用反相器74HC04和晶振做晶体振荡电路产生时钟信号

用反相器74HC04和晶振做晶体振荡电路产生时钟信号
用反相器74HC04和晶振做晶体振荡电路产生时钟信号

用反相器74HC04和晶振做晶体振荡电路产生时钟信号采用下图所示电路可以实现方波时钟信号输出的功能:

时钟信号为CMOS电平输出,频率等于晶振的并联谐振频率。74HC04在这里相当于一个有很大增益的放大器;R2是反馈电阻,取值一般≥1MΩ,它可以使反相器在振荡初始时处于线性工作区,不可以省略,否则有时会不能起振。R1作为驱动电位调整之用,可以防止晶振被过分驱动而工作在高次谐波频率上。C1、C2为负载电容,实际上是电容三点式电路的分压电容,接地点就是分压点。以接地点即分压点为参考点,输入和输出是反相的,但从并联谐振回路即石英晶体两端来看,形成一个正反馈以保证电路持续振荡。C1、C2会稍微影

响振荡频率。

74HC04可以用74AHC04或其它CMOS电平输入的反相器代替,不过不能用TTL电平输入的反相器,因为它的输入阻抗不够大,远小于电路的反馈阻抗。

实际使用时要处理好R1和R2的值,经试验,太小的R1或太大的R2会有可能导致电路工作在晶振的高次谐振频率上(常见的是3次谐波,10MHz的晶振会产生30MHz的频率输出)。对于10MHz的晶振,采用R1=220Ω、R2=1M Ω可以使电路稳定输出10MHz的方波时钟信号。

最后,不要忘记,74HC04中未使用的输入引脚要接地或VCC。

几种简单的函数信号发生器电路图分析

几种简单的函数信号发生器电路图分析 时间:2012-01-10 15:30 作者:赛微编辑来源:赛微电子网 引言 随着模拟电路技术和电力电子技术发展,电路设计中对信号的精度、稳定性、抗干扰能力等要求进一步提高,电子行业中将一些功能进行集成到IC芯片供其他的厂家来使用。在电路设计中,我们除了正常的电源输入之外,还需要提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形来给某个电路提供输入。 这种可以提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形的电路或者仪器(函数信号发生器的种类),我们可以称之为函数信号发生器,它对电子工程师设计的整个系统来说,发挥着重要的作用,它具有各种内置信号、自定义的任意波形和脉冲能力,能帮助您验证设计,检验新的构想,从而让整个设计更具有可靠性。 本文结合几种简单的函数信号发生器电路图,并对其工作原理(函数信号发生器原理)、可以实现的功能和性能、电路特点等方面做了详细的分析,供电子发烧友参考。 程控函数信号发生器电路图 它主要由主控制器LPC2114、MAX038、D/A转换器以及八选一模拟开关CD4051LED显示、键盘、波段切换,波形处理和峰值检波等部分组成,研究了LPC2114通过D/A转换器实现对MAX038频就绪和占空比的调控方法,并给出

了在0.1Hz~20MHz内产生精确的正弦波、方波和三角波的方法。此外,它还具有可调范围大、精度高、信号稳定等特点,可以应用于各种电子测量和控制场合。 LPC2114主要通过D/A转换器TLC5618、DAC0832和八选一模拟开关CD4051对MAX038输出的波形、频率以及占空比进行控制。通过对A1和A0端的不同设置来选择不同的波形。当A1为高电平、A0为任意时,输出波形为正弦波;当A1、A0同时为低电平时,输出波形为方波;当A1为低电平、A0为高电平时,输出波形为三角波。 MAX038输出波形的幅值为2 V(P-P),最大输出电流为+20 mA,输出阻抗的典型值为0.1 Ω。可直接驱动100 Ω的负载。为了得到更大的输出幅度和驱动能力,就需要对波形信号作进一步处理,下图为一个波形输出与驱动电路。

信号发生器电路的焊接与调试-电路图

一、信号发生器电路安装与调试考核评分表 准考证号姓名规定时间分钟 开始时间结束时间实用时间得分 考核内容及要求配分评分标准扣分 1 元器件清点检查:在10分钟内对所有元 器件进行检测,并将不合格元器件筛选出来进 行更换,缺少的要求补发。 10 超时更换或要求补发按损坏 元件扣分,扣3分/个。 2 安装电路:按装配图进行装接,要求不装 错,不损坏元器件,无虚焊,漏焊和搭锡,元 器件排列整齐并符合工艺要求。 30 漏装,错装或虚焊、漏焊、 搭锡,扣2分/个,安装不整 齐和不符合工艺要求的扣1 分/处,损坏元件扣3分/个。 3 电源电路:接通交流电源,测量交流电压 和各直流电压+12V、-12V、V CC 、-5V。 信号发生器电路:接通+12V、-12V、V CC 、 -5V电源。测量函数信号波形:方波、正弦波、 三角波形。 20 电压测试方法不正确扣10 分,测量值有误差扣5分。 4 选择C=10uf,调节RW13、RW14、RW15, 记录方波的占空比: 1、 2、 3、 10 不会用示波观察输出信号波 形扣10分, 调节不正确扣5分, 波形记录不正确扣5分。 5 改变电容:100nf——100uf,并调节RW11, 记录正弦波输出频率f: 1、 2、 3、 10 最大不失真电压测试方法不 正确扣5分,测量值不准确 扣5分,不会计算最大不失 真功率扣5分。 6 调节RW21、RW22, 记录正弦波输出Vpp: 1、 2、 3、 10 不会测试功放电路的灵敏度 扣5分,不会计算电压放大 倍数扣5分。 7 调节电位器RW16、RW17, 记录正弦波形的失真: 1、 2、 3、 10 测量方法不正确扣5分, 测量数据每处2分,不会绘 制频响曲线扣5分 开始时间:结束时间:实用时间:

DDS信号发生器电路设计

1. 信号产生部分 1.1 频率控制字输入模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity ddsinput is port(a,b,c,clk,clr:in std_logic; q1,q2,q3,q4,q5:buffer unsigned(3 downto 0)); end ddsinput; architecture a of ddsinput is signal q:std_logic_vector(2 downto 0); begin q<=c&b&a; process(cp,q,clr) begin if clr='1'then q1<="0000";q2<="0000";q3<="0000";q4<="0000";q5<="0000"; elsif clk 'event and clk='1'then

DDS信号信号发生器电路设计 case q is when"001"=>q1<=q1+1; when"010"=>q2<=q2+1; when"011"=>q3<=q3+1; when"100"=>q4<=q4+1; when"101"=>q5<=q5+1; when others=>NULL; end case; end if; end process; end a; 1.2 相位累加器模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity xiangwei is port(m:in std_logic_vector(19 downto 0); clk,clr:in std_logic; data:out std_logic_vector(23 downto 0)); end xiangwei; architecture a of xiangwei is signal q:std_logic_vector(23 downto 0); begin process(clr,clk,m,q) begin if clr='1'then q<="000000000000000000000000"; elsif (clk'event and clk='1')then q<=q+m; end if; data<=q; end process; end a;

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

酒精浓度传感器信号调理电路设计与仿真报告

目录 第一章绪论 ............................................................................................................................................ - 1 -1.1 设计背景.................................................................................................................................................. - 1 -1.2 设计目的.................................................................................................................................................. - 1 -1.3 设计内容和要求(包括原始数据、技术参数、条件、设计要求等)................................................... - 1 -1.4 设计工作任务及工作量的要求................................................................................................................ - 2 -第二章酒精浓度传感器的设计.................................................................................................................... - 3 -2.1 传感器的概述 ........................................................................................................................................ - 3 -2.2 传感器的选择 .......................................................................................................................................... - 4 -2.2.1MQ-3酒精浓度传感器的特点 .. (4) 2.2.2MQ-3工作原理简介 (5) 2.3 可靠性与抗干扰设计............................................................................................................................... - 6 -第三章酒精传感器信号调理电路的设计..................................................................................................... - 7 - 3.1 设计思路综述 .......................................................................................................................................... - 7 -3.2 电压跟随器 .............................................................................................................................................. - 7 -3.3 减法器...................................................................................................................................................... - 8 -3.4 比例放大电路 .......................................................................................................................................... - 9 -3.5 器件选型表 .............................................................................................................................................. - 9 -3.6 设计心得体会 .........................................................................................................................................- 10 -第四章仿真与PCB设计..............................................................................................................................- 11 - 4.1 信号调理电路仿真..................................................................................................................................- 11 -4.2 PCB图 .....................................................................................................................................................- 11 -4.3 PROTUES图3D效果图 ...........................................................................................................................- 12 -参考文献 .........................................................................................................................................................- 13 -

信号发生器的基本原理

信号发生器的基本原理- 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率 稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后 也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡 器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其 优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器 采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。

(Proteus数电仿真)序列信号发生器电路设计

实验8 序列信号发生器电路设计 一、实验目的: 1.熟悉序列信号发生器的工作原理。 2.学会序列信号发生器的设计方法。 3.熟悉掌握EDA软件工具Proteus 的设计仿真测试应用。 二、实验仪器设备: 仿真计算机及软件Proteus 。 74LS161、74LS194、74LS151 三、实验原理: 1、反馈移位型序列信号发生器 反馈移位型序列信号发生器的结构框图如右图 所示,它由移位寄存器和组合反馈网络组成, 从寄存器的某一输出端可以得到周期性的序列 码。设计按一下步骤进行: (1)确定位移寄存器位数n ,并确定移位 寄存器的M 个独立状态。 CP 将给定的序列码按照移位规律每 n 位一组,划分为M 个状态。 若M 个状态中出现重复现象,则应增加移位寄存器的位数。用n+1位再重复上述过程,直到划分为M 个独立状态为止。 (2)根据M 各不同状态列出寄存器的态序表和反馈函数表,求出反馈函数F 的表达式。 (3)检查自启动性能。 (4)画逻辑图。 2、计数型序列信号发生器 计数型序列信号发生器和组合的结构框图 如图 所示。它由计数器和组合输出网络两部分 组成,序列码从组合输出网络输出。设计 过程分为以下两步: (1)根据序列码的长度M 设计模M (2)按计数器的状态转移关系和序列码的要求组合输出网络。由于计数器的状态设置和输出序列没有直接关系,因此这种结构对于输出序列的更改比较方便,而且还能产生多组序列码。 四、计算机仿真实验内容及步骤、结果: 1、设计一个产生100111序列的反馈移位型序列信号发生器。 1、根据电路图在protuse 中搭建电路图

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

热电偶温度传感器信号调理电路设计与仿真

目录 第1章绪论 (1) 1.1 课题背景与意义 (1) 1.2 设计目的与要求 (1) 1.2.1 设计目的 (1) 1.2.2 设计要求 (1) 第2章设计原理与内容 (2) 2.1 热电偶的种类及工作原理 (3) 2.1.1热电偶的种类 (3) 2.1.2工作原理分析 (4) 2.2 设计内容 (4) 2.2.1 总体设计 (4) 2.2.2 原理图设计 (5) 2.2.3 可靠性和抗干扰设计 (7) 第3章器件选型与电路仿真 (8) 3.1 器件选型说明 (8) 3.2 电路仿真 (8) 第4章设计心得与体会 (9) 参考文献 (10) 附录1:电路原理图 (11) 附录2:PCB图 (11) 附录3:PCB效果图 (11)

第1章绪论 1.1 课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。 同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 1.2 设计目的与要求 1.2.1 设计目的 (1) 了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路); (2) 了解印刷电路板的设计和制作过程; (3) 掌握电子元器件选型的基本原理和方法; (4) 了解电路焊接的基本知识和掌握电路焊接的基本技巧; (5) 掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。 1.2.2 设计要求 选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求: (1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号; (2)对信号调理电路中采用的具体元器件应有器件选型依据; (3)电路的设计应当考虑可靠性和抗干扰设计内容; (4)电路的基本工作原理应有一定说明; (5)电路应当在相应的仿真软件上进行仿真以验证电路可行性

传感器信号调理电路

传感器信号调理电路 传感器信号调理电路 信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。然后,设计人员必须选择ADC。ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。 传感器 传感器根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。传感器可进一步分类为有源或无源。有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标: ·源阻抗 ——高的源阻抗大于100KΩ ——低的源阻抗小于100Ω ·输出信号电平 ——高信号电平大于500mV满标 ——低信号电平大于100mV满标 ·动态范围 在传感器的激励范围产生一个可测量的输出信号。它取决于所用传感器类型。 放大器功用 放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。放大器有两个关键职责。一个是根据传感器特性为传感器提供合适的接口。另一个职责是根据所呈现的负载接口ADC。关键因素包括放大器和ADC之间的连接距离,电容负载效应和ADC的输入阻抗。 选择放大器与传感器正确接口时,设计人员必须使放大器与传感器特性匹配。可靠的放大器特性对于传感器——放大器组合的工作是关键性的。例如,PH电极是一个高阻抗传感器,所以,放大器的输入偏置电流是优先考虑的。PH传感器所提供的信号不允许产生任何相当大的电流,所以,放大器必须是在工作时不需要高输入偏置电流的型号。具有低输入偏置电流的高阻抗MOS输入放大器是符合这种要求的最好选择。另外,对于应用增益带宽乘积(GBP)是低优先考虑,这是因为传感器工作在低频,而放大器的频率响应不应该妨碍传感器信号波形的真正再生。

多功能信号发生器课程设计

《电子技术课程设计》 题目:多功能信号发生器 院系:电子信息工程 专业:xxxxxxxx 班级:xxxxxx 学号:xxxxxxxx 姓名:xxx 指导教师:xxx 时间:xxxx-xx-xx

电子电路设计 ——多功能信号发生器目录 一..课程设计的目的 二课程设计任务书(包括技术指标要求) 三时间进度安排(10周~15周) a.方案选择及电路工作原理; b.单元电路设计计算、电路图及软件仿真; c.安装、调试并解决遇到的问题; d.电路性能指标测试; e.写出课程设计报告书; 四、总体方案 五、电路设计 (1)8038原理, LM318原理, (2)性能\特点及引脚 (3)电路设计,要说明原理 (4)振动频率及参数计算 六电路调试 要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试 七收获和体会

一、课程设计的目的 通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。因此,多功能信号发生器制作的集成电路收到了广泛的应用。 二、课程设计任务书(包括技术指标要求) 任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。 要求: 1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。 2.输出幅度为5V的单脉冲信号。 3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版

6 设计总结 7仪器仪表明细清单 8 参考文献 1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。

2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz 等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波UP-P≤24V,三角波UP-P=8V,正弦波UP-P>1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。 2.函数发生器总方案及原理框图

压电传感器的信号调节——TI

压电传感器的信号调节 作者:Eduardo Bartolome,德州仪器(TI) 医疗事业部系统工程师 压电传感器 用于感应和激励的压电传感器应用延伸到了许多领域。本文主要介绍对一些物理强度的感应,即加速度、振动、振荡和压力,从传感器及其要求信号调节的角度来看其可以被认为是类似的。1就加速度而言,传感器灵敏度通常被表示为一个与外力即加速度(大多数时候称作重力加速度g)成比例关系的电荷。然而,从严格物理意义上来讲,传感器输出一个实际由其变形/偏斜情况决定的电荷。 例如,图 1 显示了安装于顶部位置的一个传感器,与此同时底部正受到一个外力的拉拽,即F ext。在使用加速计的情况下,固定端(顶部)会粘附在要测量加速度的物体上,同时外力为粘附于另一端(底部)的质量的惯性,而这一端不断想要保持静止。就固定于顶端的参考坐标系而言(假设传感器充当的是一个弹簧,其具有很高的弹簧系数K),偏斜x 会形成一种反作用力: F int = Kx (1) 最终,质量(传感器偏斜)将会在下列情况下停止移动/改变: F int = F ext = Kx (2) 图 1 加速度力作用下的传感器 由于电荷Q 与偏斜成比例关系(一阶),而偏斜与力成比例关系,因此Q 与力也成比例关系。施加一个F max最大值的正弦力,会形成一个Q max 最大值的正

弦电荷。换句话说,当正弦力为最大值时,对来自传感器的电流求积分可得到Q max。增加正弦波的频率,同时会增加电流;但是会更快地达到峰值,即保持积分(Q max) 恒定。厂商会以传感器可用频率范围内Q max与F max的比率,来说明灵敏度规范。但是,由于传感器的机械性质,传感器实际上有谐振频率(可用频率范围以上),其中一个即使很小的振荡力都会产生相对较大的偏转,从而得到较大的输出振幅。 如果忽略谐振的影响,则我们可以将压电传感器一阶建模为一个与传感器寄生电容(此处称作C d)并联的电流源,或者也可以将其建模为一个与C d串联的电压源。该电压为存储电荷时在传感器阳极上看到的等效电压。但是,我们需要注意的是,就许多应用的仿真而言,第二种方法要更加简单一些。如前所述,电流与偏斜变化的速率成比例关系;例如,拿恒幅加速度的正弦AC 曲线来说,电流生成器的振幅必须根据频率来改变。 最后,如果这种生成器需要代表实际物理信号,则可以使用变压器,如图 2 所示。本例中,我们建模了一个具有0.5 pC/g 灵敏度和500 pF 寄生电容的生成器。正弦波生成器每单位g 输出1V,以实现仿真。变压器在其次级线圈将它向下调节至1mV。施加给C1(500 pF)的1-mV 摆动,将会如我们预计的那样在下一级注入Q = VC = 0.5 pC。 图 2 压电传感器模型 电荷放大器分析 图 3 显示了经典电荷放大器的基本原理,其可以用作一个信号调节电路。这种情况下,我们选择电流源模型,表明传感器主要为一种带高输出阻抗的器件。 输入阻抗 信号调节电路必须具有非低的输入阻抗,以收集传感器的大部分电荷输出。因此,电荷放大器是理想的解决方案,因为只要放大器在这些信号频率下保持高增益,其输入便会让传感器信号出现虚拟接地。换句话说,如果传感器的任何电荷想要在传感器阳极(C d) 或者放大器输入寄生电容(C a) 上增大,在放大器输入端就

信号调理电路的原理、功能

什么是信号调理?信号调理电路的原理,信号调理模块的功能 [导读] 信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。 信号调理电路原理 信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。 模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。 调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。 信号调理电路技术

1.放大 放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度和灵敏度。此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。 2.衰减 衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时是十分必要的。这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。衰减对于测量高电压是十分必要的。 3.隔离 隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。 4.多路复用 通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。多路复用对于任何高通道数的应用是十分必要的。 5.过滤

信号发生器的原理及应用

实验一信号发生器的原理及应用 一、实验目的 (1)熟悉直接数字合成双路函数信号发生器的工作原理以及面板装置及功能; (2)会运用UTG2025A型数字信号合成信号发生器产生标准信号和调制信号。 二、实验设备 (1)UTG2025A型函数/任意波形信号发生器1台; (2)UTD2102C数字存储示波器各1台。 三、实验原理 函数信号发生器是能产生多种特定时间函数波形(如正弦波、方波、三角波 等)供测试用的信号发生器。典型函数信号发生器由输入单元、内/外转换电路、 波形产生电路、频段转换器、扫频电路、占空比和频率调节电路、微处理器、A/D 转换器、直流功率放大器和计数显示器等组成,其电路原理方框图如下所示: 图1典型函数信号发生器电路原理框图 其中波形产生电路、频率调整电路、占空比调整电路、内外扫频控制电路、测频 单元电路等具体电路原理与分析见教材《电子测量技术》P67-P71页内容。 四、实验内容及步骤 4.1 产生标准信号 4.1.1 产生正弦波信号

实验内容:产生一个20MHz、峰峰值100mV、直流偏置-150mV的正弦波信号。 1 实验步骤: (1)确保仪器正确连接后,打开开关,等仪器自检回到主菜 单;(2)按【menu】→【波形】→【正弦波】,如下图所示: (3)按【menu】→【波形】→【参数】 选择【频率】、【幅度】、【直流偏移】、【相位】不同功能按钮进行设 置:可以用三种方法来输入频率值:(其他数字量输入类似) ①通过按方向键来移动选择光标,再通过多功能按钮来增加、减少频率值; ②通过多功能按钮选中再逆时针、顺时针旋转来增加、减少频率值; ③通过数字键盘输入:进入频率设置状态后,当您按下数字键盘任意一个按键后,屏幕弹出输入窗口,如下图所示: 键入数字后再分别选择不同单位。

高频小信号放大器

高频小信号放大器() 一、学习目标与要求 1.掌握单调谐回路谐振放大器工作原理的分析方法,理解提高稳定性措施; 2.了解同步调谐放大器和双参差调谐放大器工作原理; 3.了解双调谐放大电路,能够识读各种类型的谐振放大器电路; 4.了解集中选频放大器电路;了解噪声概念; 二、学习要点 (一)高频小信号放大器的分类 (l )按器件分类 高频小信号放大器若按器件分可分为晶体管放大器、场效应管放大器、集成电路放大器。 (2)按通带分类 高频小信号放大器若按通带分可分为窄带放大器、宽带放大器。 (3)按负载分类 高频小信号放大器若按负载分可分为谐振放大器、非谐振放大器。 本章重点介绍单级窄带负载为I .C 调谐回路的谐振放大器,这种放大器不仅有放大作用,而且有选频作用。对其他器件的单级谐振放大器、各种级联放大器以及集成电路放大器这略加讨论。 (二) 高频小信号放大器的质量指标 1.增益(放大系数) 放大器输出电压Vo(或功率P 。)与输入电压V i (或功率P i )之比,称为放大器的增益或放大倍数,用A v (或A P )表示(有时以dB 数计算)。我们希望每级放大器在中心频率(谐振频率)及通频带处的增益尽量大,使满足总增益时级数尽量少。 电压增益:i o v V V A = (6-1) 功率增益:i o P P P A = (6-2) 2.通频带 放大器的电压增益下降到最大值的0,7(即v /1)倍时,所对应的频率范围称为放大器的通频带,用B =2△f 0.7表示,如图3-l 所示。2△f 0.7也称为3分贝带宽。 图6-1 高频小信号放大器的通频带 与谐振回路相同,放大器的通频带决定于回路的形式和回路的等效品质因数Q e 。此外,放大器的总通频带,随着级数的增加而变窄,并且,通频带愈宽,放大器的增益愈小。

相关文档
最新文档