LRC电路谐振特性的研究

LRC电路谐振特性的研究
LRC电路谐振特性的研究

LRC 电路谐振特性的研究

一、实验目的

1.研究和测量RLC 串,并联电路的幅频特性。 2.掌握幅频特性的测量方法

3.进一步理解回路Q 值的物理意义

二、实验原理

一、LRC 串联电路

1.回路中的电流与频率的关系(幅频特性)

见图1(a)和(b ),图中R ’由两部分组成,一部分是电感线圈的电阻,另一部分是与电容串联的等效损耗电阻,mV1为交流毫伏表,可监视信号源的输出电压,mV2也为交流毫伏表,用来测量R 两端的交流电压值,f 为频率计。 LRC 交流回路中阻Z 的大小为

对此回路总电压U 与总电流I 的相位差?,下式成立:

回路中电流I 为

当 时,?=0,电流I 最大。令w0与f0分别表示?=0的角频率与频率,并称为谐振角频率与谐振频率,

如果取横坐标为w,纵坐标为I,可得图(2)所示电流频率特性曲线。

()1)

1()X X (2

222C L R R Z C L ωω-+=-+=)3(1arctan R C L ωω?-=)2('

1'R R C L U U U U tg R R C L +-=+-=ωω?)

4()1()'(2C L R R U

Z U I ωω-++==C

1

L ωω=)

5(21

2 100

0LC

f LC ππωω===,图2 LRC 串联电路中的电流与频率关系曲线

2.串联谐振电路的品质因数Q 谐振时?=0,

C

L U U -,即纯电感两端的电压与理想电容器两端的电压相等,并且

又将式(5)代入上式,得

则)(8QU

U U C L ==

Q 称为串联谐振电路的品质因数,当Q>1时,L U 和C U 都远大于信号源输出电压,这种现象称为LRC 串联电路的电压谐振。

Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为来自信号源电压的Q 倍。

为了描述I-W 曲线的大致分布,当电流I 从最大值I max 下降到 时的带宽与

谐振频率w0的关系。对应此带宽边界的两个频率w1和w2均应满足

由此可以得出

上面二式相减得

2

12

121211)11(1)(ωωωωωωωω+=+=

+C C L 则2

11

ωω=

LC

和式(5)相比较,可得)

(112

10ωωω=

又将(9)和(10)相加,整理得出 1

LC )'(2-121

212++=ωωωωωωC R R

U R R L L R R U

LI U L '

'000+=+=

=ωωω)

6()'2

U C R R L

U L +=

()

7()'2C

R R L Q +=(令max I 2

1

)

'(2)1()'(2

2R R U C

L R R U

+=

-

++ωω)()(—

91

'122ωωωωC L R R C L +=)

()(—101'111ω

ωωωC L R R L C +=

将2

11

ωω=

LC 代入上式,得

Q

LC C

R R LC C R R 02121

L

)'(1)'(-ωωω=+=

+= 最后得出

)(121

201

20f f f Q -=

-=

ωωω

显然(12f f -)越小,曲线就越尖锐,可以讲Q 的第二个意义是:它标志曲线的尖锐程度,即电路对频率的选择性,称)(Q f f /0=?为通频带宽度。 3.Q 值的测量法

①(电压)谐振法 根据图(1)a 所示的线路,调节信号源的输出电压值,保证在各种不

同频率时都相等,然后测量R 两端的交流电压,当R U 最大时,说明电路已处于谐振状态。

用交流电压表分别测量L 和C 两端的电压,Q(U

U U U C

L ==)值就可以计算出来。如果各种频率的输出信号幅度U 值都是1.00V,那么测得的L U 和C U 值就是Q 值的大小。

②频带宽度法

根据图(1)a 所示的线路,按照上述要求测量各种频率f 时R 两端的电压值,作为R U —f 曲线,找出R U 最大时的频率()0f f =,即谐振频率,在求出2

)

()(0f U f U R R =

时的频率

21f f 和值,根据(12)式计算出Q 值的大小。

三、实验仪器和用具 四、实验内容

1、测量LRC 串联电路的谐振特性

测量线路如图(3)所示,当K 与“2”接通,调节XF 的电压输出幅度,保证各种频率测量时的电压有效值都是3,0V 。当K 与“1”接通,用交流毫伏表测量R 的端电压。计算电路的谐振频率0f ,使频率从0f 向两侧扩展,每侧取8~10种频率,对每一频率测电阻R 的端电压R U 。频率的改变范围应能使R U 从最大值降到最大值的十分之一以下。每次频率的改变量不应相等,在0f 附近可以小些,或者使R U 的每次变化大体相似即可。绘制I~f 或R U ~f 曲线。

2.分别用电压谐振法和频带宽度法确定Q 值。

图3 LRC 电路的测量线路

实验数据:

H C F L 1.0,1.0==μ

z 36.15921.01.021

212 00H H

F LC f =?===

μπππω V f U 22.2)(0=

频率f/khz 1.729 1.716 1.688 1.676 1.655 1.65 1.622 1.608 1.589 R 的端电压/V 1.41 1.49 1.7 1.77 2.0 2.03 2.14 2.20 2.22 频率f/khz 1.587 1.575 1.564 1.549 1.534 1.518 1.517 1.504 1.518 R 的端电压/V 2.21 2.19 2.2 2.06 2.00 1.85 1.78 1.57 1.76

电压谐振法测量数据: 设U=1.0V

UR

8.234

8.55

8.35 8.42

8.47

Q

8.406

频带宽度法求Q

2

)

()(0f U f U R R =

K H z f K H z f 503.1691.121==

468.8503

.1691.1592

.11201

20=-=-=

-=

f f f Q ωωω

R 的两端电压与频率的关系图

电阻对理想RLC串联谐振电路频率特性的影响

姓名班级学号 实验日期 5.28 节次7.8 教师签字成绩 电阻对理想RLC串联谐振电路频率特性的影响 1.实验目的 1.测量分析由于信号源内阻、电容及电感电阻存在所导致的实验常用简单无源滤波器滤波性能变化。 2.分析电阻值大小会对无源滤波器的滤波影响变化趋势并尝试提出实际缩小误差的方案。 2.总体设计方案或技术路线 1. 在实际中由于电源内阻、电感电阻、电容阻值的影响,谐振电路的频率特性会受到 各种各样的的影响,本实验期望通过对于带通滤波器仿真及实际实验测量分析电阻在各个元件中以及电源中的存在对于频率特性的影响。 2.在仿真实验中,由于各元件都是理想状态,因而可以直接将相应原件与一适宜大小的 电阻进行串联 3.实验电路图 4.仪器设备名称、型号 交直流实验箱 示波器 数字万用表 函数信号发生器 直流稳压电源、各型号电感电容以及导线等

5. 电感内阻 电容内阻 Frequency V(R2:1)+ V(C1:1) Frequency V(R2:1)+ V(L1:1)

3.0V 2.0V 1.0V 0V 1.0Hz 3.0Hz10Hz30Hz100Hz300Hz 1.0KHz 3.0KHz10KHz30KHz100KHz V(R1:1)+ V(R2:1) Frequency 电阻增加 V(R1:1) Frequency 电源内阻 其中所有电阻变化在图线下标中均为从左向右依次增加,第一个为1nΩ,模拟0内阻的时候,其余四个为10Ω,100Ω,1kΩ,10kΩ

6.详细实验步骤及实验结果数据记录(包括各仪器、仪表量程及内阻的记录) 测量电源内阻影响 1.按照电路图连接电路,并检查个部分工作是否正常。 2.对电源进行串连一个电阻箱,并调节相应电阻值。 3.调节信号源频率,使获得最大信号强度,记录此时频率f0。 4.在此频率基础上测量获得两个截止频率,并在其中选取相应频率值记数。 5.改变电阻值,再次测量。 信号源频率 /Hz 10 80 149 180 210 f0 223 输出电压/mv 30.9 266 582 726 810 821 信号源频率 /Hz 260 310 340 400 1k 电阻值Ω 输出电压/mv 777 652 581 469 160 0 信号源频率 /Hz 10 40 144 170 210 f0 223 输出电压/v 30.9 126 536 645 750 758 信号源频率 /Hz 270 290 352 500 2k 电阻值Ω 输出电压/v 705 663 535 349 77.1 100 信号源频率 /Hz 20 80 110 150 190 f0 223 输出电压/v 61.8 239 316 394 437 446 信号源频率 /Hz 280 340 464 600 1k 电阻值Ω 输出电压/v 430 392 315 251 155 1k 相应修正:信号源电压Vrms=1v,C=5uF,L=1H,Rl=146Ω 测量电感内阻影响 1.按照电路图连接电路,并检查个部分工作是否正常。

谐振电路的品质因素与计算公式

谐振电路的品质因素与计算公式 谐振电路在电子技术中有着广泛的应用.谐振电路的特性与该谐振电路的品质因数(即Q值)密切相关.求1个电路的Q值应从其定义出发,才能对Q值的意义有更深刻的理解对谐振电路的特性有更全面的认识。在研究各种谐振电路时,常常涉及到电路的品质因素Q值的问题,那么什么是Q值呢?下面我们作详细的论述。 品质因数的原始定义是由能量来定义的,表示了电路中能量之间的转换的关系,即电路的储能效率。从能量定义品质因数可以清楚地表达品质因数的物理意义,对于各种电路具有普遍意义。 对于简单的RLC串联、并联电路品质因数的计算我们可以直接套用品质因数在RLC串联、并联电路中的定义式进行计算,但是对于稍复杂的RLC谐振电路这些公式就不再适用。通过品质因数最原始的定义即能量定义一定是可以计算的任意谐振电路的品质因数,但是却会较为繁琐。 图1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。此电路的复数阻抗Z为三个元件的复数阻抗之和。

Z=R+jωL+(-j/ωC)=R+j(ωL-1/ωC) ⑴ 上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。 当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小。因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等, 电容上的电压有效值UC=I*1/ωC=U/ωCR=QU品质因素Q=1/ωCR,这里I 是电路的总电流。 电感上的电压有效值UL=ωLI=ωL*U/R=QU品质因素Q=ωL/R 因为:UC=UL 所以Q=1/ωCR=ωL/R 电容上的电压与外加信号电压U之比UC/U= (I*1/ωC)/RI=1/ωCR=Q 电感上的电压与外加信号电压U之比UL/U= ωLI/RI=ωL/R=Q 从上面分析可见,电路的品质因素越高,电感或电容上的电压比外加电压越高。结论 品质因数的能量定义清楚地表达了品质因数的物理意义,对于各种电路具有普遍意义,但是如果利用它去求解较为复杂的谐振电路的品质因数则相当困难,甚至难以求解。串联和并联谐振电路的品质因数的定义,是从电路参数的角度对品质因数直接下了定义,这种定义有利于求解品质因数的计算,但是从理解的角度讲,不如品质因数的能量定义更加明确,更容易看清其所包含的物理意义。从第一部分的证明我们可以看出串联、并联谐振电路的品质因数的定义可以由品质因

串联谐振电路品质因数的定义

串联谐振电路品质因数的定义 谐振电路中一个非常重要的参数就是品质因数Q,它揭示了谐振电路的各种重要关系,Q值的大小直接影响谐振电路的通频带和选择性等重要指标。然而,在现有的电子教科书中,对谐振电路品质因数的描述大都比较简单,这不利于学生对这一概念与其内涵的真正理解与把握。特别是对品质因数Q值的求解,学生更是感到无从下手。针对于这问题,本文从品质因数的定义出发进行研究,介绍了一种计算品质因数Q值简单而又有效的方法。 1.品质因数的定义 电路的品质因数分为串联电路的品质因数与并联电路的品质因数,以及部分电路的品质因数和整体电路的品质因数。品质因数有以下几种定义方式: 1.1用能量定义品质因数的能量定义清楚地表达了品质因数的物理意义,对于各种电路具有普遍意义,但在电路中利用能量定义来计算品质因数Q值相对比较复杂,有时候甚至难以计算。计算公式如下: 品质因数Q=2π(ω0/ωR0) 式中:0ω———谐振时电路储存的能量,ωR0———谐振时电路在1周期内消耗的能量。 品质因数Q=2π(ωLOM/P0T0) 式中:ωLOM———谐振时电路中电感能量的最大值,P0———谐振时电路中消耗的有功功率,T0———谐振周期。

1.2用功率定义品质因数的功率定义是从另一个角度对品质因数的能量定义的一种解释,它也较好地表达了品质因数的物理意义,用它来计算品质因数Q值的方法相对来说比用能量定义的方法来求解要好得多,不会出现计算不出来的情况。但对较为复杂电路,其计算过程较为繁琐。其计算公式如下: 品质因数Q=Q0/P0 式中:Q0———谐振时的无功功率,P0———谐振时的有功功率。 1.3串联电路品质因数的定义 1.3.1用参数定义如图1所示的RLC串联谐振电路,一般教科书用参数这样定义串联电路的品质因数:谐振时回路感抗值(或容抗值)与回路电阻R的比值称为回路的品质因数,用参数计算公式如下: 品质因数Q=ω0L/R=1/ω0CR=1R·L/R(1) 式中:0ω———电路谐振角频率,L———电路中的电感,C———电路中的电容,R———电路的电阻。

RLC串、并联谐振回路的基本特性

RLC串、并联谐振回路的基本特性 老师网 https://www.360docs.net/doc/658753782.html, 时间:2008-09-22 15:57:24 LC 串并联谐振回路特性实验 一、实验目的 1、掌握LC 振荡回路的谐振原理。 2、掌握LC 串并联谐振回路的谐振特性。 3、掌握LC 串并联谐振回路的选频特性。 二、实验内容 测量LC 串并联谐振回路的电压增益和通频带,判断选择性优劣。 三、实验仪器 1、扫频仪一台 2、20MHz 模拟示波器一台 3、数字万用表一块 4、调试工具一套 四、实验原理 (一)基本原理 在高频电子线路中,用选频网络选出我们所需的频率和滤除不需要的频率成分。通 常,在高频电子线路中应用的选频网络分为两类。第一类是由电感和电容元件组成的振 荡回路(也称谐振回路),它又可以分为单振荡回路以及耦合振荡回路;第二类是各种 滤波器,如LC 滤波器,石英晶体滤波器、陶瓷滤波器和声表面滤波器等。本实验主要 介绍第一类振荡回路。 1、串联谐振回路 信号源与电容和电感串联,就构成串联振荡回路。电感的感抗值( wL )随信号频 率的升高而增大,电容的容抗值( wC 1 )则随信号频率的升高而减小。与感抗或容抗的 变化规律不同,串联振荡回路的阻抗在某一特定频率上具有最小值,而偏离特定频率时 的阻抗将迅速增大,单振荡回路的这种特性为谐振特性,这特定的频率称为谐振频率。 图2-1 所示为电感L、电容C 和外加电压Vs 组成的串联谐振回路。图中R 通常是 电感线圈损耗的等效电阻,电容损耗很小,一般可以忽略。

图2-1 串联振荡回路 保持电路参数R、L、C 值不变,改变外加电压Vs 的频率,或保持Vs 的频率不变, 而改变L 或C 的数值,都能使电路发生谐振(回路中的电流的幅度达到最大值)。在某一特定角频率 w0 时,若回路电抗满足如下条件: (2-1) 则电流为最大值,回路发生谐振。上式称为串联谐振回路的谐振条件。 回路发生串联谐振的角频率w0 和频率f0 分别为: (2-2) 将式(2-2)代入式(2-1)得 (2-3) 我们把谐振时的回路感抗值(或容抗值)与回路电阻R 的比值称为回路的品质因数, 以Q 表示,简称Q 值,则得 (2-4) 若考虑信号源内阻Rs 和负载RL 后,串联回路的电路如图2-2 所示。由于Rs 和RL 的接入使回路Q 值下降,串联回路谐振时的等效品质因数 QL 为

电路频率特性

东南大学电工电子实验中心 实验报告 课程名称:电路 第四次实验 实验名称:电路频率特性(EDA) 院(系):专业:电班 姓名:学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩:审阅教师: 电路频率特性的研究

一、 实验目的 1. 掌握低通、带通电路的频率特性; 2. 应用Multisim 软件测试低通、带通电路频率特性及有关参数; 3. 应用Multisim 软件中的波特仪测试电路的频率特性。 二、 实验原理 研究电路的频率特性,即是分析研究不同频率的信号作用于电路所产生的响应函数与激励函数的比值关系。通常情况下,研究具体电路的频率特性,并不需要测试构成电路所有元件上的响应与激励之间的关系,只需要研究由工作目的所决定的某个元件或支路的响应与激励之间的关系。本实验主要研究一阶RC 低通电路,二阶RLC 低通、带通电路的频率特性。 (一):网络频率特性的定义 电路在一个正弦电源激励下稳定时,各部分的响应都是同频率的正弦量,通过正弦量的相量,网络函数|()|H jw 定义为:. ().|()||()|j w Y H w H jw e X ?== 其中Y 为输出端口的响应,X 为输入端口的激励。由上式可知,网络函数是频率的函数,其中网络函数的模|()|H jw 与频率的关系称为幅频特性,网络函数的相角()w ?与频率的关系称为相频特性,后者表示了响应与激励的相位差与频率的关系。 (二):网络频率特性曲线 1. 一阶RC 低通网络 网络函数: 其模为: 辐角为: 显然,随着频率的增高,|H(j ω)|将减小,即响应与激励的比值减小,这说明低频信号可以通过,高频信号被衰减或抑制。 (a) RC低通网络(b) 幅频特性 (c) 相频特性 ()H j ω()) RC ?ω=().0.1/1 1/1i U j c H j R j C j RC U ωωωω=== ++

品质因数计算

电路理论基础论文 名称:电路品质因数的定义及计算方法 学生姓名: 学院: 班级: 学号: 2013年12月

电路品质因数的定义及计算方法 XXX (哈尔滨工业大学 控制科学与工程 哈尔滨150001) 摘要:品质因数是谐振电路中非常重要的一个参数。本文将介绍品质因数的三种定义及之间的相互关系并对谐振电路中品质因数的计算方法进行讨论,给出了一般RLC 电路谐振时品质因数的简单计算方法。 关键词:品质因数;定义;计算方法;谐振电路;等效阻抗;等效导纳; 品质因数是谐振电路中一个非常重要的参数,然而在课程教材只是在RLC 串联、并联谐振电路中直接给出了谐振电路的品质因数的计算公式并由计算公式定义了品质因数,但对于品质因数的原始定义、其物理意义及在较为复杂的RLC 混联电路中的计算方法却并没有说明。本文将介绍品质因数的原始定义,并从原始定义分别推导RLC 串联、并联谐振电路的品质因数定义式,最终给出复杂RCL 谐振电路的品质因数计算的简单方法。 1. 品质因数的定义及相互间的关系 1.1 从能量的角度定义 =2Q π 电路中存储的最大能量电路在一周期内消耗的总能量 品质因数的原始定义是由能量来定义的,表示了电路中能量之间的转换的关系,即电路的储能效率。从能量定义品质因数可以清楚地表达品质因数的物理意义,对于各种电路具有普遍意义,但在电路中利用能量定义来计算品质因数Q 值则相对比较复杂。 1.2 在RLC 串联谐振电路中的定义 R L C 图一:RCL 串联电路 RLC 串联电路图如图所示,电路处于谐振状态时,L 、C 为RLC 串联电路中的电感及电容,C L = ρ,ρ称为RLC 串联电路的特性阻抗。则品质因数R Q ρ=。 1.3 在RLC 并联谐振电路中的定义

品质因数

线圈的品质因数称作q值。它表示线圈在一定频率的交流电压下工作时,其感抗xl和等效损耗电阻之比,即为q值。表示公式为 式中:2---常数 f--频率 l--线圈的电感量 r--线圈的总损耗电阻,在低频下可视为线圈的直流电阻. q值的大小一般在几十到几百。q值越高,电路的损耗越小,效率越高。提高绕制线圈的q值可从以下几方面实施: 1)在线圈中装人磁心,这样可以增大电感值,从而提高q值。 2)尽量使用较粗的导线绕制线圈,在高频时还应采用多股线,这样可以减小导线电阻, 提高q值. 电感器的Q值越高,其损耗越小,效率越高. 电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关. 也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大.降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯. Q值过大,引起电感烧毁,电容击穿,电路振荡. Q很大时,将有VL=VC>>V的现象出现.这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失.所以在电力系统中应该避免出现谐振现象.而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值. 品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量 通频带BW与谐振频率w0和品质因数Q的关系为:BW=w0/Q,表明,Q大则通频带窄,Q 小则通频带宽. Q=wL/R=1/wRC 其中: Q是品质因素 w是角频率 L是电感 R是串的电阻 C是电容 品质因数(□值)是表征电子电路中谐振回路特性的基本参数。谐振回路的能量关系为□也可用谐振回路各阻抗参量表示为 □通常,某个元件(如电感器或电容器)的□值,指这一元件与一理想的无损耗元件所组成的谐振回路的□值。品质因数测量有Q表法和变电容或变频率两种方法。 Q表法(电压比法)在高频范围广泛采用Q表法测量□值(图1高频Q表法原理图)。其基本原理是:被测件与Q表内部调谐电容器(及辅助电感)组成谐振回路,通过谐振电压和激励电压之比在谐振电压表上利用直接刻度得出谐振回路的直读□值。用此法还可由调谐电容读数求出被测件的电感或电容值。Q表法具有多用途、宽量程和可在实际工作频率下进行测量等特点。 变电容或变频率(通带)法这种方法是各种微波□□值测量方法的基础(图2变电容或变频率(通带)法原理图)。改变电容□或频率□测出谐振回路的谐振曲线,从而求出回路的□值,□

RLC串联谐振频率及其计算公式

R L C串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C Q T=Q L Q C=0 6. 串联谐振电路之频率: (1) 公式:

(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。

谐振电路和品质因数Q值的物理意义及教学思路

收稿日期:2012-11-27 作者简介:雷志坤(1966~),广西机电职业技术学院讲师,研究方向:电子技术、实验实训教学。浅谈谐振电路和品质因数Q 值的 物理意义及教学思路 雷志坤 (广西机电职业技术学院,广西南宁 530007) 摘 要:谐振是电路在运行过程中的一个特殊状态,处于谐振状态的电路具有明显而独特的特征;电路品质因数Q 值的物理意义在于揭示了电路谐振程度的强弱,体现了电路对信号源频率的选择性以及电路中无功功率对有功功率的比例。充分理解谐振和品质因数的物理含义对掌握和应用其原理起到事半功倍的效果。本文从实用角度出发,通过对常见应用实例分析引出谐振的概念及其学习重点,并通过对比方法讨论了两种典型谐振的特点及品质因数Q 值物理意义区别,给电路分析相关内容的教学提供了一些有效的参考方法。 关键词:谐振;品质因数Q 值;物理意义;讨论 中图分类号:G642 文献标识码:A 文章编号:1008-7508(2013)01-0123-03 引言 谐振是电路在运行过程中出现的一种特殊物理现象, 其重要性从无线电通信等技术中的应用中可见一斑。具有 电感和电容元件的不含独立激励源二端电路网络,当网络 的输入阻抗等效为纯电阻时,该电路发生了谐振现象,谐 振时电感感抗大小等于电容容抗,网络端口的电压和电流 同相位,在电感或电容上将获得比端口信号大得多的信号 响应量。Q 值的物理意义体现了一个电路发生谐振的强弱 程度和电路对输入信号选频性的好坏。然而,在电路分析 教学中,我们常常发现学生(尤其是高、中职学校的学生) 对谐振其品质因数Q 这些重要概念的物理含义理解不清或 一知半解,究其原因主要是因为其概念较为抽象,教材中 又多采用复杂而繁琐的数学公式推导,直观性不强,造成 学生对这些概念的理解出现一定程度的困难,将影响到他 们后续课程的学习效果。 如何才能便捷有效地理解电路中的谐振和品质因数等 概念呢?笔者在多年的教学实践中总结出一些较为理想的 教学方法,现归纳为以下几点供同行们探讨。 一、举例说明谐振概念及其品质因数Q 值的物理意义 1、谐振的概念及典型应用举例 现以最常见的收音机输入回路(即调台电路)为例。 如图1为简单的收音机信号输入等效电路,由天线和电阻 R 、电感L 及电容C 组成,其中,R 、L 、C 构一个串联谐振回路。 Journal of Jilin Radio and TV University No.1,2013(Total No.133) 吉林广播电视大学学报 2013年第1期(总第133期) 学术论坛

大学物理实验报告系列之RLC电路的谐振

大学物理实验报告系列之 R L C电路的谐振 Prepared on 22 November 2020

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的 幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意 义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻 箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅 频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ?? ?? ? ???????+-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: ) 1 ()'(2ω ωC L R R U Z U I -++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令 振频 并称为谐振角频率与谐的角频率与频率分别表示与,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图 32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (3 2-7) QU U U C L == (3 2-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输 出电压,这种现象称为LRC 串联电路的电压谐振。

Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源 电压的Q 倍。 1 20 120 f f f Q -= -=ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法 (1)(电压)谐振法 (2)频带宽度法 二、LRC 串并混联电路——LR 和C 并联电路 图32-3 LRC 串并混联电路 当交流电的角频率满足关系式: 2)(1L R LC -= ω时,信号源的输出电压也与输出电流相同。同样,令P p f )()(00与ω分 别表示 = 0的角频率与频率,或者称为谐 振角频率和谐振频率,a ,b 两点的阻抗为|Z P |,则: 20)(1)(L R LC p -= ω (32-14) 2)(121)(L R LC f p o -= π (32-15) 当 2)(1L R LC >>时,LR 和C 并联电路的谐振频率与LRC 串联电路的谐振频率近似相等。式(32-14)可改写成为: 2 001 1)(Q p - =ωω (32-16) 【实验内容】 1、测量RLC 串联电路的谐振特性 2.用电压谐振法确定Q 值。 【数据表格与数据记录】 f U R -变化曲线图: 由图示可知,电压为的频率为 Hz f 791.41= Hz f 272.52= 【小结与讨论】

串联谐振电路和并联谐振电路的特性

串联谐振电路和并联谐振电路的特性 一..并;联谐振电路:当外来频率加于一并联谐振电路时,它有以下特性: 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最大值,它这个特性在实际应用中叫做选频 电路. 2.当外加频率高于其谐振频率时,电路阻抗呈容性,相当于一个电容. 3.当外加频率低于其谐振频率时,这时电路呈感性,相当于一个电感线圈. 所以当串联或并联谐振电路不是调节在信号频率点时,信号通过它将会产生相移.(即相位失真) 二.串联谐振电路:当外来频率加于一串联谐振电路时,它有以下特性: 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最少值,它这个特性在实际应用中叫做陷波 器. 2.当外加频率高于其谐振频率时,电路阻抗呈感性,相当于一个电感线圈. 3.当外加频率低于其谐振频率时,这时电路呈容性,相当于一个电容. 并联谐振与串联谐振 2010-03-03 15:49:30| 分类:电子电路| 标签:|字号大中小订阅 1、对于理想的L、C元件,串联谐振发生时,L、C元件上的电压大小相等、方向相反,总电压等于0(谐振阻抗为零)。而并联谐振发生时,L、C元件中的电流大小相等、方向相反,总电流等于0(谐振阻抗为 无穷大)。故有如题的称呼。 2、无论是串联还是并联谐振,在谐振发生时,L、C之间都实现了完全的能量交换。即释放的磁能完全转 换成电场能储存进电容;而在另一时刻电容放电,又转换成磁能由电感储存。 3、在串联谐振电路中,由于串联——L、C流过同一个电流,因此能量的交换以电压极性的变化进行;在 并联电路中,L、C两端是同一个电压,故能量的转换表现为两个元件电流相位相反。 4、谐振时电感和电容还是两个元件,否则不能进行能量交换;但从等效阻抗的角度,是变成了一个元件: 数值为零或无穷大的电阻。 5、串联谐振是电流谐振,一般起电流放大作用。如老式收音机通过串联谐振将微弱电流信号放大。并联谐 振是起电压放大作作。

06谐振电路分析解析

谐振电路分析 一、是非题 2.由R、L、C组成的串联电路,当其外加正弦电压源的角频率变为时,电路中的电流最大。 3.RLC串联电路谐振时,。 4.RLC串联电路谐振时,电路中的电流最大,因此L、C上的电压也一定大于电源电压。 5.RLC串联电路的通频带?f随着电阻R的增大而增大。 6.电感元件和电容元件组成并联谐振电路时,其电路的品质因数为无穷大;谐振时电路的等效阻抗也为无穷大。 7.图示电路,当发生电流谐振时,U C =0。 8.图示RLC串联电路,S闭合前的谐振频率与品质因数为f0与Q,S闭合后的谐振频率与品质因数为与Q',则,Q

10.图示RLC串联电路,未并联C2时,谐振角频率与品质因数分别为ω0与Q,并联C2后,谐振角频率与品质因数为ω0'与Q',则ω0>ω0',Q >Q'。 12.图示电路,当LC并联谐振时,U R =0。 2.答案(+) 3.答案(+) 4.答案(-) 5.答案(+) 6.答案(+) 7.答案(-)8.答案(+)9.答案(-)10.答案(+)12.答案(+)

二、单项选择题 1.RLC串联电路的串联谐振频率为。当fZ C (D)Z L=-Z C 3.图示相量模型,当其发生谐振时,输入阻抗为 (A)R (B)Z L (C)Z C (D)∞ 4.一个等效参数为R、L的线圈与电容器C串联接于36V正弦电源上。当发生电压谐振时,测得电容器两端电压为48V,线圈两端电压为 (A)36V (B)48V (C)60V (D)84V 5.图示电路处于谐振状态时,电压表与电流表的读数分别为: (A)5V与0.5A (B)10V与0A (C)0V与1A

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

谐振电路的品质因素

谐振电路的品质因素 在研究各种谐振电路时,常常涉及到电路的品质因素Q值的问题,那末什么是Q值呢?下面我们作详细的论述。 图1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。此电路的复数阻抗Z为三个元件的复数阻抗之和。 Z=R+jωL+(-j/ωC)=R+j(ωL-1/ωC) ⑴ 上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。 当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小。因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,电容上的电压有效值UC=I*1/ωC=U/ωCR=QU,品质因素Q=1/ωCR,这里I是电路的总电流。 电感上的电压有效值UL=ωLI=ωL*U/R=QU 品质因素Q=ωL/R

因为:UC=UL 所以Q=1/ωCR=ωL/R 电容上的电压与外加信号电压U之比UC/U= (I*1/ωC)/RI=1/ωCR=Q 电感上的电压与外加信号电压U之比UL/U= ωLI/RI=ωL/R=Q 从上面分析可见,电路的品质因素越高,电感或电容上的电压比外加电压越高。电路的选择性:图1电路的总电流I=U/Z=U/[R2+(ωL-1/ωC)2]1/2=U/[R2+(ωLω0/ω0-ω0/ωCω0)2]1/2 ω0是电路谐振时的角频率。当电路谐振时有: ω0L=1/ω0C 所以I=U/{R2+[ω0L(ω/ω0-ω0/ω)]2}1/2= U/{R2+[R2(ω0L/R)2](ω/ω0-ω0/ω)2}1/2= U/R[1+Q2(ω/ω0-ω0/ω)2]1/2 因为电路谐振时电路的总电流I0=U/R, 所以I=I0/[1+Q2(ω/ω0-ω0/ω)2]1/2有:I/I0=1/[1+Q2(ω/ω0-ω0/ω)2]1/2作此式的函数曲线。设(ω/ω0-ω0/ω)2=Y 曲线如图2所示。这里有三条曲线,对应三个不同的Q值,其中有Q1>Q2>Q3。从图中可看出当外加信号频率ω偏离电路的谐振频率ω0时,I/I0均小于1。Q 值越高在一定的频偏下电流下降得越快,其谐振曲线越尖锐。也就是说电路的选择性是由电路的品质因素Q所决定的,Q值越高选择性越好。

谐振详解[1]

?在rlc电路中。当电路的阻抗z(jw)的虚部为0时,此时z(jw)=r在频率w下最小。此时电流i=u/|z|最大,此时可将频率为w的电流选出。反之y=g往掉该频率,这是它们的关键点选频电路:利用lc串联电路。和lc并联电路的谐振办到的,当w=1/√(lc)。即f=1/2π√(lc)时,lc串联电路z=r发生谐振。lc相当于短路。谐振是什么意思可将频率为w的电流选出当w=1/√(lc),即f=1/2π√(lc)时。lc并联电路z=g+j(wc-1/wl)的虚部为0,即j(wc-1/wl)=0。此时导纳g 最小,即阻抗z最大。lc并联电路相当于开路,可将频率为w的电流往掉,选频电路就就是lc的串并联用上面的关系达到选频的。谐振电路振荡电路:就是有rlc 或电源的电路。其中只有lc的串联电路w=1/√(lc),谐振电路:应该就是串联谐振和并联谐振吧。滤波电路:应该跟选频电路差未几吧,串联谐振和并联谐振的区别:上面有讲到。lc串联电路中z(jw)=r+j(wl-1/wc),lc并联电路中导纳y=g+j(wc-1/wl)。所以w=1/√(lc),即f=1/2π√(lc)时前者电流最大。被选出,后者电流最小。被过滤,我只是大学生的啦知识有限。不知对你有不有用,对了 w是指频率。j是虚部符号,其他符号都有注明。呵呵怕你的版本跟我的不一样 ?谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比。且总是指向平衡位置的回复力的作用下的振动,其动力学方程式是f=-kx。谐振是什么 ?谐振的现象是电流增大和电压减小,越接近谐振中心。电流表电压表功率表转动变化快,但是和短路得区别是不会出现零序量, ?在物理学里。有一个概念叫共振:当策动力的频率和系统的固有频率相等时,系统受迫振动的振幅最大。这种现象叫共振。谐振器电路里的谐振实在也是这个意思:当电路的激励的频率即是电路的固有频率时,电路的电磁振荡的振幅也将达到峰值,实际上。共振和谐振表达的是同样一种现象。铁磁谐振这种具有相同实质的现象在不同的领域里有不同的叫法而已, ?收音机利用的就是谐振现象。谐振频率是什么转动收音机的旋钮时,就是在变动里边的电路的固有频率,忽然。在某一点,电路的频率和空气中原来不可见的电磁波的频率相等起来。于是,它们发生了谐振。串联谐振远方的声音从收音机中传出来,这声音是谐振的产物。谐振频率 ?谐振电路

耦合电感和谐振电路(品质因数)

第4章 耦合电感和谐振电路 (inductor of coupling and resonance circu it ) 本章主要介绍: ① ① 耦合电感元件,耦合电感的串、并联; ② ② 含有耦合电感的正弦电流电路的分析, 理想变压器的初步概念; ③ ③ 串联谐振、并联谐振的物理现象,谐振条件,谐振特点。 4.1耦合电感元件(coupled inductors) 磁耦合:两个线圈的磁场存在着相互作用,这种现象称为磁耦合,亦具有互感。 本节只讨论一对线圈相耦合的情况。 一.互感(mutual inductance ) 1.互感:当两个电感线圈物理上相互靠近,一个线圈所产生的磁通与另一个线圈相交链,使之产生感应电压的现象。图为两个有耦合的线圈。设线圈芯子及其周围的磁介质为非铁磁性物质。线圈1的匝数为1N ,线圈2的匝数为2N 。规定每个线圈电流与电压为关联参考方向,电流与其产生的磁链(或电流与磁通)的参考方向符合右手螺旋法则,也是相关联。 耦合线圈无耦合线圈 ①自感磁链:1i 在线圈1中产生的磁通为11Φ及磁链为11Ψ,即:11111ΦN Ψ= 2i 在线圈2中产生的自感磁链22Ψ,即:2222i L Ψ= ②互感磁链:1i 在线圈2中产生的磁链21Ψ,即:21221ΦN Ψ=,21M ——线圈1与2的互感。 2i 在线圈1中产生的磁链12Ψ,即:21212i M Ψ=,12M ——线圈2与1的 互感。 由于磁场耦合作用,每个线圈的磁链不仅与线圈本身的电流有关,也和与之耦合的线圈电流有关,即 ),(2111i i f Ψ=及),(2122i i f Ψ= 由于线圈周围磁介质为非铁磁性物质,上两式均为线性的,即磁链是电流的线性函数。 2.结论:①互感系数:只要磁场的介质是静止的,根据电磁场理论可以证明2112M M =,所以,统一用M 表示,简称互感,其SI 单位:亨利(H )。②互感的量值反映了一个线圈在另一个线圈产生磁链的能力。互感的大小不仅 与两线圈的匝数、形状及尺寸有关,还与两线圈的相对位置有关。如果两线圈使其轴线平行放置,则相距越近,互感便越大,反之越小。而两线圈轴线相互垂直,如图所示在这种情况下,线圈1产生的磁力线几乎不与线圈2相交链,互感磁链接近零,所以互感接

RLC串联电路的幅频特性与谐振现象

R C +-L U S ..I 《电路原理》 实 验 报 告 学号:1138035 姓名: 杜响红 实验地点:理工楼605 实验时间:2012.5,17 一.实验名称 RLC 串联电路的幅频特性与谐振现象 二、实验目的 1.测定R 、L 、C 串联谐振电路的频率特性曲线。 2.观察串联谐振现象,了解电路参数对谐振特性的影响。 三,实验原理 1.R 、L 、C 串联电路(图4-1)的阻抗是电源频率的函数,即: ? ωωj e Z C L j R Z =- +=)1 ( 当C L ωω1 = 时,电路呈现电阻性,s U 一定时,电流达最大,这种现象称为串 联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。 即 LC 10= ω或 LC f π 210= 上式表明谐振频率仅与元件参数L 、C 有关,而与电阻R 无关。 图4-1 2.电路处于谐振状态时的特征: ① 复阻抗Z 达最小,电路呈现电阻性,电流与输入电压同相。 ② 电感电压与电容电压数值相等,相位相反。此时电感电压(或电容电压)为电源电压的Q 倍,Q 称为品质因数,即 C L R CR R L U U U U Q S C S L 11 00= = = = = ωω 在L 和C 为定值时,Q 值仅由回路电阻R 的大小来决定。

I ω ω Q 2 〉 Q 1 Q 2 Q 1 ③ 在激励电压有效值不变时,回路中的电流达最大值,即: R U I I S = =0 3.串联谐振电路的频率特性: ① 回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图 形称为串联谐振曲线。电流与角频率的关系为: 2 0020 2 0022 2111)(??? ? ??- += ???? ??- += ? ? ? ?? -= ωωωωωωωωωωωQ I Q R U c L R U I S S 当L 、C 一定时,改变回路的电阻R 值,即可得到不同Q 值下的电流的幅频 特性曲线(图4-2)。显然Q 值越大,曲线越尖锐。 图4-2 有时为了方便,常以 ωω为横坐标, I I 为纵坐标画电流的幅频特性曲线(这称 为通用幅频特性),图4-3画出了不同Q 值下的通用幅频特性曲线。回路的品质因数Q 越大,在一定的频率偏移下,0 I I 下降越厉害,电路的选择性就越好。 为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性 的幅值从峰值1下降到0.707时所对应的上、下频率之间的宽度称为通频带(以BW 表示)即: 10 2ωωωω- = BW 由图4-3看出Q 值越大,通频带越窄,电路的选择性越好。 ③ 激励电压与响应电流的相位差?角和激励电源角频率ω的关系称为相频 特性,即: R X arctg R c L arctg =- =ωωω?1 )( 显然,当电源频率ω从0变到0ω时,电抗X 由-∞变到0时,?角从2 π- 变到 0,电路为容性。当ω从0ω增大到∞时,电抗X 由0增到∞,?角从0增到 2 π,

谐振电路实验报告

rlc串联谐振电路的实验研究 一、摘要: 从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因 数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和 仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析 的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:rlc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻 组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联 谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用, 例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号 特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研 究串联谐振有重要的意义。 在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下 响应随频率变化的情况,即频率特性。multisim 仿真软件可以实现原理图的捕获、电路分 析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、 直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人 员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定rlc串联谐振电路的频率特性曲线。 (2)实验原理: rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/lc ,谐振频率f0=1/2π lc 。 谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω< ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗z0=r,| z0|为最小值,整个回路相当于一个纯电阻电路。(2)、回路 电流i0的数值最大,i0=us/r。(3)、电阻上的电压ur的数值最大,ur =us。 (4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,ul=uc=qus。 2、电路的品质因数q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因 数q,即: q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲 线,也称谐振曲线。 在us、r、l、c固定的条件下,有

相关文档
最新文档