,测量过程中二者之间尽量不要发生相对移动。 3、作图力求准确,比例恰当,图面清晰。

五、实验步骤 1.将水平仪、桥板擦干净,将被测面去毛刺并擦净。 2.初步调平被测表面(导轨、平尺、平板、工作台)。 3.用节距法测量。桥板节距由被测长度L划分成若干等分段确定,跨距一般为100~250mm。将水平仪置于桥板上,从一端开始,逐段测量,做到相邻两段首尾相接。为使所作误差曲线图为实际形状误差的一致性,我们从左向右逐段进行测量。第一段的起点称为原点,第一段的末点是第1点,测得的读数表示该段末点相对起点的升降,将水平仪读数记于实验报告相应栏目中,然后将桥板连同水平仪滑移至第二段,使第一段末点与第二段的起点相衔接,就可测得第二点的读数。依此类推,直至测量完毕。 4.对测得值进行数据处理,用作图法求直线度误差f_。 用分度值: i =0.01 mm/m的合象水平仪检测长导轨的直线度,桥板跨距为130mm.测量数据列于下表: 六、数据处理

最新垂直度误差、位置度误差的测量

垂直度误差、位置度误差的测量

任务五垂直度误差、位置度误差的测量 【课题名称】 平面零件的误差测量 【教学目标与要求】 一、知识目标 了解线、面垂直度误差和面对称度误差的检测工具及测量方法。 二、能力目标 能够正确使用百分表进行测量,并准确计算误差值。 三、素质目标 熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。 四、教学要求 能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确的测量。 【教学重点】 百分表的使用,各种形位误差的检测方法。 【难点分析】 百分表的使用,各种形位误差的检测方法。 【分析学生】 该内容的难度较大,比较难理解,需要多做解释,学生才能够掌握。

【教学设计思路】 本次课内容较多,且内容难懂,建议分成2学时,以保证有更多的练习机会,由于实训条件所限,可以分组进行测量,对于垂直度的检测也应先讲测量原理和方法,再让学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。 【教学安排】 2学时 先讲后练,以练为主,加强巡视指导。 【教学过程】 一. 复习旧课 在形状和位置误差中,直线度、平面度的误差在平面零件中出现比较多,大家是否还能记住这些形位公差的含义呢? 二、导入新课 需要应用什么测量工具来检测零件的垂直度和对称度呢?对于测量出来的数值又需要进行怎么样的处理才能得出正确的误差值?这是本次课程的主要内容。 三、讲授新课 垂直度和对称度误差的测量应用百分表或千分表作为量具,用标准平扳为基准面,借助于表座、方箱或直角尺座工具,将被测工件安放在基准面上进行检测。 线与面和面与面之间垂直度的检测方法相同,后者需要多测量几次。

平行度误差检测方法介绍

平行度误差检测方法介绍

摘要:平行度是属于形位公差中的一种,平行度评价直线之间、平面之间或直线与平面之间的平行状态。下面我们将对平行度的误差检测方法进行讲解。 什么是平行度? 指两平面或者两直线平行的程度,指一平面(边)相对于另一平面(边)平行的误差最大允许值。 平行度公差 平行度公差是一种定向公差,是被测要素相对基准在方向上允许的变动全量。所以定向公差具有控制方向的功能,即控制被测要素对准基准要素的方向。 平行度公差的分类 1、面对面的平行度公差 该项平行度公差为:所指表面必需位于距离为0.05mm,且平行于基准平面的两平行平面之间。公差带是距离为公差值t且平行于基准平面的两平行平面之间的区域。 2、面对线的平行度公差 指平面必须位于距离为0.05mm,且平行于基准轴线的两平行平面之间。公差带是距离为公差值t且平行于基准轴线的两平行平面之间的区域。 3、线对线的平行度公差 ●给定方向线对线的平行度公差 平行度公差为孔D的实际轴线必须位于距离为公差值0.2mm,平行位于基准轴线A且垂直于给定方向的两平行平面之间。公差带是距离为公差值t且平行于基准轴线且垂直于给定方向的两平行平面之间的区域。 ●任意方向上线对线的平行度公差 平行度公差为孔D的实际轴线必须位于直径为公差值0.1mm,轴线平行于基准轴

线A的圆柱面所构成的公差带区域内。任意方向上线对线的平行度公差带是直径为公差值t,轴线平行于基准轴线的圆柱面内的区域。 平行度误差检测方法 传统测量方法 1、测量面对面平行度误差 公差要求是测量面相对于基准平面的平行度误差。基准平面用平板体现,如下图所示。测量时,双手推拉表架在平板上缓慢地作前后滑动,用百分表或千分表在被测平面内滑过,找到指示表读数的最大值和最小值。 被测平面对基准平面的平行度误差可按公式计算为: 2、测量线对面平行度误差 公差要求是测量孔的轴线相对于基准平面的平行度误差。需要用心轴模拟被测要素,将心轴装于孔内,形成稳定接触,基准平面用精密平板体现,如下图所示: 测量时,双手推拉表架在平板上缓慢地作前后滑动,当百分表或千分表从心轴上素线滑过,找到指示表指针转动的往复点(极限点)后,停止滑动,进行读数。 在被测心轴上确定两个测点a、b,设二测点距离为1 ,指示表在二测点的 2 读数分别

相关文档
最新文档