刘志恩_改善车辆怠速噪声的排气系统结构优化方法

刘志恩_改善车辆怠速噪声的排气系统结构优化方法
刘志恩_改善车辆怠速噪声的排气系统结构优化方法

改善车辆怠速噪声的排气系统结构优化方法

Structure Optimization of the Exhaust System to Improve Vehicle Idling Noise

刘志恩1,2,陈亚军1,张焰1,肖生浩1,杜松泽1

(1.武汉理工大学汽车工程学院, 湖北武汉430070;

2.现代汽车零部件技术湖北省重点实验室, 湖北武汉430070)

摘要:某乘用车排气系统声品质优化过程中,针对怠速工况下轻微抖动和噪声值偏大的问题,利用HyperWorks对系统模态进行有限元分析和试验测试研究。提出了模态应变能控制、局部振型控制和系统刚度控制三种结构改进方法,获得了怠速共振引起系统振动噪声过大问题的一般解决方案。结合各方案仿真分析和实车测试结果,对比了三种改进方案的优劣,证明局部振型控制方案效果显著,使怠速时排气噪声下降3.2dB,有效解决了原车排气系统怠速噪声过大的问题。

关键字:HyperWorks,排气系统,怠速共振,模态应变能,噪声测试

Abstract:During the process of acoustic quality optimization of a passenger car exhaust system, finite element analysis and test research were going on while the problem of slight jitter and noise were found at the idle condition. The optimization methods of the modal strain energy, control of local mode vibration and system stiffness were carried out by giving general solutions to problems of vibration and noise caused by idling resonance. Combining the results of simulation analysis and the real vehicle test, it was proved the method of local mode vibration control was most effective and the exhaust noise declined 3.2dB at idle condition among the three kinds optimization. The noise problem of the original car exhaust was solved effectively.

Key words:Exhaust System, Idling Resonance, Modal Strain Energy, Noise Test

0 前言

随着对整车NVH性能要求的不断提高,排气系统作为车辆不可或缺的组成部分,其振动和噪声控制得到愈来愈多的关注[1]。本文在对某乘用车进行声品质优化时,发现该车型怠速工况下排气系统存在轻微抖动,排气噪声测试值过大的问题。分析其原因为排气系统固有频率与发动机的怠速振动频率相接近,引起了排气系统共振。

考虑到车身底盘布置形式已确定,本文以排气系统小改动、底盘布置不变或少变为原则,

从排气系统的振动特性出发查找噪声优化的解决方法和优化方案。通过模态应变能控制、局部

振型控制和系统刚度控制三种结构改进方法提出优化方案,经实车测试完成最终验证,优化后

明显改善原排气系统噪声问题。

1 弹性系统的振动方程

对于具有n 个自由度的弹性系统的有限元振动方程为[3,4]:

[]{}[]{}[]{}{()}M x C x K x f t ++= (1.1)

[]M 、[]C 、[]K 分别系统的质量矩阵、阻尼矩阵和刚度矩阵,[]M 、[]K 都是正定的,

且与系统的材料和形状有关;x 为位移;()f t 为作用力。

在自由振动中,()0f t =。一般因系统结构阻尼较小,对结构固有频率和振型影响很小,

通常忽略不计。因此,系统的无阻尼自由振动运动方程为:

[]{}[]{}0M x K x += (1.2)

在此情况下,结构的固有频率与振型计算问题就转化为求解方程的特征值与特征向量问题。

系统的自由振动方程式是二阶常系数微分方程组。设各个位移分量作同相位的简谐振动,即

{}{}sin x X t ω?=+() (1.3)

123{}[,,,]T n X X X X X =???是振幅向量;ω为圆频率;?为初相位。将式(1.2)代入式(1.3)

得到代数方程组:

2([][]){}0K M X ω-= (1.4)

这就是广义特征问题。2

([][])K M ω-称为特征矩阵。式(1.4)有非零解的充要条件是它

的特征矩阵的行列式为零。 2排气系统有限元模态分析

2.1 有限元模型的建立

本文的排气系统由以下几部分组成:波纹管、三元催化转化器、前置消声器、后置消声器、

排气管道、吊钩和橡胶吊耳。材料参数如表2-1

表2-1 材料参数

用Abaqus 作为有限元求解器, HyperMesh 作为前处理软件对排气系统结构进行网格离

散,单元尺寸为4mm ,单元总数约为9万个。

其中,波纹管用无阻尼零长度Spring2弹簧单元模拟,在几何中心加载波纹管质量;三元

催化器外部采用四边形壳单元S4R ,催化器载体的体积质量为0.6kg/L ;各处连接法兰以体单

元C3D8R 划分;前、后消声器按照其具体内部结构,用包含四边形单元S4R 和三角形单元S3

的壳单元划分;排气管道直接以四边形壳单元S4R 画出;吊钩处的橡胶悬置用弹簧单元Spring2

模拟;焊接部分用一层四边形S4R 单元表示;各处法兰的连接螺栓用MPC 进行简化处理。排

气系统的有限元模型建立如图2-1。

(a )波纹管的简化处理 (b )焊接单元与螺栓连接 (c )排气系统有限元模型

图2-1 有限元前处理

2.2 模态仿真计算与试验验证

本乘用车发动机为四缸四冲程汽油机,怠速转速为800r/min ,由此知发动机怠速激励频率

为26.67Hz 。

首先对原方案排气系统进行有限元约束模态分析。依据实车布置对排气系统法兰端面和各

橡胶吊耳上端进行六自由度零位移约束。计算获得的原方案排气系统模态频率如表2-2。

表2-2 原排气系统模态结果对比

为了验证有限元模型的准确性,在整车安装状态下对原排气系统进行模态试验[5]。

采用多点输入单点输出的测试方法,在实车安装状态下对排气系统进行多点锤击激励,通

过激振力和响应信号的收集处理,用LMS https://www.360docs.net/doc/77219723.html,b 软件对频响函数进行拟合,识别排气系统

的模态参数完成排气系统的试验模态分析。试验设备列表见表4-1。

(a )加速度传感器图 (b ) LMS 数采前端 (c )实车测试

图2-2 试验主要设备

试验结果见表2-2。除去局部模态,仿真模态与试验结果对比吻合度较好,有限元模型基

本正确,可做分析研究之用。

该排气系统原方案仿真模态第三阶26.46Hz 为危险频率,处于发动机怠速激励区间。该排

气系统会在发动机怠速时产生共振,使得该工况下噪声偏大。该阶振型为绕X 轴的扭转振动,

如图2-3:

图2-3 26.46Hz 模态振型

3 排气系统结构改进方法

本文研究车型车身底盘结果形式已经确定,若是大范围大数量的移动吊钩,必然需要重新

布置底盘空间,为改进方案的实施带来困难。

针对排气系统固有频率与发动机怠速激励频率相接近时引起的系统怠速共振问题,提出了

模态应变能控制、局部振型控制和系统刚度控制三种结构改进方法以避开发动机怠速共振频率,

达到降低振动减小噪声的目的。

3.1 方案一:模态应变能

在进行排气系统模态分析的同时计算其模态应变能。在模态分析中,第i 阶模态的第j 单元

的模态应变能(MSE )定义为[6,7]:

{}{}T

ij i j i MSE K ??=ΦΦ?? (3.1)

式中,{}i Φ为第i 阶模态的振型;j K ????为j 单元刚度矩阵。

若某区域的模态应变能越高,则说明该区域越容易被激振起来,其结构响应越弱。对系统局部结构进行刚度优化,分散集中的能量分布,可以强化系统结构改变其固有特性。

针对原排气系统第三阶26.46Hz模态,计算其模态应变能分布图如下,能量集中最大的位置在前消声器后的弯管处,如图3-1:

图3-1 模态应变能

方案一主要改进方式是在能量集中的前消后方弯管处焊接一块钢板,加强该处结构分散集中的能量,提高该阶模态频率,达到避开共振区间的效果。结构局部优化如图3-2,优化后模态应变能与结构振型分别如图3-3和图3-4,模态计算结果与原方案对比如表3-1。

图3-2 局部优化图3-3 优化后的模态应变能图3-4 优化方案一结构振型

表3-1 模态优化结果对比

采用方案一的改进结构,各阶模态频率均有不同程度的提高,其中原方案中危险频率从26.46Hz提高至29.06Hz,增加了约2.6Hz。虽然并未改变系统振型,但有望降低原排气系统的怠速共振、解决噪声问题。

3.2 方案二:局部振型控制

针对原排气系统第八阶26.46Hz模态振型,注意到其最大扭转位置发生在主消声器处,对该阶局部振型进行控制有望改变该阶模态。其局部振型如图3-5:

图3-5 局部振型图3-6 吊钩移动60mm

基于对底盘空间的考虑,将主消声器前的吊钩向模态振型较大的的位置移动60mm(车身上的吊钩固定位置不变),见图3-6。该改进方案提高了该处的扭转刚度,优化后模态计算结果如表3-1,振型如图3-7。

图3-7 优化方案二的结构振型

该方案下除第三阶模态频率提高显著外,其他模态提高不明显,主要是因为该方案只针对危险模态做出的局部振型优化,对其他不同振型的模态影响较小。原方案中危险频率26.46Hz 提高至28.83Hz,增加了约2.17Hz,处于发动机怠速共振频率区间外。方案二虽然也并未改变系统振型,但改变局部振型应能解决怠速共振噪声问题。

3.3 方案三:系统刚度控制

将前后消中间排气管路管径由原来48mm改为52mm,管径增加以后,系统结构刚度有所提升,原扭转模态频率会得到一定程度的提升。优化后模态计算结果如表3-1,振型如图3-8。

改变管径后,各阶模态频率值相对于其他改进方案都发生了较大改变。原方案中危险频率从26.46Hz提高至29.21Hz,增加了约2.75Hz。该方案也未能改变系统振型,但频率的提高对避免怠速共振的产生是有帮助的。

图3-8 优化方案三结构振型

4 实车噪声测试研究

4.1试验概况

4.1.1 测试环境与测试设备

实车测试排气噪声的场地选择在郊外新修的柏油公路上,地势开阔、行人和车量稀少、路况良好、背景噪声低、且有较长直道可进行急加速排气噪声的测试。

噪声测试主要设备如下。

表4-1测试设备

4.1.2 测试工况

主要测试工况是怠速工况,分别测试排气噪声、车内前排驾驶员右耳处噪声和后排中间部位噪声。同时为了验证改进方案对急加速工况排气噪声的影响,还进行了二档全油门急加速、三档全油门急加速噪声测试。试验样车、测试设备如下图4-1:

(a)试验样车(b)测试设备

图4-1测试环境与测试设备

4.2 试验数据评价

测试结果整理如下表4-2。

方案一在模态应变能聚集处焊接钢板的做法效果良好,降低尾管噪声1.9dB,车内前、后排噪声改善幅度较小。

方案二通过移动主消前端吊钩位置实现对局部振型的控制来降低排气噪声的改进方法效果明显。尾管噪声降低了3.2dB,车内噪声值也下降了超过1dB。根据表3-1可知,该方案实际提高系统固有频率值是最小的,但是对排气噪声的控制效果确是最好的。说明在改变排气系统固有频率时,对引起排气噪声具有较大辐射面积的区域进行振型控制,能够更有效的降低排气噪声幅值。

方案三为了提高排气系统整体刚度,将排气管道直径由原来的48mm增加到52mm ,各测点噪声值均有小幅度的提高,但优化幅值低于前两个方案。该方案三虽然提高了系统频率,但改变系统刚度对振型发生处的振动控制并不显著。

图4-2 优化方案总阶次噪声测试结果

针对怠速噪声进行优化后,实车测试结果验证整个排气系统的噪声并没有发生恶化,各方案噪声水平均有小幅度的提升。各方案总的阶次噪声图如图4-2。

综上,各方案测试数据表明,针对排气系统怠速共振所进行的优化方向是正确有效的。其中方案二局部振型控制(移动吊钩)效果显著,最大噪声降低幅值为3.2dB,测点噪声值平均降幅为1.9dB。

4.3优化方案结果分析

优化发案的基本思想相同,即避开发动机怠速共振,但对比上节实验结果发现实际效果之间存在明显差距。针对上述问题对排气系统做振动响应分析,以此讨论个方案对系统振动的振动控制效果差异。

计算分析优化前后沿主消振型方向三个点的位移响应如图4-3。在主消振型方向上从前向后依次定义三个节点,编号1000001、1000002、1000003(下文简称节点1、节点2、节点3),计算此节点的位移响应,判断优化前后系统的振动情况。

图4-3 动力学分析模型

分析模型如图4-3。建立动力总成简易模型将发动机的激励简化成振幅为100N m 带宽为0~200Hz,方向绕整车坐标系Y轴的扭矩,作用点选取动力总成质心点。动力总成的悬置及排

气系统吊耳固定端六自由度全位移约束,输出上述节点1、2、3的位移响应,如下图

图4-4 各方案对应的节点1位移响应图图4-5 各方案对应的节点2位移响应图

图4-6 各方案对应的节点3位移响应图

由以上三处的位移响应分析结果可以看出,方案一虽然成功避开发动机怠速共振区间,但对于原系统振型处的振动控制并不明显。

方案二结构改动位于振型处,不仅提高了系统频率,也增加了局部刚度,对振动具有一定的抑制作用。该方案实际效果最佳。

从动态分析的结果来看,方案三虽然都对排气系统怠速振动的控制效果较好,但是由于方案三改变了系统内部结构,因此改变了系统内流场的变化,导致系统系统声学特性的变化,因而实际优化效果并不好。

综合以上分析,排气系统怠速振动噪声控制与优化时,不仅需要有效的避开发动机怠速区间,也要对对应振型下的振动进行控制,并且在结构赶紧时要尽可能少的改变系统内部结构,如此才能获得尽可能好的优化结果。

5 结论

排气系统怠速共振对车辆噪声影响较大,本文利用HyperWorks工具,基于模态应变能、振型分析提出三个优化方案均能在保证整车噪声水平不发生恶化的前提下,较好的改善怠速工况下测点处的车内外噪声,优化效果良好。

针对排气系统怠速振动噪声进行结构优化时,不仅需要成功避开发动机怠速频率,亦需提高结构刚度,针对振型改善局部结构的振动,并尽量少的对系统内部结构进行改动。如此才可尽可能的在不改变原排气系统性能的基础上达到好的优化效果。

6 参考文献:

[1]李继龙,李宏. 进排气系统对整车性能的影响[J]. 轻型汽车技术,2014,Z2:29-32.

[2]傅志方,华宏星. 模态分析理论与应用[M]. 上海:上海交通大学出版社,2000.

[3]杨万里,陈燕,邓小龙. 乘用车排气系统模态分析数值模型研究[J]. 三峡大学学报(自然科学版),2005,27(4):345-347.

[4]田育耕,刘江华,王岩松,徐振华. 汽车排气系统振动模态分析及悬挂点优化[J]. 辽宁工程技术大学学报(自然科学版),2009,06:995-998.

[5]蒋启成,王跃武,孟强,韩清凯,陈志凯. 汽车排气系统的模态实验分析[J]. 机械设计与制造,2009,01:144-145.

[6]基于模态应变能分析和板件单元贡献分析的车身阻尼处理[J]. 汽车技术,2010,10:8-11.

[7]周权,包伟,徐艳平,史建鹏. 基于动刚度和模态应变能的某车NVH性能改善研究[J]. 汽车科技,2013,06:56-62.

环境监测方案

环境监测方案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

山东汇能新材料科技股份有限公司 环境监测方案 (一)监测目的 及时、准确、全面地反映公司污染治理设施运行情况,为环境管理、环境污染防治提供依据,确保废气、废水、噪声等污染物达标排放。 (二)监测依据 依据《中华人民共和国环境保护法》(2015年1月1日起施行)、《中华人民共和国大气污染防治法》(主席令第三十一号)、《中华人民共和国水污染防治法》(2017 年6月27第二次修订)、《工业污染源监测管理办法(暂行)》等相关规定,结合公司生产工艺过程及污染治理设施运行情况和公司环评中环境监测管理要求等内容,制定本监测方案。 (三)监测范围 定期对公司废气、废水、地下水、噪声等污染物排放状况进行监测。 (四)监测要求 1. 废气监测 监测项目:厂界无组织:氨、硫化氢、苯、甲苯、二甲苯、臭气、甲醇;有组织:二氧化硫、氮氧化物、颗粒物。 监测频次:每季度监测一次。 监测点位:无组织废气监测——厂界四周。 监测方法:委托淄博圆通环境检测有限公司监测。 2. 废水、地下水监测

监测项目:送往达斯玛特污水处理公司的废水:pH、COD Cr 、NH 3 -N 监测点位:污水处理站清水池。 监测频次:每日监测。 监测方法:公司自行监测。 监测项目:地下水:PH、氨氮、硝酸盐、亚硝酸盐、硫酸盐、高锰酸盐指数、总硬度、氯化物。 监测点位:地下水取样口。 监测频次:每季度监测一次。 监测方法:委托淄博圆通环境检测有限公司监测。 3. 噪声监测 监测项目:对公司厂界昼间、夜间噪声进行监测。 监测频次:按照GB12348-2008工业企业厂界环境噪声排放标准执行。每季度监测一次。 监测点位:四周厂界外一米。 监测方法:委托淄博圆通环境检测有限公司监测。 山东汇能新材料科技股份有限公司 2017-12-28

汽车车内声场分析及降噪方法研究发展

目录 1 引言 (1) 2 汽车噪声种类 (1) 3 车内噪声的主要来源 (2) 3.1 发动机噪声 (2) 3.2 底盘噪声 (2) 3.3 车身噪声和车内附属设备噪声 (2) 4 传统的车内噪声控制技术 (3) 4.1 消除或减弱噪声源的噪声辐射 (3) 4.2 隔绝传播途径 (3) 4.3 用吸声处理降低车室混响声 (3) 5 车内噪声主动控制技术 (4) 5.1 有源噪声控制技术 (4) 5.2 结构声的有源振动控制 (4) 6 车内噪声控制技术研究的发展趋势 (4) 7 结语及展望 (5) 参考文献: (6)

汽车车内声场分析及降噪方法研究发展 1引言 控制车内噪声一直是车辆设计、制造工程师的努力方向。汽车内部噪声不但增加驾驶乘人员的疲劳,而且影响车辆的行驶安全。车内噪声水平的高低在很大程度上反映了车辆制造厂家的设计和工艺水平。近年来,车内噪声已经成为无额定车辆品质的重要因素,车内低噪声设计已经成为产品开发中的重要任务之一。车内噪声级与乘坐室振动级别一样,已经成为判断汽车舒适性的主要指标。车内噪声主要取决于乘坐室的减振隔音性能,重量轻的承载式车身结构和类似的减轻车身重量的措施被认为可能增大车内噪声,尤其是低频噪声。实车测试表明,这种低频噪声主要集中在20~30HZ。车身壁板的振动和噪声有紧密关系,且乘坐室空腔的共振会放大噪声。这个问题的解决方法是在车辆设计阶段,利用现代振动力学与声学分析方法,预测车内噪声特性,实现优化设计;并通过实车测试,改进设计及工艺,最后使得车内噪声处于最优水平,最大极限地改善乘坐的舒适性,减轻人员的疲劳[1]。 2汽车噪声种类 汽车是有多种声源的机器, 运行中会有多种噪声,可分为: 车外噪声和车内噪声。车内噪声是指行驶的汽车乘坐室或驾驶室内存在的噪声, 其主要噪声源有: 发动机噪声、进气噪声、排气噪声、冷却风扇噪声、底盘噪声等。车内噪声按传播途径分为: 空气声和固体声[2][3][4]。 空气声(Air Borne Sound) 是从动力系统表面发出的辐射声, 它在空气中传播并对车身加振而形成。空气声会在传播过程中衰减, 材料对声能的衰减也使其大大衰减。固体声(Solid Borne Sound)是机械振动沿固体构件传播中产生的噪声, 它产生于发动机、变速箱、后桥、轮胎等, 并能通过底盘车架传播。由于固体构件一般由均质、密实的弹性材料组成, 对声波的吸收作用很小, 并能约束声波使它在有限空间内传播; 因此结构声往往可以传播很远距离。固体声通过构件表面的振动也会辐射出“再生”的空气声, 它与原始空气声相比较,结构声形成的再生噪声往往更难解决。空气声和结构声是可以相互转化的。空气声的振动能够迫使构件产生振动成为结构声; 结构声辐射出声音时, 也就成为空气声。减少空气声的传播, 要从减少或阻止空气的振动入手, 可以采取吸声或隔音措施; 减少结构声的传递,则须采取隔振或阻尼措施。

车辆排气系统设计规范

车辆排气系统设计规范

车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式(1) 计算初步确定排气管内径。 D=2 √Q/(πV) (1) 式中:Q—发动机排量;V—气流速度,一般取50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。管的中心转弯半径一般应≥(1.5~2)D,其折弯成型角应大于90o,以大于120o为宜。整个系统的管道转弯数应尽可能少,一 1

某发动机排气系统尾口噪声优化

某发动机排气系统尾管噪声优化 许亚峰周维刘兴利刘兵王瑞麟 华晨汽车工程研究院动力总成综合技术处,沈阳,110104 [摘要]:本文首先确定排气噪声的来源,针对特定的问题制定相应的优化方法,并应用GT-power软件对不同方案进行仿真分析,选取最优方案并在实车上进行验证,试验结果表明优化方法解决了噪声问题。[关键词]:排气系统;噪声;GT-power; Tailpipe noise optimization of engine exhaust system Yangfeng Xu,Wei Zhou,Xingli Liu,Bing Liu, Ruilin Wang Brilliance Auto R&D Center Powertrain Integrated Technology Section [Abstract]: This article determine the source of exhaust noise. Develop appropriate optimization methods for specific problems. Simulation analysis of different schemes by GT-power software. Select the best solution and verity it in the real vehicle. The experimental results show that the optimization method can solve the noise problem. [Keywords]: exhaust system; noise; GT-power; 引言 发动机排气系统的主要功能除了能顺利的将废气排出,还要有很好的降噪作用。排气系统是汽车最主要的噪声源之一,不但要满足顾客对汽车舒适性的要求也要面对日益严苛的国家法规。所以排气系统降噪设计非常重要。本文研究的项目是对某排气系统噪声问题原因的调查,从而制定适当的设计方法,最终开发出满足要求的排气系统。 应用发动机热力学计算分析软件GT-power建立发动机热力学和声学分析模型,计算出不同消声方案的排气口噪声总声压值及阶次噪声值。通过不断的改进消声结构,针对性的消除某些峰值噪声,直到满足控制目标。 1排气噪声源 1.1排气尾管噪声源 尾口噪声是一种脉动噪声。声音是以平面波在管道中传播,当达到尾管时,由于声阻抗不匹配一部分波会透过管道继续传播,而另一部分声波则被反射回去,形成反射波。 尾口噪声由两部分噪声组成:空气噪声和气流摩擦噪声。稳定的气流在尾管处发出空气噪声,而不稳定的气流则产生摩擦噪声。在尾管噪声中,这两种噪声所占成分取决于气流流量的大小和速度。流量小和速度低时,空气噪声占主要成分;而流量大和速度快时,摩擦噪声占主要成分[1]。 1.2问题原因分析

音频指标简介及测试原理方法

音频指标测试均是针对有输入和输出的设备而言,就是声音信号经过了一个通道以后,输出与输入之间的差别。两者差别越小那么性能越好,而且在一般情况下声音经过某一个通道或某一系统后,一般都有对原信号的放大和衰减。 信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷 1、信噪比SNR(Signal to Noise Ratio): (1)简单定义:狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。一般来 说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否 则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以 上。音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号 强度的比值 (2)计算方法:信噪比的计量单位是dB,其计算方法是10LG(PS/PN),其中Ps 和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LG(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。 (3)测量方法:信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms 或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了. 或者是10LG(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率 计权:这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到. 这样就引入了权的概念。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。 2 、频响范围: (1)频率响应是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应。 (2)测试方法:要求输入信号幅值为一个固定值(要在动态范围之内,音响设备我们可以取100mv)。当输入信号为正常频率时(不能有失真,可以定位1KZ),记录这个时候的输出电压的大小V1。然后开始逐渐降低输入信号的频率,当降低到一定程度时,输出信号的幅值会开始减小。继续降低频率,直到输出电压为0.707V1

排气系统消声器设计技术规范标准

排气消声系统设计技术规范 目录 一、主题与适用范围 1、主题 2 、适用范围 二、排气消声系统的总称说明及功用 三、设计应用 1 、设计规则和输入 2 、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比

2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3 、系统及零部件的设计

3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取 3.1.4 氧传感器孔的布置 3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构 3.5 补偿器 3.5.1 波纹管 3.5.2 球形连接 3.6 橡胶吊环 3.7 隔热部件 3.8 材料选择 3.8.1 排气管、消声器内组件 3.8.2 消声器外壳体四、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计。 2、适用范围: 本指南适用于装汽油M1 、N1 类车的排气消声系统设计。 二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1) 引导发动机排气,使各缸废气顺畅的排出; (2) 由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低

车内噪音的来源及解决方法

在汽车音响改装行业浸淫多年,改装过不少车型,因为音响改装涉及到车辆吸音降噪的处理,对此也有些心得,现在整理一下,和大家分享。 首先我们来分析一下车内的噪音的来源,车内噪音主要有下面几种: 1.发动机噪音 发动机噪音包括发动机缸体发出的机械声,还包括进气系统噪音,即高速气体经空气滤清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。由于汽车公司在车辆设计时由于成本的问题,部分零件不会采用最好的材料,如该车引擎盖没有使用吸音材料,防火墙没有贴隔音材料造成了发动机的声音通过仪表台下方、底盘传入到车内。 2.轮胎噪音 一般的胎噪主要由三部分组成:一是轮胎花纹间隙的空气流动和轮胎四周空气扰动构成的空气噪音;二是胎体和花纹部分震动引起的轮胎震动噪音;三是路面不平造成的路面噪音。胎噪是不可避免的,即使是换用所谓的低胎噪轮胎也没有什么效果,关键还是看车辆本身的吸音隔音效果,现在市售30万以下的新车防火墙基本是不做吸音隔音的,造成了发动机声音和轮胎噪音通过仪表台下方、底盘叶子板处传入到车内。 3.空气噪音 一是风噪,就是由车身周围气流分离导致压力变化而产生的噪音;二是风漏,或叫吸出音,是由驾驶室及车身缝隙吸气而与车身周围气流相互作用而产生的噪音;三是其他噪音,包括空腔共鸣等,例如很多车尾箱内的备胎空腔,很容易与排气系统形成共鸣,而汽车的四个门是离车内最近的结构,如果密封做的不好,风噪和凤漏就会很明显。 4.车身结构噪音 主要是受两个方面因素影响,一是车身结构的震动传递方式,二是车身上的金属构件由于在里外作用下产生震动而产生噪音。例如车门和尾箱两侧的钢板,很容易因为车辆震动而产生噪音,车门噪音传导及车身密封性不足,车门是由钣金件和门饰板组成。市场上售价在30万以下的新车,大部分车门部分都没有做隔音处理,因此在关门的时候可以感觉到明显的金属声音,车辆高速行驶时金属声会更明显。下面,我们将以马自达5为例,讲解一下如何进行静音降噪的处理。 刚提回来还没上牌的新车,车主说低速行驶时没多大问题,当时速达到80-100km后整车车身振动大、低频共鸣噪音大,要求处理高速行驶时产生的各种噪声。噪音描述符合绝大部分中小型车的噪音特性。在弄清楚噪音产生的原因后跟车主详细解释各部位振动所产生噪音的原理和解决方法,车主明白认可后开始动工做降噪工程。详细了解该车的各种噪音情况,分析噪音产生的原因,向车主解释该车噪音产生的部位、原理和处理方法以及施工后能达到的效果,让顾客明白放心消费。

汽车音响测试标准

汽车音响测试标准(FM部分) 1,覆盖频率测试 被测机处于待测状态,波段调制FM状态,把台钮旋转至最低端,数字信号发生器频率设置在87.5MHZ,频偏22.5KHZ。调制频率1KHZ,输入电平暂设20DB,把信号发生器天线插入被测机天线插孔,被测机音量开最大,调均衡器打到适当位置,旋转发生器频率微调至被测机输出最大,此时发生器的频率为被测机低端频率。把台钮旋转至最高端,数字信号发生器频率设置在108.5MHZ,频偏调制不变,输入电平20DB,旋转发生器频率微调至被测机输出最大,此时发生器的频率为被测机高端频率,此时低端与高端为被测机FM覆盖频率。2,最大灵敏度(10 10) 被测机处于待测状态,数字信号发器频率设置与90MHZ,频偏22.5KHZ,调制频率1KHZ,输入电平暂设20DB,旋转台钮至90MHZ,输出标准参考电压2V,输出高于2V时,降低信号发生器发生器输入电平至输出为2V止,此时信号发生器的输入电平即为被测机低端最大灵敏度。98MHZ,106MHZ测试方法一样。让VOL升到最大,再降低发生器的电平DB,让毫伏表为2V,此时所显示的电平DB为最大灵敏度。 3,实用灵敏度(30DB S/N) 被测机处于待测状态,数字信号发器频率设置与90MHZ,频偏22.5KHZ,调制频率1KHZ,输入电平暂设20DB,旋转台钮至90MHZ,调节音量电位器至输出电压制2V,然后关去发生器调制,调毫伏表DB档调小30DB(三个档位),看此时毫伏表指示是否为2v,如大于2V,侧应加大输入电平,再调回调制输入及调回毫伏表DB档,看毫伏表指示是否为2v,大于2v,再调音量电压器至2v为止,然后再去调制及毫伏表DB档30DB,输出是否回到原2V处,如低于2v,侧降低输出电平DB数到2V,如此调校多次至调准为止,调准后数字信号发生器输入电平即为被测机的低端实用灵敏度,98MHZ,106Mhz测发一样。 4,信噪比 被测机处于待测状态,先测试好最大灵敏度,然后把输入电平增到60DB,调音量电位器至输出2v,去信号发生器调制,调节毫伏表DB档,此时档位DB加表针所读DB数即为被测机的信噪比。 5,中频(10.7MHz)10.7±0.02 被测机处于待测状态,数字信号发器频率设置与10.7MHZ,频偏22.5KHZ,调制频率1KHZ,输入电平暂设80DB,把被测机台钮旋至最低端,然后旋转发生器的频率调制输出电压最高,此时发生器上的频率即为被测机的中频频率。 6,显示频率差 被测机处于待测状态,数字信号发器频率设置与98MHZ,频偏22.5KHZ,调制频率1KHZ,输入电平暂设20DB,把被测机台旋转至98MH,使输出最高,此时被测机的显示频率与发生频率至差,即为被测机的显示频率之差。 7,中频抑制(90MHZ)IF Rejected 60.5 被测机处于待测状态,先测试好最大灵敏度,然后数字信号发器频率设置与10.7MHZ,调制频率和频偏不变,输入电平增加至输出为最大灵敏度时的标准输出2v,此时输入电平DB 数减去最大灵敏度是的DB数,即为被测机的中频抑制。 8 镜像抑制106MhZ Image Rejected 60.5 被测机处于待测状态,先测试好106MH最大灵敏度,然后把数字发生器输入频率加入两个中频(106MHZ+2*10.7MHZ),再增加输入电平至被测机的输出达到原标准输出2V,再用此数码电平减去最大灵敏时输入电平,所得出来的电平数即被测机镜像抑制DB数。

环境噪声监测技术规范

环境噪声监测技术规范 环境噪声监测技术规范 1适用范围结构传播固定设备噪声本标准规定了结构传播固定设备噪声监测测量计划制定、现场调查方法、监测点位设置、室 内低频噪声测量方法、监测数据处理与评价、资料整编和监测质量保证等的技术要求。 本标准适用于结构传播固定设备噪声引起的室内低频噪声污染监测。 2规范性引用文件 本标准内容引用了下列文件的条款。凡不注明日期的引用文件,其有效版本适用于本标准。 GB3785声级计电、声性能及测量方法 GB12348 GB22337 GB/T3241 GB/T15173 GB/T17181工业企业厂界环境噪声排放标准社会生活环境噪声排放标准 倍频程和分数倍频程滤波器 声校准器 积分平均声级计 3术语和定义 下列术语和定义适用于本标准。

3 .1倍频带声压级soundpressurelevelinoctave采用符合GB/T3241规定的倍频程滤波器所测量的频带声压级。本标准规定的噪声频谱分析 时使用的倍频带中心频率为31. 5Hz、63Hz、125Hz、250Hz、500Hz,其频率覆盖范围为22Hz~ 707Hz。 3 .2低频噪声LowFrequencyNoise测量仪器性能应符合 (IECGB3785和GB/T17181对1型声级计的要求且符合国际电工协会 GB/T3241中对滤波器的要求,61260)Class1标准;噪声频谱分析滤波器性能应符合具备实 时频谱分析功能,测量范围应满足所测量噪声的需要。 4 .1.2声校准器 校准所用仪器应符合 率为GB/T15173对1级声校准器的要求。A 声级测量时,校准声源频20~250Hz区间1000Hz;低频频谱测量时,校准声源频率至少有一个点频率应设在内。 测量仪器和声校准器应定期检定合格,并在检定有效期内使用。声级计每次测量前、后应进 行校准,其前、后校准示值偏差不得大于0 .5dB,否则本次测量无效。使用延伸电缆时,应注意 长电缆对声波信号的衰减,因此在进行校准时,应使延伸电缆与声级计一起进行校准。 传声器应 加防风罩。

汽车空调系统噪声与车内噪声研究与解决

汽车空调系统拍频现象 引起的车内噪声研究与解决 朱卫兵(1),李宏庚(2) 上汽通用五菱汽车股份有限公司 【摘要】 汽车室内噪声是汽车NVH的主要内容。引起车内噪声的因素很多,主要有发动机噪声、进排气噪声、传动系噪声以及高速行驶时的风噪声等等;汽车空调系统在工作时也会产生非常明显的车内噪 声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是 正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时处理。本文针对国内某款微型 面包车在开发过程中出现空调系统拍频异响问题,采用分别运转法、频谱分析法等将存在的异响问题解决,从而降低汽车车内噪声,同时也为汽车工程技术人员NVH开发提供借鉴。 【关键词】:汽车NVH,速比,压缩机,发电机,拍频 The Analysis and Solution on the Automobile Interior Noise Caused by Air Conditioning Beat-frequency ZHU Weibing(1),LI Honggeng(2) SAIC-GM-Wuling Automobile Co,.Ltd Abstract: The interior noise is one of key performances of vehicle NVH. There are many factors for vehicle interior noise, include engine noise, intake noise, exhaust noise, transmission noise and wind noise on high speed. The vehicle air condition will bring visible interior noise while it working. And it’s easy to distinguish it on relatively. In air condition system, it’s normal for a little noise in compressor, evaporator, fan and pipeline. But if it exist too big noise, there may be exist some problems in air condition system. This passage explains how to resolve the problem according to the air condition noise with the method of separate working and frequency analysis. At the same time it’s a reference to the carmaker’s vehicle NVH develop. Key words:Vehicle NVH, Speed ratio, Compressor, Dynamotor, Beat-frequency 1 前言 汽车空调系统在工作时也会产生非常明显的车内噪声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时治理。 本文针对国内某款微车在开发过程中,由于空调系统拍频现象导致的车内噪声过大问题,采用分别运转法、频谱分析法等方法来确定汽车产生拍频现象的源头,并运用适当的方法来解决此问题,同时也为汽车工程技术人员NVH开发提供借鉴。 2空调系统噪声分析

发动机排气系统设计规范

发动机排气系统设计规范 1 范围 本规范规定了柴油车发动机排气系统的设计。 本标准适用于所有新开发的带发动机的车型。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 13094-2017 《客车结构安全要求》 GB 7258-2017 《机动车运行安全技术条件》 JB/T 1094 《营运客车安全技术条件》 3 定义 本文件所指排气系统,其定义为搭载传统汽、柴油或者天然气发动机的发动机排气系统,包括混合动力车型的发动机排气系统。 发动机排气系统由排气管路、催化消声器、后处理系统(包含尿素泵、填蓝罐、填蓝加热电磁阀、氮氧化物传感器等部件)、消声器悬置系统等组成。随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 3.1 催化消声器 用于汽车尾气处理,是集气体净化、气体减噪等多功能于一体的设备。一般情况下,设备前部设置曲面造型多孔盘片将会有利于降低气动噪音;而尾气净化(即NOx脱除),则依赖于尿素溶液喷雾蒸发和后部催化剂层的共同作用下的SCR反应工艺。 3.2 插入损失 对于消音器来说,插入损失是指空间某固定点所测得的安装消声器前后的声压级或者声功率级之差。 3.3 排气背压 指发动机排气的阻力压力。一般在增压器废气口至消声器入口的管段处测得。 4 要求

汽车音响指标测试方法

汽车音响指标测试方法 FM指标测试方法(1khz 22.5%.DEV) 一、30dB实用灵敏度(USABLE SENSITIVITY《S/N:30dB》 先将机器收正为90Mhz(98Mhz、106Mhz),电平(LEVEL)打在正常dB数(40左右),音量收细至0dB处,然后去掉信号(即打下ON、OFF钮)再扭毫伏表三下,(即30dB,每扭一下为10dB),然后调信号发生器的电平(LEVEL),使没信号时的指针与有信号的指针重复(若没重复也不能超过1个dBm),最后电平(LEVEL)显示的dB数就是此机的-30dB实用灵敏度。 二、3%失真灵敏度(I.F.H. SENSITITV《75khz DEV 3%T.H.D》 先将机器收正为90Mhz(98Mhz、106Mhz),调制度打在75%,将失真仪打在DIST、10%(-20dB)档,然后分别调整音量电位器和发生器的电平(LEVEL)dB 数,使失真仪指针指在3%的位置(不可超过3%的位置,正常应在3%内波动),这时发生器的电平(LEVEL)dB数就是此机的3%失真灵敏度(例如:电平(LEVEL)dB 数为11,那么3%失真灵敏度就是11)。 三、-3dB极限灵敏度(-3dB LIMITING SENSITIVITY) 先将机器收正为98Mhz,电平(LEVEL)打在66dB数,音量收细至0dB处,然后减少发生器的电平(LEVEL)dB数,到毫伏表指针减少3个dB时停,此时的电平(LEVEL)dB数就是此机-3dB的极限灵敏度。 四、信噪比(S/N RATIO《@1mv INPUT》) 先将机器收正为98Mhz,电平(LEVEL)打在66dB,音量收细至0dB处,然后去掉信号(即打下ON、OFF钮)再打毫伏表,每扭一下为10dB,但毫伏表指针不能超过0dB,最后看指针指数是多少,再加上一共所打毫伏表的次数(每档为 10dB),(例:你一共打了三次指针指数为6,那么信噪比就是30+6=36dB)。就是此机的信噪比值。 五、中频抑制(IF REJECTION 600khz) 将机器收正为90Mhz,先测出实用灵敏度的dB数,再将FREQ90Mhz转为10.7Mhz(FM中频),然后调节电平(LEVEL)dB数,使指针指在2V时所显示的dB

噪声监测方案

太原市英赛特科技有限公司工矿用自动化监控设备建设项目环境噪声现状 监测方案 巢湖中环环境科学研究有限公司 二〇一三年十一月

一、项目基本情况 本项目建设地点位于王答乡董家营村村北元跃物流工业园区,建设规模为年制造工矿用自动化监控设备30台(套),总投资156万元。厂区总占地面积为122.8亩。项目西侧紧邻S316省道。 二、标准 1、声环境标准 本项目执行《声环境质量标准》(GB3096-2008)中2类和4a 类标准。 2、噪声排放标准 本项目运营期噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中2级(昼间60dB(A)、夜间50dB(A))和4级(昼间70dB(A)、夜间55dB(A))排放标准。 三、噪声环境质量现状监测方案 (1)监测点位 在厂界四周每边及那村均布1个噪声监测点进行测量,具体布点位置见附图1。 (2)监测项目 L10、L50、L90、L eq。 (3)监测频次 连续一天,昼夜各一次,昼夜监测在8:00~12:00和14:00~18:00进行,夜间监测在23:00~次日晨5:00。了解该区域噪声本底值,同时记录测点周围的主要噪声源及环境特征。

(4)监测气象 监测应在无雨雪、无雷电天气,风速5m/s以下时进行。 (5)监测方法 监测方法依据《声环境质量标准》(GB3096-2008)和《工业企业厂界环境噪声排放标准》(GB12348-2008)中进行,使用HS-6288多功能噪声分析仪。 (6)评价方法 根据现状监测结果,用等效连续A声级LAeq作为评价值,按《声环境质量标准》(GB3096-2008)对评价区内现在的噪声情况进行现状分析评价,为评价区环境噪声预测提供背景值。

汽车噪声与振动

汽车噪声与振动 概述:随着汽车发动机功率的不断提高,噪声与振动的问题日渐突现出来,开始成为汽车开发工程中的主要问题之一。在汽车界,人们在讨论噪声与振动时,常用的一个词就是NVH,即是噪声(Noise)、振动(Vibration)和不舒适(Harshness)三个英文单词首字母的简写。汽车噪声振动有两个特点,一是与发动机转速与汽车行驶速度有关,二是不同的噪声振动源有不同的频率范围。在低速时,发动机是主要的噪声和振动源,在中速时,轮胎与路面的摩擦是主要的噪声和振动源,而在高速时,车身与空气之间的摩擦变成了最主要的噪声和振动源。 近年来汽车噪声振动问题研究现状 行驶汽车的噪声包括发动机、底盘、车身以及汽车附件和电气系统噪声。发动机噪声是汽车的主要噪声源。在我国,车外噪声中发动机噪声约占60%左右。 1.发动机噪声 发动机噪声按其机理可分为结构振动噪声和空气动力性噪声。 1.1结构振动噪声 通过发动机外表面以及与发动机外表面刚性连接件的振动向大气辐射的噪声称为结构振动噪声或者称为表面辐射噪声。根据发动机表面噪声产生机理,结构振动噪声又可分为燃烧噪声、机械噪声以及液体动力噪声。燃烧噪声的发生机理相当复杂,主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关。机械噪声是发动机工作时各运动件之间及运动件与

固定件之间作用的周期力、冲击力、撞击力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般在低速时,燃烧噪声占主导地位;在高转速时,由于机械结构的冲击振动加剧而使机械噪声上升到主导地位。车用发动机的辐射噪声频率范围主要在500~3000Hz内,而其主要噪声辐射部件的临界频率大致在500—800Hz范围内。发动机中液体流动产生的力对发动机结构激振产生的噪声称为液体流动噪声,如冷却系中水流循环对水套冲击产生的噪声。 1.2空气动力性噪声 空气动力性噪声直接向大气辐射噪声源,即由于空气动力学的原因使空气质点振动产生的噪声。空气动力噪声包括进、排气噪声和风扇或风机噪声。排气噪声是发动机的最大声源,进气噪声次之。风扇噪声也是发动机的主要噪声源之一。排气噪声由周期性排气、涡流和空气柱共鸣噪声组成。周期性排气噪声是排气门开启时一定压力的气体急速排出而产生;涡流噪声是高速气流通过排气门和排气管道时产生的;空气柱共鸣噪声是管道中空气柱在周期性排气噪声的激发下发生共鸣而产生。 对于发动机噪声的评价,除考虑其辐射噪声能量总水平外,还应考察以下噪声特性:噪声级及其随发动机工作状态的变化关系、发动机周围空间各点噪声级数值的分布状态、空间各点的噪声频谱以及发动机工作过程各阶段的瞬时声压级。通过这些信息,不但可以比较和评价发动机辐射噪声的大小,还可以深入研究辐射声能频率的分布情况,判断发动机工作循环中辐射声最大的阶段,以便分析产生高噪声的原因,提高噪声控制措施并比较和评价这些措施的有效性和经济上的合理性。 2.底盘噪声 汽车底盘结构固体声源产生噪声主要是传动系噪声和轮胎噪声。传动系噪声频率为400—2000Hz。其中齿轮传动的机械噪声是主要部分。齿轮噪声以声波向空间传出的仅是一小部分,大部分则是变速器驱动桥的激振使各部分产生振动而变为噪声。 按声源的激励性质不同,轮胎噪声主要产生机理可分三大类: (1)气流声机理。随着轮胎的滚动,在与路面接触区,花纹沟内空气不断被吸入与挤出,由此形成“空气泵”噪声,这是横向花纹的一种主要噪声机理。此声源为起伏变化的气体,属气流噪声。 (2)机械声机理。由胎面花纹块撞击路面、轮胎结构的不均匀性以及路面的不平性等因素激发机械噪声,是光面胎及纵向花纹的主要噪声源。 (3)滤波放大机理。轮胎与路面接触处形成喇叭口几何体,对上述噪声起着滤波放大作用。另外,胎面花纹沟与路面所围管道内的空气共振以及轮胎花纹块离开路面处形成的赫姆霍兹共振效应主要为袋状沟的噪声机理。 3.车身噪声 车身噪声主要是由于汽车加速行驶时空气流过汽车表面和孑L道时产生的噪声。该噪声主要来源于气流有明显折弯的地方,在该区域内气流分离,分离区内旋涡脱落,形成噪声。

发动机排气系统布置指南

整车技术部设计指南96 第 9 章排气系统布置 9.1 概述 本布置指南制订了汽车排气系统布置流程及其要求,适用于奇瑞公司所有车型的排 气系统布置。 9.2 排气系统基本组成结构: 对一个完整的排气系统,从前到后,一般布置次序是:预催化器、补偿器(波纹管)、主催化器、前消声器、后消声器。排气管用于连接以上不同部件。排气管分段以及连接 方式主要根据安装和维修方便确定。图一是S12+472车型排气系统布置: 图9.1 9.3 布置原则及间隙要求 9.3.1 布置原则 对于满足欧Ⅱ及以下排放标准的排气系统,由于欧Ⅱ标准不涉及冷启动阶段的排放 限制,所以一般可不采用预催化器而只采用一个主催化器。对于满足欧Ⅲ及以上排放标 准的排气系统,一般在排气歧管出口处布置预催化器(即CCC,Closed Couple Catalyst) 或者在预催化器前的排气管段采取良好的保温措施。主催化器一般布置在车身底板下, 所以又叫底板下催化器(Under Floor Catalyst)。消声器有一级、二级、三级之分。二级 消声应用最多,SUV、跑车等追求动力性的车辆一般才采用一级消声器。对于二级消声, 我们将其分别称为前消声器和后消声器。根据声学原理,消声器摆放在不同的位置,将 产生不同的消声效果,一般地,推荐如下的消声器摆放位置(见图9.2):

整车技术部设计指南97 9.3.2 周边间隙要求 各相邻部件耐温在150℃以下的越远离排气系统越好,相对产生运动部件最少保证与 排气系统的间隙大于25mm。 9.4 试验验证 9.4.1 温度场试验 三元和排气管周边非金属件及管路的温度,均需要在温度场试验中进行验证,要求 温度在其材料使用温度上限以下。各部件的温度限值如下表:

汽车车内噪声控制方法研究

汽车维修工高级技师论文 汽车车内噪声控制方法研究 姓名:付建伟 日期:2011年8月19日

论文题目:汽车车内噪声控制方法研究 摘要:汽车车内噪声指行驶汽车车厢内存在的各种噪声。车内噪声极易使乘车人员感到疲劳,对汽车的舒适性有着重要影响。本文从系统的观点出发,在分析了国内外汽车 产品的噪声控制技术水平现状以及噪声研究和控制技术方法的基础上,开展了比较 系统的车内噪声控制研究,识别了主要的噪声源和噪声辐射部位,同时,通过本项 目的研究,摸索出了一些行之有效的汽车噪声研究和控制的方法和措施。 关键词:汽车,车内噪声,声源识别,噪声控制,试验研究。 论文内容: 交通噪声是目前城市环境中最主要的噪声源,汽车噪声约占整个交通噪声的75%,是影响其性能和质量的重要指标之一,根据汽车对环境的影响,汽车噪声一般分为车外噪声和车内噪声。车外噪声在很大程度上对外部环境产生生态影响,而车内噪声对乘客舒适性产生影响。 一、国内外汽车噪声状况及控制技术 国外一般对车外噪声有严格的限制标准,至于对车内噪声尚没有严格的标准。在欧洲、美国、日本一些发达国家,汽车加速行驶时主噪声源并不是来自发动机,而是来自胎噪。发达国家对汽车发动机、消声器、变速箱、冷却系等主要噪声源已有深入研究,并且有成熟的理论计算和产品开发设计程序。目前,国外汽车噪声研究和控制的重点已经转向结构振动噪声、轮胎噪声及发动机隔声罩的研究方面,控制技术已普遍达到实用阶段。 国内对车外加速噪声的限制标准制定相对缓慢,自1979年制定了GB1495-79《机动车辆允许噪声》以来一直未做修订,直到2002年才颁布新标准GB1495-2002《汽车加速行驶车外噪声限值及测量方法》,国内对车内噪声没有严格的限制,只对某些星级汽车设置了噪声限值,在国内,发动机噪声仍占汽车噪声的三分之一以上,发动机的减振、降噪成为汽车噪声控制的关键。 对于汽车噪声的控制,不同阶段针对不同噪声源采取的控制措施是不同的。国内汽车的噪声控制技术每个时期都有其侧重点(见表1) 表1不同阶段重点集中发展的控制技术

汽车进排气系统的噪声与振动 第三章

第三章消音元件声学分析 第一节声学元件的分类 进气系统和排气系统可以看成是由一些管道和声学原件(或者叫消音元件)组成的系统。消音元件包括扩张消音器、赫尔姆兹消音器、四分之一波长管等。在进气系统中,扩张消音器同时也是空气过滤器。这些元件将使得一些频率的声波通过,同时也阻止了另一些频率的声波传递,这样就起到了消音的效果。这节将介绍这些消音元件的声学特性。 消音器分为被动消音器、主动消音器和半主动消音器。在被动消音器里,声能或者被反射或者被吸收,从而达到消音目的。在主动消音器内,安装了一套电子控制系统并产生一个与声源声波幅值相等而相位相反的次声波,这样两个波相互抵消从而达到消音效果。而在半主动消音器内则是安装一套被动控制装置,当空气流动状况改变时,消音器的消音效果由气流来调节。在汽车进排气系统中,绝大多数是被动消音器。半主动消音器有些应用,如排气系统中的双模态消音器。主动消音器由於成本太高,在进排气系统中用得很少。本节只介绍被动消音器的声学性能。主动与半主动消音器将在第二十五章“汽车主动与半主动噪声与振动控制”中介绍。 被动消音器又可以分为抗性消音器和阻性消音器。抗性消音器主要包括扩张消音器和旁支管消音器,如赫尔姆兹消音器、四分之一波长管。抗性消音器的原理是声波经过消音器时,声阻抗发生变化,一部分声能被反射回声源,这样传递声能减少。抗性消音器对降低单频,特别是低频噪声特别有效,传递损失很大。在高温和不干净的空气流中,使用抗性消音器比较理想。阻性消音器是在内部安装了一些吸声材料,当声波通过消音器时,一部分声能被吸收,从而达到消音效果。在进气系统中,基本上只使用抗性消音器。在排气系统中也主要使用抗性消音器,有的汽车也采用阻性消音器。而这些阻性消音器也往往是与抗性消音器做成一体而成为混合消音器。 第二节消音元件的设计要求 消音元件的首要目的是消除噪声,因此要满足声学要求。气体在进排气系统中运动,又必须满足空气流动的要求。另外还有材料、安装空间等方面的要求。下面较详细地列出了这些要求: 第一,声学要求。消音元件的目的就是减少声能的传递。前一节已经详细地介绍了消音元件的评价指标,如传递损失、噪声降低量和插入损失。在评价单个消音元件的消音效果时,通常用传递损失,因为传递损失只与自身结构有关而与声源和出声口的声学特性没有关系。 第二,空气流动要求。空气流过消音元件时,会受到阻力,这样消音元件中的流体压力会上升。如果消音元件两边的压力差太大,气流流通的阻力会增加。这样带来两个坏处,一是能量损耗增加,二是在气体流速过高的时候,摩擦引起的噪声会很大。在开发一部汽车时,进气系统和排气系统的功率损失都会被限定在一定范围内。如果这两个系统的能量损失太大,那么发动机的功率就会大幅度下降。 第三,机械和材料方面的要求。气流和温度等因素对材料性能是一个考验。比如排气系统中温度很高,材料在这样的高温气体环境中很容易腐蚀。又比如,管道和消音元件都是薄板

相关文档
最新文档