钻柱

钻柱
钻柱

第十章钻柱一.常用单词和短语

drilling string 钻柱

bit 钻头

cutter 牙轮

motor bit 马达(高转速)钻头break in bit 磨合钻头

bit dull grading 钻头磨钝分级nozzle 喷嘴

clipper 钳子

snap ring 水眼卡子

center jet 中间喷嘴

bit program 钻头设计

bit record 钻头记录

bit gauge 钻头规

bit size 钻头尺寸

bit breaker 钻头盒子

steel bit 钢齿钻头

insert bit 镶齿钻头rock bit 牙轮钻头

PDC bit 聚晶金刚石复合片钻头

bit sub 钻头接头

shock sub 减振器

junk(boot)basket 打捞杯

drill collar 钻铤

monel drill collar 无磁钻铤

stabilizer 稳定器

drill pipe 钻杆

HWDP=heavy weight drill pipe加重钻杆drilling jar 随钻震击器

Kelly 方钻杆

TDS=top drive system顶部驱动系统single 单根

stand 立柱

tool joint 接头

二.阅读练习

1.关于钻杆的往来函件1

From: Ahmed Hamid 自:阿哈默德·哈密德

Sent: Wednesday, August 08, 2001 11:33 AM 发送:星期三,2001年8月8日,上午11:33 To: Les Lee; Rig 5003 至:莱斯·李

Cc: Mohammad Bidi; Wang; Morris Smith 抄送:谟罕默德·比的,王,毛瑞斯·斯密斯Subject: Washout of DP in Rig 03 主题:03队刺钻杆

Gents,先生们:

We have experienced 3 DP washouts so far in Rig 03, it is a very serious problem in such a critical, deep and directional well like the case in Taf-1 well, every time POOH to check for washout & LD of WO joint is time consuming and the hole condition will getting worst and the chance and the possibility of getting stuck will be more, bearing in mind how much cost Anadrill down hole equipment in case we lost in hole. Yesterday we (Zuki & myself)had a meeting with GWDC's Manager & his assistant, the outcome of the meeting is as follows:

目前03队已刺3根钻杆,在塔夫-1这样关键,深井并且是定向井的情况,每次起钻检查并甩掉刺穿的单根是非常费时的,并且井下状况将变得更糟,卡钻的可能性也更大,记住如果Anadrill的井下仪器落井将花费的成本。昨天我们(祖克和我)与长城钻井经理和他的助手开会,会议内容如下:

1- Operation will not accept any further WO and we may found ourselves in a position to charge GWDC for any down time due to washout.

作业部将不能接受更多的刺漏,我们将对由于刺钻杆引起的停工时间向长城钻井公司收费。

2- GWDC is requested to come up with report explaining what happening in Rig 03 in reference to washout problems.

要求长城钻井公司对03队的刺钻杆问题作出解释。

3- GWDC was requested to come up with DP Records for both the New ones and the Old ones.

要求长城钻井公司出示新钻杆和旧钻杆的记录。

Les,莱斯

We need your assistant in supplying us with the following:我们需要你帮助提供如下(情况):

1-In Sha-1 we faced the same problem, GWDC has changed the old DP to new DP, we requested them to mark & remove the old DP from Rig 03 to their yard in Heglig, Did they removed the old DP?

1-沙-1井我们曾遇到同样问题,长城钻井公司将就钻杆换为新钻杆,我们曾要求他们标出并移走03队的旧钻杆到黑格里,他们移走了旧钻杆么?

2- I think if they run the old DP in hole, it is their mistake and we have to panelize them for the down time. If the existing DP are new then the quality and the manufacturing is questionable, and immediate DP change to brandnew with good quality should be done.

2-我想如果他们下了旧钻杆,那就是他们的错,我们不得不因停工时间对他们惩罚。如果现有钻杆是新的,那么质量和制造是可疑的,必须立即更换为高质量的新钻杆。

Your opinion please.请告知你的观点。

Regards 问候

Ahmed Elias 阿哈默德·埃拉斯

2.关于钻杆的往来函件2

From: Les Lee自:莱斯·李

Sent: Friday, August 10, 2001 7:54 AM发送:星期五,2001年8月10日,上午7:54

To: Ahmed Hamid ; Mohammad Bidi 至:阿哈默德·哈密德,谟罕默德·比的

Cc: Rig 03 抄送:03队

Subject: Rig 03 Drill pipe history 主题:03队钻杆历史

Good morning Ahmed. 阿哈默德,早上好!

Bill and Malik have put an extensive effort into determining the cause of the wash outs in the drill pipe on 03. We have also had Smith International do an inspection on the drill pipe we are using. There inspection indicates that the string is to APl premium spec's. There is no indication of pitting on the tube, either inner or outer. I know the consensus is that the drill pipe is the problem, but I favor Bill's theory that the probable cause is erratic torque for extended periods of time. We are all aware that the weight observed on the weight indicator while drilling a directional well is not what's actually on the bit. A percentage of observed weight is distributed over the Iow side of the hole. I'm not suggesting that PDC bits cause drill pipe failure/washouts, because if that was the case, there would be non on the market. What I am suggesting is that if this particular bit requires a variance of 10 - 18 Kbl/ft in order to drill, we may be causing a stress in the drill string at some point in the well where the drill pipe is seeing maximum contact at that given time. Has anyone come up with any additional theories?

比尔和马力克已为找出03对刺钻杆的原因作出了很大努力。我们也请了斯密斯国际公司对我们正在使用的钻杆进行检验。他们的检验显示钻柱达到API优级规范。在管子的内外没有坑蚀的痕迹。我知道多数人的认为是钻杆的问题,但我支持比尔的观点,可能的原因是长时间的不稳定扭矩。我们都知道钻定向井时指重表看到的钻压不是实际施加到钻头的重量。看到重量的一定比例分配到井眼的低边。我认为不是PDC钻头引起的钻杆失效/刺穿,因为如果是这样的话,市场上将不会存在。我的意见是如果这一特殊的钻头要求钻进时需要10-18 Kbl/ft的扭矩,可能在井眼的某些点引起钻柱的应力,在这些点钻杆的接触面积最大。有人提出其他的观点么?

三.补充材料-钻头磨损等级分类

U S E D B I T D U L L G R A D I N G S Y S T E M F O R M A T A N D C O D E S

旧钻头磨损等级系列尺寸和代号(见表10-1)

表10-1旧钻头磨损等级系列尺寸和代号

Table 1表1

Table 2表2

Table 3 表3

Table 4表4

Table 5 表5

Table 6 表6

举例如下(见表10-2):

钻机八大系统组成及作用

钻机定义 石油钻井的地面配套设备称为钻机,石油钻机是由多种机器设备组成的一套大功率重型联合工作机组。 钻机八大系统 (1)起升系统 组成:天车、游车、大钩、绞车、滚筒、钢丝绳以及吊环、吊卡、吊钳、卡瓦等井口工具。 作用:下放、悬吊或起升钻柱、套管柱和其它井下设备进、出井眼;起下钻、接单根和钻进时的钻压控制。 (2)旋转系统 组成:转盘、水龙头、钻头、钻柱。 作用:保证在钻井液高压循环的情况下,给井下钻具提供足够的旋转扭矩和动力,以满足破岩钻进和井下其它要求。 (3)循环系统 组成:泥浆泵、地面管汇、泥浆罐、泥浆净化设备。其中地面管汇包括高压管汇、立管、水龙带,泥浆净化设备包括振动筛、除砂器、除泥器、离心机等。 作用:从井底清除岩屑;冷却钻头和润滑钻具。 泥浆泵号称钻机的“心脏” 泥浆的循环流程: 泥浆泵-地面高压管汇-立管-水龙带-水龙头-钻柱(方钻杆、钻杆、钻铤)-钻头-环形空间-地面排出管线-固控设备-泥浆池-泥浆泵 起升系统、循环系统和旋转系统是钻机的三大工作机组 (4)动力系统 组成:柴油机、电动机。 作用:为整套机组(三大工作机组及其他辅助机组)提供能量。 (5)传动系统

组成:联轴器、离合器、变速箱、皮带传动、链条传动等装置 作用:把动力传递给泥浆泵、绞车和转盘(三大工作机) (6)控制系统 组成:机械控制、气控制、电控制和液控制等。 作用:控制各系统、设备按工艺要求进行。司钻通过钻机上司钻控制台可以完成几乎所有的钻机控制:如总离合器的离合;各动力机的并车;绞车、转盘和钻井泵的起、停;绞车的高低速控制等。 (7)钻机底座系统 组成:钻台底座、机房底座。 作用:支撑和安装各钻井设备和工具,提供钻井操作场所,方便钻机设备的移运。 (8)辅助设备系统 组成:供气设备、辅助发电设备、井口防喷设备、钻鼠洞设备及辅助起重设备等。 作用:协助主系统工作,保证钻井的安全和正常进行。

第 10 章 钻柱

第十章钻柱一.常用单词和短语 drilling string 钻柱 bit 钻头 cutter 牙轮 motor bit 马达(高转速)钻头break in bit 磨合钻头 bit dull grading 钻头磨钝分级nozzle 喷嘴 clipper 钳子 snap ring 水眼卡子 center jet 中间喷嘴 bit program 钻头设计 bit record 钻头记录 bit gauge 钻头规 bit size 钻头尺寸 bit breaker 钻头盒子 steel bit 钢齿钻头 insert bit 镶齿钻头rock bit 牙轮钻头 PDC bit 聚晶金刚石复合片钻头 bit sub 钻头接头 shock sub 减振器 junk(boot)basket 打捞杯 drill collar 钻铤 monel drill collar 无磁钻铤 stabilizer 稳定器 drill pipe 钻杆 HWDP=heavy weight drill pipe加重钻杆drilling jar 随钻震击器 Kelly 方钻杆 TDS=top drive system顶部驱动系统single 单根 stand 立柱 tool joint 接头 二.阅读练习 1.关于钻杆的往来函件1 From: Ahmed Hamid 自:阿哈默德·哈密德 Sent: Wednesday, August 08, 2001 11:33 AM 发送:星期三,2001年8月8日,上午11:33 To: Les Lee; Rig 5003 至:莱斯·李 Cc: Mohammad Bidi; Wang; Morris Smith 抄送:谟罕默德·比的,王,毛瑞斯·斯密斯Subject: Washout of DP in Rig 03 主题:03队刺钻杆 Gents,先生们:

钻柱分析

钻柱 一、钻柱的作用与组成 二、钻柱的工作状态与受力分析 三、钻柱设计 一、钻柱的组成与功用 (一)钻柱的组成 钻柱(Drilling String)是钻头以上,水龙头以下部分的钢管柱的总称. 它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。 (二)钻柱的功用 (1)提供钻井液流动通道; (2)给钻头提供钻压; (3)传递扭矩; (4)起下钻头; (5)计量井深。 (6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况); (7)进行其它特殊作业(取芯、挤水泥、打捞等); (8)钻杆测试 ( Drill-Stem Testing),又称中途测试。 1. 钻杆 (1)作用:传递扭矩和输送钻井液,延长钻柱。 (2)结构:管体+接头 (3)规范: 壁厚:9 ~ 11mm 外径: 长度: 根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类: 第一类 5.486~ 6.706米(18~22英尺); 第二类 8.230~ 9.144米(27~30英尺); 第三类 11.582~13.716米(38~45英尺)。 常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12 ?丝扣连接条件:尺寸相等,丝扣类型相同,公母扣相匹配。 ?钻杆接头特点:壁厚较大,外径较大,强度较高。 ?钻杆接头类型:内平(IF)、贯眼(FH)、正规(REG); NC系列 ?

内平式:主要用于外加厚钻杆。特 点是钻杆通体内径相同,钻井液 流动阻力小;但外径较大,容易 磨损。 贯眼式:主要用于内加厚钻杆。其 特点是钻杆有两个内径,钻井液 流动阻力大于内平式,但其外径 小于内平式。 正规式:主要用于内加厚钻杆及钻 头、打捞工具。其特点是接头内 径<加厚处内径<管体内径,钻井 液流动阻力大,但外径最小,强 度较大。 三种类型接头均采用V型螺纹, 但扣型、扣距、锥度及尺寸等都 有很大的差别。 NC型系列接头NC23,NC26,NC31,NC35,NC38,NC40,NC44,NC46,NC50,NC56,NC61,NC70,NC77 NC—National Coarse Thread,(美国)国家标准粗牙螺纹。 xx—表示基面丝扣节圆直径,用英寸表示的前两位数字乘以10。 如:NC26表示的节圆直径为2.668英寸。 NC螺纹也为V型螺纹, 表2-17所列的几种NC型接头与旧API标准接头有相同的节圆直 2. 钻铤 结构特点:管体两端直接车制丝扣,无专门接头;壁厚大(38-53毫米), 重量大,刚度大。 主要作用:(1)给钻头施加钻压; (2)保证压缩应力条件下的必要强度; (3)减轻钻头的振动、摆动和跳动等,使钻头工作平稳; (4)控制井斜。 类型:光钻铤、螺旋钻铤、扁钻铤。 常用尺寸:6-1/4〃,7 〃,8 〃,9 〃 3.方钻杆 类型:四方形、六方形 特点:壁厚较大,强度较高 主要作用:传递扭矩和承受钻柱的全部重量。 常用尺寸:89mm(3.5英寸),108mm (4.5英寸),133.4mm (5.5英寸)。 4.稳定器 类型:刚性稳定器、不转动橡胶套稳定器、滚轮稳定器。

钻井八大件与钻井八大系统

钻井八大件与钻井八大系统 钻井的八大件:天车,大钩、游车、井架、泥浆泵、水龙头、绞车、转盘 1井架 井架由井架的主体、人字架、天车台、二层台、工作梯、立管平台、钻台和井架底座等几个部分组成,主要用于安放和悬挂天车、游车、大钩、吊环、液气大钳、液压绷扣器、吊钳、吊卡等提升设备与工具。 2天车 天车一般是多个滑轮装在同一根芯轴或两根轴心线一致的芯轴上。现在的天车大都是滑轮通过滚柱轴承装在一根芯轴上。芯轴一般是双支承的,轴的直径较大,芯轴的一端或两端有黄油嘴,芯轴里有润滑油道。润滑脂从黄油嘴注入,以润滑轴承。 3游车 游车的形状为流线型,以防起下时挂碰二层台上的外伸物。同时,游车要保证一定的重量,以便它在空载运行时平稳而垂直地下落。现在,钻机各型游车都是一根芯轴,滑轮在轴上排成一列,其结构与天车相似。 4大钩

大钩是提升系统的重要设备,它的功用是在正常钻进时悬挂水龙头和钻具,在起下钻时悬挂吊环起下钻具,完成起吊重物、安放设备及起放井架等辅助工作。目前使用的大钩有两大类。一类是单独的大钩,其提环挂在游车的吊环上,可与游车分开拆装,如DG—130型大钩;另一类是将游车和大钩做成一个整体结构的游车大钩,如MC—400型游车大钩。为防止水龙头提环从大钩中脱出,在钩口处装有安全锁体、滑块、拔块、弹簧座及弹簧等构成的安全锁紧装置。为悬挂吊环和提放钻具,钩身压装轴及挂吊环轴用耳环闭锁,用止动板防止两支撑轴移动。钩身与钩杆用轴销连接,钩身可绕轴销转一定角度。 5绞车 绞车是构成提升系统的主要设备,是组成一部钻机的核心部件,是钻机的主要工作机械之一。其功用是:提供几种不同的起升速度和起重量,满足起下钻具和下套管的需要;悬挂钻具,在钻进过程中送钻和控制钻压;利用绞车的猫头机构上、卸钻具螺纹;作为转盘的变速机构和中间传动机构;当采用整体起升式井架时用来起放井架;当绞车带捞砂滚筒时,还担负着提取岩心筒、试油等项工作;帮助安装钻台设备,完成其他辅助工作。 6水龙头 在一部钻机中,水龙头既是旋转系统的设备,又是循环系统的一个部件。它悬挂于大钩之下,上接有水龙带,下接方钻杆。在钻进时,悬挂并承受井内钻柱的全部重量,并将钻柱与水龙带连接起来,构成钻井液循环通道。 7转盘 转盘主要由水平轴、转台、主轴承、壳体、方瓦及方补心等组成,其主要作用是带动钻具旋转钻进和在起下钻过程中悬持钻具、卸开钻具螺纹以及在井下动力钻井时承受螺杆钻具的反向扭矩。转盘的动力经水平轴上法兰或链轮输入,通过锥齿轮转动转台,借助转台通孔中的方瓦和方补心带动方钻杆、钻柱和钻头转动;同时,方补心允许方钻杆轴向自由滑动,实现边旋转边送进。 8泥浆泵 泥浆泵,是指在钻探过程中向钻孔里输送泥浆或水等冲洗液的机械。泥浆泵是钻探设备的重要组成部分。在常用的正循环钻探中﹐它是将地表冲洗介质──清水﹑泥浆或聚合物冲洗液在一定的压力下,经过高压软管﹑水龙头及钻杆柱中心孔直送钻头的底端,以达到冷却钻头、将切削下来的岩屑清除并输送到地表的目的。 常用的泥浆泵是活塞式或柱塞式的,由动力机带动泵的曲轴回转,曲轴通过十字头再带动活塞或柱塞在泵缸中做往复运动。在吸入和排出阀的交替作用下,实现压送与循环冲洗液

钻柱设计

第二节钻柱与下部钻具组合设计 一、钻柱设计与计算 合理的钻柱设计是确保优质、快速、安全钻井的重要条件。尤其是对深井钻井,钻柱在井下的工作条件十分复杂与恶劣,钻柱设计就显得更加重要。 钻柱设计包括钻柱尺寸选择和强度设计两方面内容。在设计中,一般遵循以下两个原则: 第一,满足强度(抗拉强度、抗击强度等)要求,保证钻柱安全工作; 第二,尽量减轻整个钻柱的重力,以便在现有的抗负荷能力下钻更深的井。 (一)钻柱尺寸选择 具体对一口井而言,钻柱尺寸的选择首先取决于钻头尺寸和钻机的提升能力。同时,还要考虑每个地区的特点,如地质条件、井身结构、钻具供应及防斜措施等。常用的钻头尺寸和钻柱尺寸配合列于表2-21供参考。 表2-21 钻头尺寸与钻柱尺寸配合 从上表可以看出,一种尺寸的钻头可以使用两种尺寸的钻具,具体选择就要依据实际条件。选择的基本原则是: 1.钻杆由于受到扭矩和拉力最大,在供应可能的情况下,应尽量选用大尺寸方钻杆。 2.钻机提升能力允许的情况下,选择大尺寸钻杆是有利的。因为大尺寸钻杆强度大,水眼大,钻井液流动阻力小,且由于环空较小,钻井液上返速度高,有利于携带岩屑。入境的钻柱结构力求简单,以便于起下钻操作。国内各油田目前大都用127mm(5 in)钻杆。 3.钻铤尺寸决定着井眼的有效直径,为了保证所钻井眼能使套管或套铣筒的顺利下入,钻铤中最下部一段(一般应不少一立柱)的外径应不小于允许最小外径,其允许最小钻铤外径为 允许最小钻铤外径=2×套管接箍外径-钻头直径 当钻铤柱中采用了稳定器,可以选用稍小外径的钻铤。钻铤柱中选用的最大外径钻铤应以保证在可能发生的打捞作业中能够被套铣为前提。 在大于241.3mm的井眼中,应采用复合钻铤结构。但相邻两段钻铤的外径一般以不超过25.4mm为宜。 4.钻铤尺寸一般选用与钻杆接头外径相等或相近的尺寸,有时根据防斜措施来选用钻铤的直径。近些年来,在下部钻具组合中更多的使用大直径钻铤,因为使用大直径钻铤具有下列优点: 1)用较少的钻铤满足所需钻压的要求,减少钻铤,也可减少起下钻时连接钻铤的时间; 2)高了钻头附近钻柱的刚度,有利于改善钻头工况; 3)铤和井壁的间隙较小,可减少连接部分的疲劳破坏; 4)利于放斜。 (二)钻铤长度的确定 钻铤长度取决于钻压与钻铤尺寸,其确定原则是:保证在最大钻压时钻杆不承受压缩载

石油钻机的最大钻柱重量与最大钩载的区别要点

石油钻机的最大钻柱重量与最大钩载的区别 钻井机械第一章 石油钻机是指用来进行石油与天然气勘探、开发的成套钻井设备。盘钻机是成套钻井设备中的基本形式,也称常规钻机。此外,为适应各种地理环境和地质条件加快钻井速度、降低钻井成本、提高钻井综合效益,近年来世界各国在转盘钻机的基础上研制了各种类型的具有特殊用途的钻机,如沙漠钻机、丛式井钻机、顶驱钻机、小井眼钻机、连续柔管钻机等特殊钻机. 现代钻机是一套大型的综合性机组,为了满足油气钻井的需要,整套钻机是由若干系统和设备组成的.本章从整体上,简要介绍关于钻机的基本概念和基本知识。 第一节钻井工艺对钻机的要求及钻机的特点 一、钻井工艺对钻机的要求 钻机设备的配置与钻井方法密切相关,目前,世界各国普遍采用的钻井方法是旋转钻井法。即利用钻头旋转破碎岩石,形成井身;利用钻柱将钻头送到井底;利用大钩、游车、天车、绞车起下钻杆柱;利用转盘或顶部驱动装置带动钻头、钻杆柱旋转;利用钻井泵输送高压钻井液,带出井底岩屑,如右图显然,旋转钻井法要求钻井机械设备具有以下三方面基础能力:(1)旋转钻进的能力:钻井工艺要求钻井机械设备能为钻具(钻杆柱和钻头)提供一定的转矩和转速,并维持一定的钻压(钻杆柱捉用在钻头上的重力)。 (2)起下钻具的能力:钻井工艺要求钻井机械设备应具有一定的起重能力及起升速度(能起出或下入全部钻杆柱和套管柱)。 (3)清洗井底的能力:钻井工艺要求钻井机械设备应具有清洗井底并携带岩屑的能力,能提供较高的泵压,使钻井液通过钻杆柱中孔,冲击清洗井底,并将岩屑带出井外。此外,考虑到钻井作业流动性大的特点,钻机设备要容易安装、拆卸和运输。钻机的使用维修工作必须简便易行,钻机的易损零部件应便于更换。钻机设备的配置和各种设备的工作能力、技术指标都是根据钻井工艺对钻机的以上三项基本要求确定的。在钻机的基本参数中对转盘的转矩与功率、大钩起重及功率、钻井泵的许用泵压与功率提出了要求。在这三组参数中,转盘的转矩,大钩的起重量,钻井泵的许用泵压,都是受到机件强度限制的。在强度满足使用要求的条件下,转盘应具有一定的转速;大钩应具有一定的提升速度;钻井泵应具有一定的排量,否则钻井作业就不能顺利进行。对转矩与转速,起重量与升速,泵压与排量的联合要求,就是工作机对功率的要求。为了保证一定的转速、升速、排量,应该供给一定的功率。

钻机八大系统

1、旋转系统 在钻井过程中,旋转系统通过转动井中钻柱带动钻头旋转破碎岩石。它主要包括转盘、水龙头。 转盘型号:ZP375,功率:5850kN。 水龙头型号:SL-450,功率:4500kN。 2、循环系统 循环系统主要作用是循环钻井液,及时清洗井底、携带岩屑,分离钻井液中多余固相、保护井壁和冷却钻头等。它主要包括泥浆罐、泥浆泵、地面管线、立管、水龙带、水龙头、方钻杆、钻杆、钻铤、钻头、环空、导流管、振动筛、除砂器、除泥器、离心机、搅拌机等。 泥浆泵型号:F-1600,功率:1176kW。 水龙头型号:SL-450,功率:4500kN。 振动筛型号:ZSW-2,振动筛负荷:50L/s,数量:3个。 除砂除泥一体机型号:ZCN250,数量1个。 离心机型号:LW450-1000-N1、LW450-1000-N3,负荷:40m3/h、60m3/h。 3、起升系统 起升系统用于起下钻具、下套管、控制钻压及钻头钻进等。它主要包括绞车、辅助刹车、井架、天车、游动滑车、大钩、钢丝绳、吊环、吊卡、卡瓦、液压大钳、“B”型大钳等。 绞车型号:JC70D,功率:1470kW。 井架型号:JJ450/45-K7,负荷:4500kN。 天车型号:TC450,负荷:4500kN。 游动滑车型号:YG450,负荷:4500kN。 4、动力系统 动力系统主要是为各工作机提供动力,按动力设备不同分为机械驱动和电驱动两大类,即分别以柴油机和电动机为动力。 柴油发电机组型号:TYM-ZJ1600,功率:1000kW,数量:4个。 发电机:YG505,功率:400kW。 5、传动系统 传动系统的作用是连接发动机与工作机,实现能量从驱动设备到工作机组的能量传递、分配及运动方式的转换。 电传动系统型号:VFDSL70715,功率1900KV A。 6、控制系统 控制系统的作用是指挥各机组协调进行工作,常用的有气控、电控、液控等。 7、钻机底座

钻柱强度计算新方法

钻柱强度计算新方法 韩志勇 (石油大学石油工程系,山东东营257062) 摘要 提出了一种钻柱强度计算新方法。可用于钻柱的强度设计和强度校核。新方法和传统方法相比,有以下五个特点:(1)对钻柱每一个断面都进行强度校核;(2)对管的内壁和外壁分别进行强度校核;(3)利用计算机进行断面上有关内力的计算;(4)用“液压系数”处理液压环境对钻柱轴向力的影响;(5)考虑液压环境引起的附加剪应力的影响。作者认为,“浮力系数”一次不甚恰当,应该用“液压系数”。详细地给出了各种液压环境下钻柱液压系数的计算公式及算例。并指出了新方法所属概念和共识的适用范围。 主题词 钻柱力学;钻井设计;强度;计算 0 引言 对钻柱在垂直井眼、倾斜井眼、弯曲井眼内,以及在循环条件下的轴向力计算问题,以有详细的论述和相关计算公式[1 ~4] 。但对一些问题的论述和钻柱强度计算公式的推导,还 有不完善的地方,本文对此作进一步阐述。文中给出的所有公式,均可按法定计量单位运算。使用常用单位时,应进行换算。 1 钻柱强度计算公式 1.1 安全系数和相当应力计算公式 微段的上断面的内缘处: N i =σs/σei )(3)(2 22ni mi bi a ei ττσσσ+++= 微段的上断面的外缘处: N o =σs/σeo )(3)(222no mo bo a eo ττσσσ+++= 式中,Ni 和No —分别为钻柱计算断面内缘、外缘处的强度安全数;

σs —钻柱钢材的最小屈服极限; σei 和σeo —分别为钻柱计算断面内、外缘处的相当应力; σa —钻柱计算断面上的轴向应力; σbi 和σbo —分别为钻柱计算断面内、外缘处的弯曲应力; τmi 和τni —分别为钻柱计算断面内缘处的扭应力和附加剪应力; τmO 和τnO —分别为钻柱计算断面外缘处的扭应力和附加剪应力; 1.2 轴向应力σa 的计算 σa =σz +σf +σp 式中,σz —由重力和液压力引起的轴向力; σf —钻柱轴向运动摩阻力引起的轴向应力; σp —钻压引起的轴向应力; 1.3 弯曲应力σbo 和σbi 的计算 若已知断面上的弯矩,可用下式计算: )(324 4i o i b bi D D D M ?=πσ ) (3244i o o b bo D D D M ?= πσ 若已知井眼曲率,可用下式计算: K ED i bi 21 =σ K ED o bo 2 1 =σ 若考虑接头影响,可用下式计算: )tanh(2U U K ED i bi =σ ) tanh(2U U K ED o bo =σ 其中,ρ??= L U 2 1 EI F z = ρ 式中,M b —计算断面的弯矩;

第5章钻柱

第五章 钻柱 第一节 钻柱的工作状态及受力分析 一、工作状态 起下钻时: 钻柱处于悬持状态--受拉伸(自重),直线稳定状态 正常钻进: P<P1 直线稳定 P1≤P<P2 一次弯曲 P2≤P<P3 二次弯曲 钻柱旋转→扭矩 离心力→下部弯曲半波缩短 上部弯曲半波增长(上部受拉) 结论:变节距的空间螺旋弯曲曲线形状 钻柱在井内可能有4种旋转形式:(P96) a.自转: b.公转:沿井壁滑动。 c.自转和公转的结合:沿井壁滚动。 d.整个钻柱作无规则的摆动: 二、钻柱在井下的受力分析 (1) 轴向拉应力与压应力 拉应力:由钻柱自重产生,井口最大,起钻和卡钻时产生附加拉力。 压应力:由钻压产生,井底最大。应力分布(P97,图3-2) 轴向力零点:钻柱上即不受拉也不受压的一点。 中和点:该点以下钻柱在液体中的重量等于钻压。 (2) 剪应力(扭矩):旋转钻柱和钻头所需的力,井口最大。 (3) 弯曲应力:钻柱弯曲并自转时产生交变的拉压应力。 井眼弯曲→钻柱弯曲 1 32

(4) 纵向、横向、扭转振动 (5) 其他外力:起下钻动载(惯性),井壁磨擦力,钻柱旋转时因离心力引起的弯曲。 综合以上分析:工况不同,应力作用不同,需根据实际工况确定应力状态。 (1) 钻进时钻柱下部:轴向压力、扭矩、弯曲力矩、交变应力; (2) 钻进和起下钻时井口钻柱:拉力、扭力最大+动载 (3) 钻压、地层岩性变化引起中和点位移产生交变载荷。 第二节 钻井过程中各种应力的计算 一、轴向应力计算 (一)上部拉应力计算 1、钻柱在泥浆中空悬 浮力:αρ????=F L g B m α——考虑钻杆接头和加厚影响的重量修正系数,1.05~1.10 钻柱在空气中的重力:αρ????=F L g Q s a 井口拉力:B Q Q a -= a f Q K Q ?= 浮力系数:)1(s m f K ρρ-= ρs --钢的密度,7.85 g/cm 3 拉应力:F Q t =σ 注意计算井口以下任一截面上的拉力不能直接用浮力系数法计算。 2、钻进时 F P B Q a t --=σ

2 第二节 钻柱

第二节钻柱 ?钻柱:是指钻头以上,水龙头以下部分的钢管柱的总称,它包括方钻杆、钻杆、钻铤、各种接头及稳定器等井下工具。它是连通地面 与地下的枢纽。 ?在用转盘钻井时,是靠钻柱传递破碎岩石所需能量,给钻头加压,以及井内输送洗井液。 ?在井下动力钻井时,其承受井底动力机的反扭矩,同时涡轮钻具和螺杆钻具所需的液体能量也是通过钻柱输送到井底的。 ?其是钻井工具与装备的薄弱环节。(特别是对于深井钻具井下情况又是比较复杂。如卡、堵、蹦等) 从以下几个方面我们可以看出,合理的设计钻柱与下部的钻井组合,对于实现优质快速的钻进具有十分重要的意义。 那么组成钻柱的主要钻井工具有哪些呢? ①方钻杆 ②钻杆 ③加重钻杆 ④钻铤 ⑤井下马达(涡轮钻具与螺杆钻具)

⑥?? ???随钻减震器减震器稳定器其它的钻井工具 一、钻柱的组成与作用(《甲方手册》,上册) (一)钻柱的作用 1、输送钻井液 为钻井液由井口流向钻头提供通道; 2、传递能量与压力 把地面的动力(扭矩)传递给钻头,同时给钻头施压,使钻头在钻压的作用下吃入岩石,在扭矩的作用下,钻头不断的破碎岩石; 3、起下钻头 钻柱除了以上在正常钻进中作用外,还具有其它一些重要作用: 1)检测 观察钻头的情况、井眼情况、地层情况; 2)特殊作业 取心、挤水泥、打捞井下落物及处理井下其它事故; 3)对地层流体及压力状况等进行测试与评价(中途测试) (二)钻柱的组成 ?????? ????????????????→????? ???????特殊的钻具组合打捞工具测试工具随钻监测工具扩眼器震击器减震器稳定器钻铤下部钻具组合扩眼器(有时)加重钻杆普通钻杆钻杆段不同的目的而不同)具体的组成则随着钻柱( 见教材P 74,图2—28,典型的钻具组合

钻柱

第三章钻柱(Drill String) 钻柱是快速优质钻井的重要工具,它是连通地面与地下的枢纽。在转盘钻井时是靠它来传递破碎岩石所需的能量,给井底施加钻压,以及向井内输送洗井液等。在井下动力钻井时,井底动力机是用钻柱送到井底并靠它承受反扭矩,同时涡轮钻具和螺杆钻具所需的液体能量也是通过钻柱输送到井底的。在钻井过程中,钻头的工作、井眼的状况、甚至井下地层的各种变化,往往是通过钻柱及各种仪表才能反映到地面上来。合理的钻井技术参数及其他技术措施,也只能在正确使用钻柱的条件下才能实现。除正常钻进外,钻井过程中的其他各种作业,如取心、处理井下复杂情况、地层测试、挤水泥、打捞落物等都是依靠钻柱进行的。 钻柱由不同的部件组成,它的组成随着钻井条件和方法的不同而有所区别。其基本组成部分是:方钻杆、钻杆、钻铤、稳定器及接头。方钻杆的作用是将地面转盘的功率传递给钻杆,以带动钻头旋转。钻杆的作用是将地面所发出的功率传递给钻头,并靠钻杆的逐渐加长使井眼不断加深,钻铤位于钻杆的下面,直接与钻头(或井底动力机)连接,依靠其本身的重量进行加压,靠它和稳定器的各种组合来控制井眼的斜度,钻柱的各个不同组成部分的相互连接)是借助钻杆接头或配合接头来实现的。 随着近代钻井深度的不断增加,钻井工艺的不断发展,对钻柱的结构和性能要求越来越高。实践证明,几千米甚至近万米长的钻柱在井下的工作条件是比较复杂的,它往往是钻井设备和工具中比较薄弱的环节。为了快速优质安全地钻达预定深度,必须选用可靠的钻柱。这不仅要求从尺寸配合上选择合适的钻柱,而且应该根据钻柱在井下的工作条件,正确分析钻柱的受力情况,进行强度计算,合理地设计钻柱。特别值得注意的是,钻柱的破坏大多是疲劳破坏所引起的,所以有必要探讨疲劳破坏产生的机理和影响因素,采取各种减少疲劳破坏的技术措施,以便延长钻柱的使用寿命。 第一节钻柱的工作状态及受力分析 一、钻柱的工作状态 钻柱在井下的工作条件随钻井方式(转盘钻井或井下动 力钻井)、钻井工序(如正常钻进、起下钻等)的不同而 异。在不同的工作条件下,钻柱具有不同的工作状态,受到 不同的作用力。为了讨论钻柱的受力及强度设计,必须首先 了解钻柱在整个钻井过程中的工作状态。下面主要对转盘钻 井时钻柱的受力情况加以分析。 在钻井过程中,钻柱主要是在起下钻和正常钻进这两种 条件下工作,在起下钻时,钻柱不接触井底,整个钻柱处于 悬持状态,在自重作用下,钻柱处于受拉伸的直线稳定状 态。在正常钻进时,由于部分钻柱的重量作为钻压施加在钻 头上,使得下部钻柱受压缩,在钻压小和直井条件下,钻柱 也是直的,而当压力达到某一临界值时,下部钻柱将失去直 线稳定状态,而发持弯曲,并且在某个点(称为“切点”) 和井壁接触,这是钻柱第一次弯曲(Buckling of the first order)(图3-1中曲线Ⅰ)。如果继续加大钻压,

某井钻柱强度校核

某井钻柱强度校核 摘要:由于某井是一口5110米的深井水平井,水平位移680米,水平段距离380米。在钻井过程中不可避免地要遇到卡钻、弊钻、处理事故等过扭矩操作。因此钻杆的抗扭强度是关键参数。钻杆接头的抗扭强度是一个多变量函数,这些变量包括钢材强度、接头尺寸、螺纹形式、导程、锥度以及配合面螺纹或台肩的预紧力及摩擦系数等。钻杆接头的外径和内径,在一定程度上决定了接头的抗扭强度,对钻杆的抗扭强度进行校核,保证管体的抗扭屈服强度。 钻杆的结构设计决定了钻杆的性能,在同样材料,同样工况,钻杆外径相同的情况下,不同结构尺寸的钻杆所表现出的性能也不一样,因此,通过对钻杆结构设计进行强度计算和校核不仅仅有着实际应用的意义,更可以从另一种角度,例如结合钻杆失效等问题,来探索研究更合理的钻杆结构设计,本文依据API给出的标准,在前人研究结果的基础上,对某厂的S135钻杆进行理化性能分析和结构设计的强度计算与校核。 目前在钻杆的使用中,失效问题是钻杆研究中的重要课题,基于钻杆的失效分析,从失效的角度来分析优化钻杆在结构设计上应注意的问题,为今后的钻杆结构设计提出一些理论依据。具体内容如下: 1. 油田钻具失效现状调研; 2. 某公司 S135 钻杆材料理化性能分析; 3. 某公司 S135 钻杆强度分析计算; 关键词:钻柱;强度计算;设计;校核;钻具失效

A well drilling column strength check Abstract: Due to a well of 5110 is an one mouthful of horizontal Wells rice. Horizontal displacement is 680 meters. Horizontal distance is 3.8 meters. In drilling process, accident treatment and disadvantages will be inevitably stucked, such as torque operation. Therefore pipe wrest resistant strength is the key parameters. Drill pipe joints wrest resistant intensity is a multivariate function. These variables include steel strength, connector size, thread form, palpitation, taper and surface thread or pre-tightening force and friction coefficient, etc. Drill pipe diameter and inner fittings, in certain extent determine the joints of drill pipe wrest resistant intensity. The intensity checking wrest resistant ensure the hose body wrest resistant yield strength. Pipe structure design decision was designed. Simulated performance, in the same materials , conditions ,and pipe diameter in the same case, different structure size of drill pipe showed what performance is not the same. Therefore, through the structure design of drill pipe calculated and checked the strength that is not just the meaning of practical application. For example, with the pipe failure to explore more reasonable drill pipe research, which is based on the structure design are given in the standard API, based on the results of previous studies. The S135 of a factory for drill physical-chemical properties of the analysis and structural design strength calculation and checking. To drill pipe structure design, currently has a decisive impact performance in use of pipe. Failure is an important subject in the research of drill pipe, which is based on the drill pipe failure analysis that from the perspective of failure in the structural design optimization drill problems that should be paid attention to on the drill pipe structure, in order to put forward some theoretical basis for design . Specific content as follows : 1. Oilfield drilling tools failure situation investigation; 2. A company S135 pipe materials; chemical performance analysis; 3. A company S135 pipe strength calculation and analysis ; keyword:drill column, Strength calculation, Design, Check, Drilling tools, failure

钻柱力学

钻柱力学是指应用数学、力学等基础理论和方法,结合实验以及井场资料等数据综合研究受井眼约束的钻柱的力学行为的工程科学。开展钻柱力学研究, 对钻柱进行系统、全面、准确的力学分析,在井眼轨道设计与控制、钻柱强度校核、钻柱结构和钻井参数优化等都具有重要意义。钻柱力学研究已经有五十多年的发展历史, 许多研究成果已经应用 到生产实践并产生了巨大的经济效益, 但由于钻柱在充满流体的狭长井筒内处于十分复的受力、变形和运动状态,直到今天仍然无法做到对钻柱力学特性的准确描述和和精确的定计算。近年来, 着欠平衡井、深井、超深井、水平井、大斜度井和大位移井在油气勘探开发中所占的比重越来越大, 井眼轨道控制、钻具疲劳失效、钻井成本等问题逐年突出,对钻柱力研究提出了更高的要求。与现代钻井技术发展相适应,钻柱力学必然朝着更贴近井眼。 实际工况、控制和计算精度更高的方向快速发展。文中首先介绍钻柱力学问题的提出、研究目标、研究方法、钻柱的运动状态和钻柱动力学基本方程。然后将钻柱力学分为钻柱力学和动力学2个部分;介绍钻柱拉力扭矩、钻柱的弹性稳定性、底部钻具组合受力、钻柱与涡动等几个主要方面,并对未来发展趋势做出初步的预测。 在20世纪20- 30年代, 人们就发现了井斜,同时发现井斜与钻柱的力学问题有Lubinski是钻柱力学的创始人。1950年,他从定量分析直井中钻柱的屈曲问题入手, 开创了钻柱力学研究的新局面,该研究成果得到了公认。 (1)钻柱的运动状态; (2)钻柱的应力、应变和强度; (3)钻柱与井底、井壁和钻井液相互作用及效果。这是钻柱力学研究的3个主要方面, 互相联系、互相影响、不可分开。在钻柱力学长期发展中,经过不断的优化和比较,形成了几种比较典型的研究方法,即经典微分方程法、能量法、有限差分法、纵横弯曲连续梁法、有限元法和加权余量法。 经典微分方程法是钻柱力学中应用最早的研究方法。该方法要求在满足经典材料力学的基本假设的前提下,建立钻柱线弹性的经典微分方程并求解。这种方法在考虑因素较多时,建立分方程很复杂,用经典微分方程法求解比较困难。能量法是一种求解简单的弹性力学问题的方法。它要求势能函数不仅要满足弹性力学的控制方程,而且要满足边界条件, 通过解的形式设及有关参数的确定, 可得到问题的解答。由于满足以上2个条件是一件非常困难的事情。因此, 这一方法的应用受到了限制。有限差分法是一种近似方法。是通过对钻柱进行力学分析得到钻柱微分方程式, 再通过适当的差分转换将位移控制方程转化为差分的形式求解。由于差分方程的系数是可变的,因此可以很容易考虑非线性的影响;同时,由于差分区间可以减小, 可以比较容易考虑井眼的约束。但是要得到精确的解。答, 差分区间必须取得很小, 这样就使矩阵的维数增加, 降低了计算速度。对于钻柱力学来说,有限差分法是一种有效的近似计算方法。纵横弯曲连续梁法是一种精确解法, 这种方法是将钻柱视为相互联系的纵横弯曲的连续梁, 应用材料力学中的三弯矩方程建立一组非线性代数方程, 该方程物理概念清楚, 计简单, 且速度较快。由于这种方法是将三维空间问题分解成2个独立的二维问题求解,力学型简化得太多,忽略了扭矩及可能的力和变形的耦合问题。这种方法在国内得到了推广和应用。有限元法也是一种近似数值计算方法,这种方法是通过将钻柱分解为有限的离散梁单元, 再通过适当的合成方法将这些单元组合成一个整体, 用以代表原来的钻柱状态,并最终得到组以节点位移为未知量的代数方程组。有限元法的物理概念清楚、简单, 实用性强。不限制柱的材料和几何形状, 且对单元尺寸也无严格的要求;又可以较容易地考虑非线性的影响。目前发展的接触有限元法, 考虑了钻柱、稳定器与井壁之间的初始接触摩擦力,力 学模型比较准确,考虑因素较多, 解题的速度虽然是这几种方法中最慢的,但也可满足需要。加权余量法是一个求解微分方程定解问题的强有力的数值方法, 具有简便、准确、工作量小、残差可知等优点,已成功地用于下部钻具组合的大小挠度力学分析中;当然,要进一步提高度就得增加试函数项数,也会增加一些运算量。油气井杆管柱的稳态拉力和扭矩 意义拉力和扭矩模型, 尤其在地面扭矩、大钩载荷、井底扭矩和钻压的测可达到如下目的:

相关主题
相关文档
最新文档