高中数学讲义微专题09 零点存在的判定与证明

高中数学讲义微专题09  零点存在的判定与证明

第 1 页

09零点存在的判定与证明

一、典型例题

例1:函数()23x

f x e x =+-的零点所在的一个区间

是( )

A. 1,02

??- ???

B. 10,2?? ???

C. 1,12?? ???

D. 31,2?? ???

例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )

A. 31,2?? ???

B. 3,22

?? ???

C. ()2,e

D. (),e +∞

例3:已知0x 是函数()1

21x

f x x

=+

-的一个零点,若()()10201,,,x x x x ∈∈+∞,则( ) A. ()()120,0f x f x << B. ()()120,0f x f x <> C. ()()120,0f x f x >< D. ()()120,0f x f x >>

例4:已知函数()()log 0,1a f x x x b a a =+->≠,当234a b <<<<时,函数()f x 的零点

()0,1,x n n n N *∈+∈,则n =________

例5:定义方程()()'

f x f

x =的实数根0x 叫做函数

()f x 的“新驻点”

,若()()(),ln 1,g x x h x x ==+ ()31x x ?=-的

“新驻点”分别为,,αβγ,则( ) A. αβγ>> B. βαγ>> C. γαβ>> D. βγα>>

例6:若函数)(x f 的零点与()ln 28g x x x =+-的零点之差的绝对值不超过5.0, 则)(x f 可以是( ) A .63)(-=x x f B .2

)4()(-=x x f C .1)(1

-=-x e

x f D .)2

5

ln()(-=x x f

例7:设()()2

24,ln 25x f x e x g x x x =+-=+-,若实数,a b 分别是()(),f x g x 的零点,则( ) A. ()()0g a f b << B. ()()0f b g a << C. ()()0g a f b << D. ()()0f b g a <<

8:已知定义在()1,+∞上的函数

()ln 2f x x x =--,求证:()f x 存在唯一的零点,且零点属于()3,4。

例9:已知0a >,函数()2ln f x x ax =-(()f x 的图像连续不断)

(1)求()f x 的单调区间 (2)当1

8a =

时,证明:存在()02,+x ∈∞,使得()032f x f ??

= ???

例10:已知函数()ln x

f x e a x a =--,其中常数

0a >,若()f x 有两个零点()1212,0x x x x <<,求

证:121

1x x a a

<<<<

高中数学函数的零点和最值

函数的零点 1、函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。 方程f(x)=0有实数根?函数y=f(x)的图象与x 轴有交点?函数y=f(x)有零点 注意:零点是一个实数,不是点。 练习:函数23)(2 +-=x x x f 的零点是( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 方程f(x)=0的根的个数就是函数y=f(x)的图象与x 轴交点的个数。 方程f(x)=0的实数根就是函数y=f(x)的图象与x 轴交点的横坐标。 方法:①(代数法)求函数的零点就是求相应的方程的根,一般可以借助求根公式或因式分解等办法,求出方程的根,从而得出函数的零点。 ②(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 练习:Ⅰ求零点 ①y=x 3-1, ② y=2^x-1, ③y=lg(x 2-1)-1, ④y=2^|x|-8, ⑤y=2+log 3x Ⅱ结合函数的图像判断函数f(x)=x 3-7x+6的零点 Ⅲ判断函数f(x)=lnx+2x 是否存在零点及零点的个数 2、一元二次方程和二次函数 例,当a>0时,方程ax 2+bx+c=0的根与函数y=ax 2+bx+c 的图象之间的关系如下表: 练习:如果函数f(x)= ax 2-x-1仅有一个零点,求实数a 的范围。 3、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。 例1:观察二次函数f (x)=x 2- 2x - 3的图象: ① 在区间[-2,1]上有零点_______; f (-2)=_____,f (1)=_____, f (-2) · f(1)___0(< 或 > 或 =) ② 在区间[2,4]上有零点_______; f (2) · f(4)___0(< 或 > 或 =) 例1图 例2图 例2:观察函数 y = f (x)的图象: ①在区间[a ,b]上___(有/无)零点; f (a) · f(b)___0(< 或 > 或 =) ②在区间[b ,c]上___(有/无)零点; f (b) · f(c)___0(< 或 > 或 =) 练习:①判断函数f(x)=x2-2x-1在区间(2,3)上是否存在零点? 4、函数最值: 最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x0∈I ,使得f(x0) = M ,那么,称M 是函数y=f(x)的最大值. 方法:利用函数单调性的判断函数的最大(小)值 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b). 练习:①函数 f (x )= )1(11 x x --的最大值是______ ②函数f (x )=ax (a >0,a ≠1)在[1,2]中的最大值比最小值 大2a ,则a 的值为______ ③设a 为实数,函数f (x )=x2+|x -a|+1,x ∈R. (1)讨论f (x )的奇偶性;(2)求f (x )的最小值. ④已知二次函数f (x )=(lga )x2+2x +4lga 的最大值为3,求a 的值.

函数零点的定义理解

函数零点的定义理解 函数的零点是函数图象的一个重要的特征,同时也沟通了函数、方程、不等式以及算法等内容,在分析解题思路、探求解题方法中起着重要的作用,因此要重视对函数零点的学习.下面就函数的零点判定中的几个误区进行剖析,希望对大家有所帮助. 1. 因"望文生义"而致误 例1.函数23)(2+-=x x x f 的零点是 ( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 错解:C 错解剖析:错误的原因是没有理解零点的概念,"望文生义",认为零点就是一个点.而函数的零点是一个实数,即使()0=x f 成立的实数x ,也是函数()x f y =的图象与x 轴交点的横坐标. 正解:由()0232=+-=x x x f 得,x =1和2,所以选D. 点拨:求函数的零点有两个方法,⑴代数法:求方程()0=x f 的实数根,⑵几何法:由公式不能直接求得,可以将它与函数的图象联系起来,函数的图象与x 轴交点的横坐标. 即使所求. 2. 因函数的图象不连续而致误 例2.函数()x x x f 1+=的零点个数为 ( ) A.0 B.1 C.2 D.3 错解:因为2)1(-=-f ,()21=f ,所以()()011<-f f ,函数()x f y =有一个零点,选B. 错解剖析:分析函数的有关问题首先考虑定义域,其次考虑函数()x x x f 1+ =的图象是不是连续的,这里的函数图像是不连续的,所以不能用零点判定定理. 正解:函数的定义域为()()+∞?∞-,00,,当0>x 时,()0>x f ,当0

函数零点问题-2020高考数学尖子生辅导专题

专题二 函数零点问题 函数的零点作为函数、方程、图象的交汇点,充分体现了函数与方程的联系,蕴含了丰富的数形结合思想.诸如方程的根的问题、存在性问题、交点问题等最终都可以转化为函数零点问题进行处理,因此函数的零点问题成为了近年来高考新的生长点和热点,且形式逐渐多样化,备受青睐. 模块1 整理方法 提升能力 对于函数零点问题,其解题策略一般是转化为两个函数图象的交点. 对于两个函数的选择,有3种情况:一平一曲,一斜一曲,两曲(凸性一般要相反).其中以一平一曲的情况最为常见. 分离参数法是处理零点问题的常见方法,其本质是选择一平一曲两个函数;部分题目直接考虑函数()f x 的图象与x 轴的交点情况,其本质是选择一平一曲两个函数;部分题目利用零点存在性定理并结合函数的单调性处理零点,其本质是选择一平一曲两个函数. 函数的凸性 1.下凸函数定义 设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有 ()()121222f x f x x x f ++??≤ ??? ,当且仅当12x x =时取等号,则称()f x 为(),a b 上的下凸函数. 2.上凸函数定义 设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有 ()()121222f x f x x x f ++??≥ ??? ,当且仅当12x x =时取等号,则称()f x 为(),a b 上的上凸函数. 3.下凸函数相关定理 定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的下凸函数?() f x '

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

高中数学 经典资料 第118课--隐零点及卡根思想

第118课 隐零点及卡根思想 基本方法:导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题.导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”. (1)函数“隐零点”的存在性判断 对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ×<,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x =的解的判断,并通过合理的变形将方程转化为合适的形式在处理. (2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难.处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式进行合理的代换进而求解. (3)函数“隐零点”的数值估计-卡根思想 函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题.对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计. 一、典型例题 1.已知函数()22e x f x x x =+-,记0x 为函数()f x 极大值点,求证: ()0124f x <<.答案:见解析 解析:()()22e x f x x x x =+-∈R ,则()22e x x x f +'=-, 设22e )2(()e ,x x x g x g x '==+--,令()0g x '=得ln2x =, 当(),ln2x ∈-∞时,()()0,g x g x '>为增函数;当()ln2,x ∈+∞时,()()0,g x g x '<为减函数; 所以,()()g x f x '=在ln2x =处取得极大值2ln20>, 容易判断()f x '一定有2个零点,分别是()f x 的极大值点和极小值点. 设0x 是函数()f x 的一个极大值点,则()00022e 0x f x x '=+-=, 所以,00e 22x x =+,又()3 2235e 0,26e 02f f ??''=->=-< ???,所以03,22x ??∈ ???,此时()022*******e 2(,2)2x f x x x x x ??=+-=-∈ ?? ?,所以()0124f x <<.2.已知函数()4ln (1)x f x x x += >.若*k N ∈,且()1 k f x x <+恒成立.求k 的最大值.答案:6

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

高中数学-函数零点问题

函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(北京)设函数f (x )=????? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (天津)已知函数f (x )=? ??? ? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实 数a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

高考数学经典常考题型第9专题 零点存在的判定与证明

第9专题训练 零点存在的判定与证明 一、基础知识: 1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数 ()y f x =的零点。 2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ?∈,使得()00f x = 注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在 3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。因此分析一个函数零点的个数前,可尝试判断函数是否单调 4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续) (1)若()()0f a f b ?<,则()f x “一定”存在零点,但“不一定”只有一个零点。要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点 (2)若()()0f a f b ?>,则()f x “不一定”存在零点,也“不一定”没有零点。如果()f x 单调,那么“一定”没有零点 (3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ?的符号是“不确定”的,受函数性质与图像影响。如果()f x 单调,则()()f a f b ?一定小于0 5、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > 6、判断函数单调性的方法: (1)可直接判断的几个结论: ① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数 ② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

高一数学必修一《零点》专题复习

高一数学必修一《零点》专题复习 1、方程062=-+x x 的实数解的个数有_______个. 2. 函数()2ln f x x x =-的零点所在的大致区间是 ( ) A.()1,2 B.()2,3 C. ()3,4 D.(),e + 3. 可以看出函数至少有 个零点6.设方程 x x lg 2=-的两个根为21,x x ,则 ( ) A. 021x x D. 1021<”,“=”或“<”). 8、若方程3log 3=+x x 的解所在的区间是(), 1k k +,则整数k = 9.已知函数21(0)()(1)(0) x x f x f x x -?-≤=?->?,若方程()f x x a =+有且只有两个不等实根,则实数a 的取值范围是( ) A .(,0]-∞ B .[0,1] C .(,1)-∞ D .[1,)+∞ 10、若函数()y f x =在定义域内单调,且用二分法探究知道()f x 在定义域内的零点同时在(0,8),(0,4),(0,2),(0,1)内,那么下列命题中正确的是( ) A .函数()f x 在区间1 (0,)2 内有零点 B .函数()f x 在区间[)1,8上无零点 C .函数()f x 在区间1(0,)2或1(,1)2 内有零点 D .函数()f x 可能在区间(0,1)上有多个零点 11.关于x 的方程27+=x x 的解所在的区间是( ) A.0(,1) B.(1, 2) C.(2, 3) D.(3, 4) 12. R 若一元二次方程2350x x a -+=的一根大于2-且小于0,另一根大于1而小于3,则实数a 取值范围 ( ) A .()12,0- B .15,14??-∞ ?? ? C .15,14??+∞ ??? D .1,22?? ??? 13.若关于x 的方程35+=a x 有根,则实数a 的取值范围是 . 14. 若关于x 的方程210x ax -+=在1(,3)2x ∈上有实数根,则实数a 的取值范围是 15、函数()ln |1|3f x x x =--+的零点个数为 16.已知函数2()(1)43f x a x ax =++-.当0a >时,若方程()0f x =有一根大于1,一根小于1,则a 的取值范围是 ; 17.二次函数2()(0)f x ax bx a =+≠,满足(1)f x +为偶函数,且方程()f x x =有相等实根。(1)求()f x 的解析式; (2)求()f x 在[],1m m +上的最大值。 18.设关于x 的函数=)(x f ∈--+b b x x (241 R ), (1)若函数有零点,求实数b 的取值范围;(2)当函数有零点时,讨论零点的个数,并求出函数的零点.

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

数学必修一零点题型总结

第三章 第一节 函数与方程 一、函数的零点 1、实例:填表 2、函数零点的定义:____________________________叫做函数的零点 (注意:________________________) 题型一 求函数的零点 1.y =x -2的图象与x 轴的交点坐标及其零点分别是( ) A .2;2 B .(2,0);2 C .-2;-2 D .(-2,0);-2 2.函数f(x)=x 2+4x +a 没有零点,则实数a 的取值范围是( ) A .a<4 B .a>4 C .a ≤4 D .a ≥4 3.函数f(x)=ax 2+2ax +c(a ≠0)的一个零点是-3,则它的另一个零点是( ) A .-1 B .1 C .-2 D .2 4.函数f(x)=x 2-ax -b 的两个零点是2和3,求函数g(x)=bx 2-ax -1的零点. 5、求下列函数的零点 (1)9 1 27)(-=x x f (2))1(log 2)(3+-=x x f

二、零点定理 1、方程的根与函数零点的关系: 方程f(x)=0的根?函数f(x)的零点?函数与x 轴交点的横坐标 2、零点定理: 如果函数 () y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得 ()0f c =,这个 c 也就是方程()0f x =的实数根。 问题1:去掉“连续不断”可以吗? 问题2:如果函数 ()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有一个零点,对不对? 问题3:如果函数 ()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 0)()(>b f a f 那么函数()y f x =在区间(,)a b 上无零点,对不对? 题型二、判断区间内有无零点 1.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( ) A .大于0 B .小于0 C .等于0 D .无法确定 2. 函数2 ()ln f x x x =- 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .1 (1,)e 和(3,4) D .(,)e +∞ 3.设函数f(x)=2x -x 2 -2x ,则在下列区间中不存在...零点的是( ) A.(-3,0) B.(0,3) C.(3,6) D.(6,9) 4、方程521 =+-x x 在下列哪个区间内一定有根?( ) A 、(0,1) B 、(1,2) C 、(2,3) D 、(3,4) 5、根据表格中的数据,可以判定方程20x e x --=的一个根所在的区间为( ) D .(2,3)

高中函数零点问题精选题型

零点问题与数形结合 题型一、直接做图 1 函数 ()1|1|f x x =--‖ 的图像与直线 y k = 有且仅有四个不同的交点, 则实数 k 的取值范围是_________ 2 已知函数 ()22x f x =- 与 y b = 有两个交点, 则实数 b 的取值范围是_________ 3 已知函数 ||()2||,x f x x =+ 若关于 x 的方程 ()f x k = 有两个不同的实根, 则实数k 的取值范围是_________.已知函数 ()|lg |,f x x = 若 0a b << 且 ()(),f a f b = 则 2a b + 的范围是_________

4 设函 21,0 (),1,0x x f x x x ?-=?+?? 若 0,m n << 且 ()(),f m f n = 则 2n m +的取值范围是_________

题型二、变形后做图 1 直线 1y = 与曲线 2||y x x a =-+ 有 4 个交点, 则 a 的取值范围 是_________ 2 若关于 x 的方程 2|| 2 x kx x =+ 有 4 个不同的实数解, 则实数 k 的范围为_________ 3 已知函数 21(),()32f x x h x = += 解关于 x 的方程 43 3log (1)2 4f x ??--=???? 22log ()log (4)h a x h x ---。

高中数学:函数零点

函数零点 一、函数的零点 1.零点的定义:对于函数()y f x ,使() 0f x 的实数x 叫做函数()y f x 的零点. 2.函数零点的等价关系 函数()y f x =的零点就是方程()0f x =实数根,亦即函数()y f x =的图象与x 轴交点的横坐标.即方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点. 3.零点存在性判定定理 定理:如果函数()y f x =在区间[]a b , 上的图象是连续不断的一条曲线,且()()0f a f b ?<,则函()y f x =在区间()a b , 内有零点,即存在()c a b ∈,,使得()0f c =,这个c 就是方程()0f x =的根. 4.对函数零点存在的判断中,必须强调: 1)()f x 在[]a b , 上连续; 2)()()0f a f b <; 3)在()a b , 内存在零点. 这是零点存在的一个充分条件,但不是必要条件. 注意:函数()y f x 的零点就是方程() 0f x 的实数根,也就是函数()y f x 的图象与x 轴 交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标. 5. 二次函数零点的判定

0)的图像2 ax bx c 0a )的根2a 2 ax bx c 0)的零点 2b a 2 ax bx c 0)的解集 2 ax bx c 0)的解集 1x 或2x x }2a 6.一元二次方程2 0ax bx c 根的分布(下面对0a 进行讨论) 20b k a △20b k a △12 12()x x k k ,, 1 1 2 2 k x k x )k ,内有且只有一根y y y k y y

相关文档
最新文档