Werkstoff Chemie Praktikum EDX Protokoll

Werkstoff Chemie Praktikum EDX Protokoll
Werkstoff Chemie Praktikum EDX Protokoll

Praktikumsprotokoll

Reduktion von Kupfer II-Oxid Energiedispersive R?ntgenspektroskopie (EDX)

26.06.2014

Teilnehmer:

Marie Luise K?hler

Matrikelnr.: 334635

marie.luise.koehler@rwth-aachen.de

Maren Romer

Matrikelnr.: 323875

maren.romer@rwth-aachen.de

Valentina Danz

Matrikelnr.: 336688

valentina-danz@web.de

Cornelius K?rling

Matrikelnr.: 311913

cornelius.koerling@rwth-aachen.de

Niklas Hepfer

Matrikelnr.: 331933

niklas.hepfer@rwth-aachen.de

2. Grundlagen

Eine Reduktionsreaktion l?uft immer in Verbindung mit einer Oxidationsreaktion ab. Dieses Zusammenspiel nennt man auch Redoxreaktion.

Dabei werden die Elektronen, die bei der Reduktion vom Edukt aufgenommen werden, bei der gleichzeitig ablaufenden Oxidation freigesetzt.

Aus diesem Grund bezeichnet man den Stoff der oxidiert wird auch als Reduktionsmittel, er erm?glicht die Reduktion des anderen beteiligten Stoffes durch die Bereitstellung von Elektronen.

Reduktion: B + e-→ B-

Oxidation: A+→ A + e-

Im Allgemeinen kann anhand der Oxidationszahlen der einzelnen Elemente bestimmt werden, bei welcher Teilreaktion es sich um die Oxidation bzw. die Reduktion handelt.

Die Oxidationszahl gibt an welche Ionenladung ein Atom innerhalb einer chemischen Verbindung hat. Eine Verringerung der Oxidationszahl eines Elements durch eine Redoxreaktion bedeutet, dass dieses Element reduziert wurde, analog bedeutet eine Erh?hung der Oxidationszahl eines Elements, dass dieses oxidiert wurde.

Nachdem man die Elektronenübertragung beider Teilreaktionen durch Erweiterung einer bzw. beider Gleichungen angeglichen hat, lassen sich die ausgetauschten Elektronen wegkürzen. Per Addition der Teilreaktionen l?sst sich nun die Gesamtreaktion aufstellen.

Gesamtreaktion: B + A+→ B- + A

Analog kann man auch aus der Gesamtreaktion über die Oxidationszahlen

Rückschlüsse über die ablaufenden Teilreaktionen ziehen.

Zusammenfassend beschreibt der Reduktionsprozess demnach nur eine

Aufnahme an Elektronen, die zuvor vom Reaktionspartner bereitgestellt worden sind.

In dem Versuch wird folgende Reaktion genauer untersucht:

Gesamtreaktion: 2Cu(+II) O(-II)? Cu(+I)2 O(-II) + ? O(0)2

Bei der Teilreaktion 2Cu2+ + 2e-→ 2Cu+handelt es sich um die

Elektronenaufnahme, die Reduktion.

Die Teilreaktion 2O2-→ O- + ? O2 + 2e- stellt die Elektronenabgabe dar, es

handelt sich um die Oxidation.

Hier ist gut zu erkennen, dass bei der Reduktion die Oxidationszahl ab- und bei der Oxidation zunimmt.

4. Auswertung und Ergebnisse

Als erstes erfolgt die Ermittlung des Druckunterschiedes.

Ein solcher Druckunterschied liegt hier nur bei den ersten beiden Messungen vor (160mbar und 80mbar) und liegt jeweils im Bereich von 0,001V - 0,011V.

Dieser Unterschied w?hrend der Messung, welcher durch das Ablesen des

elektrischen Manometers zu Beginn und zwischen Anfang und Ende bestimmbar ist, ist vernachl?ssigbar da er ann?hrend unver?ndert bleibt.

Die Temperatur Basislinie, welche am Anfang des Versuches am Schreiber

manuell eingezeichnet wird, liegt konstant bei 800°.

Im Weiteren wird der Temperaturunterschied zwischen den beiden Proben durch den vom Schreiber zurückgelegten Weg zwischen der Basislinie und dem

Ausschlag (Reaktionsbeginn) abgelesen.

Dabei wurden folgende Wege gemessen:

160 mbar 132mm

80mbar 110mm

40mbar 99mm

20mbar 69mm

10mbar 48mm

Der Umrechnungsfaktor für den Sensor wurde durch einen Abgleich mit einem Manometer folgenderma?en bestimmt:

(4.1)p = 107 * U - 15mit p: Druck [mbar]

U: Spannung [V]

(vgl. Skript S. 4)

Die Mittelwerte des Druckes [V] von Start und Ende der jeweiligen Versuchsreihe werden in die obige Formel eingesetzt und somit in mbar umgerechnet.

Beispielrechnung für 160mbar:

p = 107 * - 15 = 155,71mbar

Die Berechnung für die weiteren Messungen erfolgen analog.

Um die Reaktionsanfangstemperatur zu bestimmen, benutzt man folgende

Formel:

(4.2) T Reaktion [°C] = T Basislinie [°C] + T(mm) * Ma?stab [°C/mm]

Der Ma?stab wurde hier auf 100 °C pro 57 mm festgelegt.

T Reaktion [°C] = 800°C + 132mm * = 1031,58°C = 1304,73K Nachdem diese Temperaturen in Kelvin umgerechnet wurden, ermittelt man die reziproke Temperatur.

(4.3) T Reziprok = 1000K / T Reaktion[K]

T Reziprok = 1000K / 1304,73K = 0,7664

Diese stellt im weiteren Verlauf der Auswertung die x-Koordinate für das

aufgestellte Diagramm dar.

(siehe Anhang 3)

Die Massenwirkungskonstante K(T) l?sst sich durch den zuvor berechneten

Druck in mbar und dem Standarddruck (1atm = 1013,25mbar) errechnen. Hierzu wird der Standarddruck in mbar in die aufgeführte Formel (4.4) eingesetzt und somit die Massenwirkungskonstante bestimmt.

(4.4) K(t) = 0,5

K(t) = 0,5 = 0,3920

Im weiteren Verlauf dient die logarithmierte Massenwirkungskonstante ln(K(T)) als y - Koordinate des beigefügten Diagramms.

Die freie Standardre aktionsenthalpie ?G0R [J/mol] kann nun durch Multiplikation der logarithmierten Massenwirkungskonstante mit der idealen Gaskonstante R [J/mol*K] und der Temperatur [K] errechnet werden.

ΔG0RR = -RT * ln(K(T))

ΔG0R = - 8,314Jmol-1K-1 * 1304,73K * ln(0,3920) = 10158,23Jmol-1

(vgl. Skript S. 2 Formel (10))

Im Folgenden werden die Literaturwerte aus den beiliegenden Tabellen abgelesen und die jeweiligen Werte des chemischen Potentials μ [J/mol] bei den zu untersuchenden Temperaturen übertragen.

(siehe Anhang 2)

Die Standardreaktionsenthalpien der Literaurwerte lassen sich nun anhand der Formel

(4.5) Δr G =-

Δr G = μ(Cu2O) + ? μ (O2) – 2 μ (CuO)

= -316402Jmol-1- ? ( 245440) Jmol-1 + 2 (233609) Jmol-1 = 28096 unter Einbeziehung der st?chiometrischen Faktoren v i und dem chemischen Potential μ bestimmen.

Entsprechend der Formel (4.3) wird nun die reziproke Temperatur der Literaturwerte errechnet.

Anhand Gleichung (4.6) l?sst sich die logarithmierte Massenwirkungskonstante

ln(K(T)) der Literaturwerte ermitteln.

(4.6) ΔG0RR = -RT * ln(K(T))

Beispielrechnung zur Steigungsermittung der Messdaten anhand der Werte der letzten beiden Messungen:

= -15,6353 (Steigung Messwerte)

= -15,7237 (Steigung Literaturwerte)

Mit dieser negativen Steigung kann man nun die Enthalpie?nderung des Systems anhand folgender Formel bestimmen:

(4.7)

= 15,6353 * 1000 * 8,314 Jmol-1K-1= 129991,8842 Jmol-1 (Messwerte)

= 15,7237 * 1000 * 8,314 Jmol-1K-1= 130734,57 Jmol-1 (Literaturwerte)

(Werte leider nicht exakt wie in Tabelle angegeben, da wir dort mit allen Nachkommastellen der Steigung gerechnet hatten)

Mit errechneter Enthalpie und bei gegebenen ln(KT)- Werten und Temperaturen l?sst sich mit folgender Formel die Entropie?nderung errechnen. Die Formeln werden für Literaturdaten und Messwerte verwendet.

(4.8) ln(K(T)) = * +

-2, 0536 = - 15,6353 * 0,8374 +

→ = 91,765 Jmol-1K-1 (Messwerte)

= 93,339 Jmol-1K-1 (Literaturwerte)

Um einen genaueren Wert der Steigung zu erhalten, ist es üblich dass man den Entropiewert als gegeben ansieht und aus den Literaturwerten übernimmt.

-2, 0536 = * 0,8374 +

→ = 131844,047

Mithilfe dieses neuen Steigungswertes wird nun erneut die Enthalpie?nderung berechnet.

Anhand der ln(KT) Werte und der reziproken Temperatur (der Mess- und Literaturdaten) wird nun der Graph erstellt und diese Geraden miteinander verglichen.

齿轮传动设计参数的选择

齿轮传动设计参数的选择: 1)压力角α的选择 2)小齿轮齿数Z1的选择 3)齿宽系数φd的选择 齿轮传动的许用应力 精度选择 压力角α的选择 由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。我国对一般用途的齿轮传动规定的压力角为α=20o。为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。但增大压力角并不一定都对传动有利。对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16o~18o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。 小齿轮齿数Z 1 的选择 若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多 一些为好,小一些为好,小齿轮的齿数可取为z 1 =20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿 数,一般可取z 1 =17~20。 为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z 1≥17。Z 2 =u·z 1 。 齿宽系数φ d 的选择 由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。圆柱齿轮齿宽系数的荐用值列于下表。对于标准圆柱齿轮减速器,齿宽系数取为

Oligo中文使用手册培训资料

O l i g o中文使用手册

Oligo—引物设计软件电子教程(引物设计和评估)Oligo使用方法介绍作为目前最好、最专业的引物设计软件,Oligo的功能很强,在这里我们介绍它的一些主要功能:如:普通引物对的搜索、测序引物的设计、杂交探针的设计以及评估引物对质量等等。 在正式进行引物设计前,我们首先面临的一个任务就是向Oligo程序导入模板序列,根据不同的实验情况,导入模板有三种方法: 1.直接用键盘输入: a.点击file菜单中的New Sequence 浮动命令,或直接点击工具栏中的New Sequence命令,进入序列展示窗口; b.此时即可键入DNA序列; c.如果需要的话,Oligo提供碱基回放功能,在边键入时边读出碱基,防止输入错误。点击Edit菜单中的“Readback on”即可。 2.利用复制和粘贴:当我们序列已经作为TXT文件存在或其它oligo不能直接open的文件格式,如word文件.html格式,这个功能就显得很有用了。在相应文件中复制序列后在序列展示窗口粘贴,oligo会自动去除非碱基字符。当序列输入或粘贴完成后,点击Accept/Discard菜单中的Accept浮动命令,即可进入引物设计模式。 3,如果序列已经保存为Seq格式或者FASTA,GenBank格式时,oligo就可以直接打开序列文件。 点击File菜单中的“Open”浮动命令,找到所需文件,打开即可。 进入引物设计模式后,oligo一般会弹出三个窗口,分别是6-碱基频率窗口,碱基退火温度窗口以及序列内部碱基稳定性窗口,其中的退火温度窗口是我们引物设计的主窗口,其它的两个窗口则在设计过程中起辅助作用,比如6-碱基频率窗口可以使我们很直观地看到所设计引物在相应物种基因组中的出现频率,如果我们的模板是基因组DNA或混合DNA时,该信息就显得有用了,而内部稳定性窗口则可以显示引物的5’端稳定性是否稍高于3’端等。

siRNA 中文操作手册(lipo2000)

THE RNAi COMPANY RNAi 产品使用手册 上海吉玛制药技术有限公司 Shanghai GenePharma Co.,Ltd.

Ⅰ. RNAi 简介 1 A. RNAi 实验原理 B. RNAi 实验流程 C. RNAi 实验所需试剂 D. 上海吉玛 RNAi 相关产品 Ⅱ. siRNA设计7 A. 哺乳动物siRNA设计 B. 上海吉玛 siRNA 产品特性 C. siRNA oligo 技术数据 Ⅲ. siRNA 对照9 A. 普通阴性对照 B. 荧光标记的阴性对照 C. siRNA阳性对照 D. 转染试剂对照 E. 避免off-target对照 Ⅳ. siRNA 转染10 A.siRNA 转染的方法 B.Lipofectamin2000 转染试剂 C.Lipofectamin2000适用的细胞类型 D.转染前细胞培养 E.Lipofectamin:siRNA/DNA比例 F.贴壁细胞转染程序 G.悬浮细胞siRNA转染程序 H.DNA和siRNA共转染细胞程序 I. 体内siRNA导入方法 J. siRNA转染常见问题与建议 Ⅴ. mRNA水平RNAi效果监测15 A. siRNA细胞转染条件优化 B. Real-Time PCR RNAi 效果检测 C. Real-Time PCR 结果分析 Ⅵ. 蛋白质水平RNAi效果监测20 A. western-blot原理 B.western-blot操作步骤 w C.estern-blot上样液的制备 D.western-blot常用试剂的配制 Ⅶ. RNAi实验常见问题解答22

Ⅰ. RNAi 简介 A. RNAi实验原理 RNA干扰(RNA interfering,RNAi)现象是由与靶基因序列同源的双链RNA(double-stranded RNA,dsRNA)引发的广泛存在于生物体内的序列特异性基因转录后的沉默过程。细胞中的核糖核酸酶III家族成员之一的,dsRNA特异性的核酸酶Dicer将dsRNA裂解成由21-25个核苷酸组成的小干扰RNA (small interfering RNA,siRNA),随后siRNA作为介导子引起特异性地降解相同序列的mRNA,从而阻断相应基因表达的转录后基因沉默机制。

设计参数的合理选择

1、抗震等级的确定:钢筋混凝土房屋应根烈度、结构类型和房屋高度的不同分别按〈抗规〉6.1.2条或〈高规〉4.8条确定本工程的抗震等级。但需注意以下几点: (1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。 (2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。 (3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按〈抗规〉6. 1.2条或〈高规〉4.8条查的抗震等级提高一级采用,已为特一级时可不调整。 (4)短肢剪力墙结构的抗震等级也应按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用……但注意对多层短肢剪力墙结构可不提高。 (5)注意:钢结构、砌体结没有抗震等级。计算时可不考虑抗震构造措施。 2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。但要注意以下几点: (1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。 (2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。 (3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%.在归档文件>结构计算书>振型参与质量中查看,如果不满足,程序自动给出提示。 3、主振型的判断;

(1)对于刚度均匀的结构,在考虑扭转耦联计算(即在全局信息设置中振型组合方法为CQC)时,一般来说前两个或前几个振型为其主振型。 (2)对于刚度不均匀的复杂结构,上述规律不一定存在,此时应注意查看结构计算书“周期、振型、地震力”中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。 4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。但设计者注意以下几种情况: (1)设计应注意查看结构计算书输出结果中给出了地震作用的最大方向是否与设计假定一致,对于大于150度时,应将此方向输入重新计算(全局信息附加计算地震方向)。 (2)对于有有斜交抗侧力构件的结构,当大等于150度时,应分别计算各抗力构件方向的水平地震力。此处所指交角是指与设计输入时,所选择坐标系间的夹角。 (3)对于主体结构中存在有斜向放置的梁、柱时,也要分别计算各抗力构件方向的水平地震力。 5、周期折减系数:高规3.3.17条规定:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数,可按下列规定取值。 (1)框架结构 0.6—0.7;框架—剪力墙结构0.7—0.8;剪力墙结构 0.9—1.0;短肢剪力墙结构 0.8—0.9. (2)请大家注意:周期折减是强制性条文,但减多少则不是强制性条文,这就要求在折减时慎重考虑,既不能太多,也不能太少,因为折减不仅影响结构内力,同时还影响结构的位移。 6、活荷载质量调整系数:该参数即为荷载组合系数。可按《抗规》5.1.3条取值。注意该调整系数只改变楼层质量,不改变荷载总值,即对竖向荷载作用下的内力计算无影响,

Nanodrop 2000中文操作手册

Nanodrop 2000/2000C 分光光度计V1.0 用户手册

基因有限公司仪器应用技术支持 亲爱的用户,您好! 非常感谢您选购我公司代理的仪器。我们将竭诚为您提供优质的售后服务及免费的专业应用培训。 为了更好地进行仪器的应用培训,我们根据您所选购的仪器特点,将需要您配合准备的工作敬告如下: 1. 应用培训内容:仪器操作培训和软件应用培训。仪器操作培训包括:仪器的操作、 维护和仪器使用注意事项。软件应用培训包括:用户本次所购买的同仪器配套的所有软件的软件应用培训。 2. 培训时间:仪器正式安装调试后,由安装工程师现场培训仪器操作。 3. 应用培训中所需准备的试剂、耗材和仪器均需由用户提供,并在系统培训开始前 准备好。 4. 用户签收售后服务工作报告后,基因公司正式的系统培训内容即完成。您以后在 使用的过程中有任何疑问都可以向我们咨询,我们非常乐意为您们解决应用上遇到的问题。 5. 在仪器的使用过程中,无论遇到您认为多么微小或繁琐的问题,请您及时和我们 联系,一个及时的通知能节约您的时间,也能帮助我们更好的了解仪器和软件。6. 联系我们时请您提供:仪器型号、软件名称,版本、错误代码、实验目的、操作 系统(98/2k/xp/NT)、维修历史等相关资料。 本守则提的信息仅供参考,本守则包含的所有信息应该是正确和完整的。如果对本守则中的描述有疑问,请参考厂家的英文操作说明。如果由于您的不正当使用而对仪器造成损坏或者导致仪器的性能损伤,本公司将不会对此负责。

1.仪器介绍 仪器描述 Thermo Scientific NanoDrop 2000/2000C分光光度计可以检测0.5-2ul的样本,而且检测是非常高的准确性和重复性。ND2000C分光光度计不仅提供了NanoDrop 样品保留专利技术的便利性,也可以使用传统的比色皿来进行样本检测。 样本保留系统应用了表面张力来把样本保留在两根检测光纤中间,这使得仪器可以检测较高浓度的样本而不用稀释。应用这个技术,全波长(190-840nm)NanoDrop 2000/2000C分光光度计检测样本的最高浓度是标准比色皿的200倍。 仪器规格 NanoDrop 2000/2000C—基座模式 仪器类型:分光光度计 最小样品量:0.5ul 波长:1mm(可以自动调整到0.05mm) 光源:氙闪烁灯 检测器类型:2048—象素线型硅CCD阵列 波长范围:190-840nm 波长准确性:±1 nm 光谱分辨率:≤1.8nm(FWHM@Hg 253.7nm) 吸收光精确性:0.002吸光值(1mm光程) 吸收光准确性:±2%(257nm波长下,0.76个吸光值) 吸光值范围:0.02—300(等同于10mm光程时) 检测极限:2ng/ul dsDNA 最大检测浓度:15,000ng/ul(dsDNA) 检测时间:<5秒 仪器占地面积; 14cm×20cm 重量:2kg 样本基座材料:303不锈钢以及石英光纤 工作电压; 12V 工作功率:12-18W(最大30W) 软件兼容性; Windows XP 和Vista(32bit) NanoDrop 2000C—比色皿模式 光束高度:8.5mm 加热:37±0.5℃ 搅拌:150-850RPM 光程:10,5,2,1mm 检测极限:0.4ng/ul dsDNA 最大检测浓度:750ng/ul dsDNA 检测时间:<3秒 重量: 2.1 kg

转炉设计参数选择

设计参数选择 1 氧气转炉物料平衡与热平衡计算 氧气 半钢、废钢 矿石或铁皮 (1)收入项石灰 萤石、白云石 炉衬侵蚀 其它 炉气 喷溅 炉渣 (2)支出项铁珠 钢水 其它 1.1 计算原始条件假设:

(5)冷却剂 用废钢作冷却剂,其他成分与冶炼钢种成分的中限皆同。

(7)根据国内同类转炉的实验数据选取 ① 渣中铁珠量为渣量的8%; ② 金属中碳的氧化,其中90%的碳氧化成CO ,10%碳氧化成CO 2; ③ 喷溅铁损为铁水量的1%; ④ 炉气和烟尘量,取炉气平均温度1450℃。炉气中自由氧含量为0.5%。 烟尘量为铁水量的1.6%,其中%77)Fe (=O ω,)O Fe (32ω=20%; ⑤ 炉衬侵蚀量为铁水量的0.5%; ⑥ 氧气成分,)O (2?=99.5%、)N (2?=0.5%。 2 转炉炉型主要参数 参数确定方法有两种方法:① 直接推荐法;② 推荐经验公式。由北京钢铁设计研究总院推荐的一套经验公式。主要包括: (1)炉容比(V/T );(2)高宽比(H/D );(3)熔池深度直径比(h/D );(4)炉口直径比(d 0/D );(5)帽锥角(θ);(6)出钢口参数;(7)转炉的公称吨位。 3 炉型设计计算 新转炉的炉型和各部位尺寸可根据经验公式计算,结合现有转炉生产实际并通过模型试验来确定。炉型尺寸的选择依据:生产规模、原材料条件、工艺操作方法。

① 确定所设计炉子的公称容量 ② 选择炉型 设计程序 ③ 确定炉型主要设计参数 ④ 计算熔池尺寸 ⑤ 确定整个炉型尺寸 (1)原始条件 ① 炉子平均出钢量为120t ,钢水收得率为92.62%,则金属装入量为: t 130562.129%62.92120G ≈== ② 原料:半钢,采用单渣不留渣操作。 ③ 氧枪喷嘴采用四孔拉瓦尔喷孔, (2)熔池尺寸的计算 1)熔池直径 t G K D = 2)熔池深度(h )本文采用筒球形熔池深度计算公式 金属熔池的体积为: 32046.079.0D hD V -=熔池 因而 2 3 79.0046.0D D V h += 熔池 (3)炉帽尺寸 1)炉口直径d D d )53.0~43.0(=,本文d 取2200mm 。 2)炉帽倾角θ θ的取值范围在60°~68°。本文取63°。 3)炉帽高度帽H ))(口直斜帽400~300(tan 2 1 +-=+=θd D H H H 炉帽容积: 直台直台帽)(H d d Dd D H V V V 2224 12 π π + ++= += (4)炉身尺寸的计算 1)炉膛直径膛D :

oligo7教学内容

Oligo使用方法介绍 作为目前最好、最专业的引物设计软件,Oligo的功能很强,在这里我们介绍它的一些主要功能:如:普通引物对的搜索、测序引物的设计、杂交探针的设计以及评估引物对质量等等。 在正式进行引物设计前,我们首先面临的一个任务就是向Oligo程序导入模板序列,根据不同的实验情况,导入模板有三种方法: 1,直接用键盘输入: a,点击file菜单中的New Sequence 浮动命令,或直接点击工具栏中的New Sequence命令,进入序列展示窗口; b,此时即可键入DNA序列; c,如果需要的话,Oligo提供碱基回放功能,在边键入时边读出碱基,防止输入错误。点击Edit菜单中的“Readback on”即可。 2,利用复制和粘贴:当我们序列已经作为TXT文件存在或其它oligo不能直接open的文件格式,如word文件.html格式,这个功能就显得很有用了。在相应文件中复制序列后在序列展示窗口粘贴,oligo会自动去除非碱基字符。当序列输入或粘贴完成后,点击Accept/Discard菜单中的Accept浮动命令,即可进入引物设计模式。 3,如果序列已经保存为Seq格式或者FASTA,GenBank格式时,oligo就可以直接打开序列文件。 点击File菜单中的“Open”浮动命令,找到所需文件,打开即可。 进入引物设计模式后,oligo一般会弹出三个窗口,分别是6-碱基频率窗口,碱基退火温度窗口以及序列内部碱基稳定性窗口,其中的退火温度窗口是我们引物设计的主窗口,其它的两个窗口则在设计过程中起辅助作用,比如6-碱基频率窗口可以使我们很直观地看到所设计引物在相应物种基因组中的出现频率,如果我们的模板是基因组DNA或混合DNA时,该信息就显得有用了,而内部稳定性窗口则可以显示引物的5’端稳定性是否稍高于3’端等。 一,普通引物对的搜索: 以Mouse 4E(cDNA序列)为例。我们的目的是以Mouse 4E(2361 bp)为模板,设计一对引物来扩增出600-800bp长的PCR产物。 1,点击“Search“菜单中的”For Primers and Probes“命令,进入引物搜索对话框; 2,由于我们要设计的是一对PCR引物,因此正、负链的复选框都要选上,同时选上Compatible pairs。 在Oligo默认的状态下,对此引物对的要求有:a,无二聚体;b,3’端高度特异,GC含量有限定,d,去除错误引发引物等。 3,剩下的工作是确定上、下游引物的位置及PCR产物的长度以及引物设计参数。 ①单击:“search Ranges”按钮,弹出“Search Ranges”对话框。输入上游引物的范围:1-2000,下游引物的位置:100-2300;PCR产物的长度600-800bp。 ②单击“Paramaters”按钮进入“Search Parameters”对话框,对话框种分三个活页,分别是:不同设定,参数以及更多参数。 ③在“普通设定”窗口,为我们提供了对引物非常直观的设定方法,从高到低分六个等级,最后还有一个用户定制选项。 ④当我们对引物的各种参数的含义及应该设定多大值并不是特别清楚时,就可以直接设定Very high/High等来完成对引物设计参数的设定。

Bio-Rad 核酸蛋白测定仪中文操作说明

SmartSpec? Plus 核酸蛋白测定仪 中文操作指南 (本指南仅供参考,以英文说明书为准)

第一章仪器介绍 SmartSpec Plus 核酸蛋白测定仪比其它许多台式分光光度仪拥有更完善的特点和功能,其性能优越,运行稳定,功能强大。 特别适用于生命科学研究 SmartSpec Plus工作波长在200-800nm,是核酸和蛋白样品常规定量的完美工具。 SmartSpec Plus可用于 ●DNA,RNA 和寡核苷酸的定量 ●用Bradford,Lowry和BCA检测法定量蛋白 ●监控细胞的生长状况 ●简易的动力学分析 ●波长扫描和峰检测 更简单的样品分析 SmartSpec Plus 的设计充分考虑了用户的需求。简易的菜单式界面简化了测试过程,只需触摸一下按键就可以提供常用样品的计算结果。转换因子可以储存和修改。SmartSpec Plus能提供以下计算结果,如: ●显示核酸纯度的A260/A280比率 ●定量分析(考虑稀释因子) ●μg/ml样品浓度(寡核苷酸pmol/μl) ●寡核苷酸的摩尔消光系数和分子量 在测试结束时,打印显示使用者,日期和结果的报告 核酸定量 SmartSpec Plus能满足定量PCR产物、核酸制备或细胞转染样品的定量检测要求。选择定量dsDNA、ssDNA或RNA,并从预设的转换因子中选择或输入一个最适合代测样品的数值。SmartSpec Plus能提供吸收值、浓度和纯度值,确保下游工作的顺利进展。 SmartSpec Plus简化了DNA、RNA寡核苷酸的定量过程。当你输入序列、长度或组成时,SmartSpec Plus会以μg/ml或pmol/μl为单位显示出样品浓度,并计算摩尔消光系数和分子量。 蛋白定量 SmartSpec Plus安装了Bradford,Lowry和BCA蛋白定量检测方法的预编程序,每个检测方法都具有其独特的特性,方便数据收集及对测试

化妆品原料名称对照及用途

原料名称核对及INCI 原料通俗名原料名字标准中文标准INCI 用途用量 (%) 限制用量 (%) 红酒多酚葡萄酒提取 物WINE EXTRACT 皮肤调理 剂 1,3-丁二醇;丁二醇丁二醇BUTYLENE GL YCOL 保湿剂 1,2-丙二醇;丙二醇丙二醇PROPYLEN E GL YCOL 保湿剂 氨基酸保湿剂甜菜碱 BETAINE 保湿剂 纤维素HEC 羟乙基纤维 素HYDROXY ETHYLCEL LULOSE 增稠剂 玻尿酸透明质酸HYALURO NIC ACID 保湿剂 玻尿酸钠透明质酸钠SODIUM HYALURO NATE 保湿剂 香精香精AROMA/PA RFUM 赋香剂仅供参考 绿仙草粉蒲公英 (TARAXAC UM MONGOLIC UM)提取物TARAXAC UM MONGOLIC UM EXTRACT 皮肤调理 剂 芸香苷RUTIN 果胶PECTIN 十六醇鲸蜡醇CETYL ALCOHOL 增稠剂 十八醇硬脂醇STEARYL ALCOHOL 十六十八醇鲸蜡硬脂醇CETEARYL ALCOHOL A165 单硬脂酸甘 油酯甘油硬脂酸 酯 GL YCERYL STEARA TE 乳化剂 PEG-100 硬 脂酸酯 PEG-100 STEARA TE 乳化剂 壬二酸光双甘氨酸钾壬二酰二甘 氨酸钾 POTASSIU M AZELOYL DIGL YCINA TE 皮肤调理 剂

名(%)(%)甘油甘油GL YCERIN 保湿剂 维生素原B5 泛醇PANTHENO L 皮肤调理剂 金缕梅提取物 北美金缕梅 (HAMAME LIS VIRGINIAN A)提取物 HAMAMEL IS VIRGINIAN A EXTRACT 皮肤调理 剂 乙二胺四乙酸二钠EDTA 二钠DISODIUM EDTA 螯合剂 茶树油互生叶白千 层 (MELALEU CA ALTERNIFO LIA)叶油MELALEU CA ALTERNIF OLIA (TEA TREE) LEAF OIL 皮肤调理 剂 洋甘菊精油白花春黄菊 (ANTHEMI S NOBILIS) 花油ANTHEMIS NOBILIS FLOWER OIL 皮肤调理 剂 葵基硅油癸基硅油环己硅氧烷CYCLOHE XASILOXA NE 润肤剂 2EHP 棕榈酸异辛 酯棕榈酸乙基 己酯 ETHYLHEX YL PALMITATE 润肤剂 杰马A 双(羟甲基) 咪唑烷基脲DIAZOLIDI NYL UREA 防腐剂0.3 0.5 杰马115 咪唑烷基脲IMIDAZOLI DINYL UREA 防腐剂0.6 杰马B,杰马BE 双(羟甲基) 咪唑烷基脲 DIAZOLIDI NYL UREA 防腐剂0.3 0.5用量仅 供参考 尼泊金甲酯羟苯甲酯METHYLPA RABEN 防腐剂0.2 0.4用量仅 供参考 尼泊金丙酯羟苯丙酯PROPYLPA RABEN 防腐剂0.1 0.4用量仅 供参考 苯氧乙醇PHENOXYE THANOL 防腐剂0.3 1.0用量仅 供参考 卡波系列卡波姆CARBOME R 增稠剂

课程设计参数选择说明

单向板的课设 表7-1各题号的设计条件 柱网L1×L2/mm 可变荷载标准值/(KN/m2 5.0 5.5 6.0 6.5 7.0 7.5 8.0 6000×6600 42 41 40 39 38 37 36 6600×6900 35 34 33 32 31 30 29 6600×7200 28 27 26 25 24 23 22 6600×7500 21 20 19 18 17 16 15 6900×7200 14 13 12 11 10 9 8 6900×7500 7 6 5 4 3 2 1 单向板的课设每个同学选择的荷载和柱网都不同,例如1号,每个号数选自己所对应行与 列的荷载。

单层厂房课设 表7-3 各题号的设计条件 厂房跨度/m18 21 24 30 起重量/t16 20 25 32 16 20 25 32 162025162025 轨顶高度/m 8.4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 9.6 15 16 17 18 19 20 21 22 23 24 25 26 27 28 10. 2 29 30 31 32 33 34 35 36 37 38 39 40 41 42 11. 4 43 44 45 46 47 48 49 50 51 52 53 54 55 56 12. 57 58 59 —60 61 62 —63 64 65 66 67 68 风荷载 /kN/m2 0. 7 0. 6 0. 5 0. 4 0. 7 0. 6 0. 5 0. 4 0.7 0.6 0.5 0.6 0.5 0.4 单层厂房没个同学所选择的参数都不同,每个号数所对应自己所在的行与列的参数。例如25号

Vector NTI 使用中文说明

Vector NTI 它主要包括四个组件,分别对DNA、RNA和蛋白质进行各种分析和操作。 一、Vector NTI 作为Vector NTI Suite的核心组成部分,它可以在各种分子生物学研究项目的全过程中提供数据组织、编辑和分析支持。 (一)对分子序列的操作我们以一个DNA序列为例,进行一系列的常规分析;最后将此DNA序列翻译成氨基酸序列,并对此氨基酸序列进行各种分析。A,DNA序列为猪生长激素的cDNA序列,长为761bp。首先使用Vector NTI的Create New命令将此序列导入到Vector NTI的数据库中:1,第一种方法:如果只知道序列时,点击Molecule才菜单中的Create New——Using Sequence Editor(DNA/RNA……);2,在出现的“New DNA/RNA Molecule”对话框中,首先在General填入导入序列的名称——PGH;3,在DNA/RNA Molecule活页中,选中Linear DNA,Animal/other Eukaryotes,Replicon Type中选Chromosome;4,Description中填入:S.Scrofa Growth hormone mRNA; 5,在Sequence and Maps中点击“Edit Sequence”按钮,将DNA序列复制后,点“Paste”按钮-点“OK”-确认后就可以完成序列导入。B,如果是一个从GenBank上下载的序列文件,则:点击“Molecule”菜单-Open-Molecule files命令,找到序列文件,在File format中选中GenBank Files;点击OK。 (二)常规操作:当序列导入完成后,在桌面出现三个窗口,上左侧的窗口中显示的是该序列的常规信息,上右侧窗口则以图形的格式展示序列的特征区及酶切图谱等。下面一个窗口显示的是序列:默认状态下以双链形式出现,也可以更改为单链显示。1.选择序列区域:在图形区域或序列区域直接拖动鼠标左键,同时在最下端的状态栏中显示出所选区域的范围。2.删除:选中后直接点击键盘上的Delete键,确认后即可删除。3.选中序列片段后,点击Edit菜单,用其中的命令可以完成对此片段的剪切、复制、删除、定义为新的特征区和用其它序列来代替等。4.当点在其一特定位置时,我们也可以在此位置插入新的序列:Edit –New –Insert Sequence as 5.当希望序列显示单链时,点击View –Show Both Strands (三)常规分析:1.设计PCR Sequence Primer, Hybridization, Probes:选中设计引物的模板区或点击Analyze中的相应命令即可。需要注意的是,在设计前,首先得将序列存入数据库中,具体设计由于我们推荐使用Oligo,所以此处不详述。2.序列基本信息分析:选中序列区段后,选Analyze –Oligo Analysis, 在Oligo Analysis对话框中,点击Analyze按钮,即可得到分子量、GC含量、Tm值、3‘端的自由能、回文结构及重复序列等基本信息。3.酶切图谱分析点击Analyze菜单中Restriction Sites命令,出现“Restriction Map Setup”对话框,点击Add按钮,填入需要分析的位点,不需要的位点夜可以选中后点Remove按钮移除。为了显示正确,我们可以设定超过一定位点数量的酶不显示,可以限定分析的区域等。点击OK后程序自动完成酶切分析。4.Motif查找点击Analyze菜单中的Motifs命令,在出现的Motifs Setup 对话框中我们可以添加新的Oligo或从Oligo Database和Oligo List中选取;选中后点击OK按钮,程序完

设计参数选择

设计参数选择(生活污水) 1、集水井设计:容积的确定,按大于日处理量之5分钟之容积。根据现场安排尺寸设置水深,根据水深度确定截面积。提升泵选择?选择流量及数量应满足一小时排空集水井。 2、调节池设计:容积的确定,按日处理量之35%-50%确定。底部设一定坡度(大于0.05)坡向积水坑可设微孔曝气,曝气量确定:按5-6 m3/(m2.h)设计或气水比4/1确定。容积校验根据,停留时间:V/Q即有效容积/流量,一般在8小时左右。泵的选择考虑流量及扬程。空气搅拌气水比(1-3):1。消毒池V=30min 以上量,卤消毒5-8mg/L。中水池V日水量之25%-35%。 3、接触氧化池:容积的确定,一般按照前调节池容积之1/2计,根据现场确定池深及截面积。容积之校验,有效容积之停留时间T=V/Q一般时间按水之BOD 浓度计生活污水按大于等于3小时保险系数计算。内设半软性填料,超高按0.3米,具体填料高度可以按照设计之池子高度确定。长宽比控制在2/1~1/1有效面积不宜大于100m2 校验按照单位体积填料消耗BOD5值来计算(依据填料之布置计算填料体积)进水BOD5值为Amg/l,出水BOD5值取Bmg/l,则BOD5的消减量为:(A-B)*Q kg/d,单位体积填料消耗BOD5值应<1.0 kg/d 校验按照填料的容积负荷:Fr=0.2881×L0.7246 应<3㎏/(m3.d),L为生物接触氧化系统出水BOD5值。 校验按照污水与填料需要的接触时间:t=24Lj/(1000Fr),Lj为生物接触氧化系统进水BOD5值。污水与填料的实际接触时间t停=V有效/Q应该>t 接触氧化池曝气量的确定:接触氧化池曝气强度宜采用10-20 m3/(m2.h),同时参考《建筑中水设计规范》(GB50336-2002)可知,接触氧化池曝气量可按

Oligo引物设计使用手册

引物分析著名软件,主要应用于核酸序列引物分析设计软件,同时计算核酸序列的杂交温度(Tm)和理论预测序列二级结构。 点击查看生.物.秀实验频道与引物设计相关的文章 Oligo使用方法介绍 作为目前最好、最专业的引物设计软件,Oligo的功能很强,在这里我们介绍它的一些主要功能:如:普通引物对的搜索、测序引物的设计、杂交探针的设计以及评估引物对质量等等。在正式进行引物设计前,我们首先面临的一个任务就是向Oligo程序导入模板序列,根据不同的实验情况,导入模板有三种方法: 1,直接用键盘输入: a,点击file菜单中的New Sequence 浮动命令,或直接点击工具栏中的New Sequence 命令,进入序列展示窗口; b,此时即可键入DNA序列; c,如果需要的话,Oligo提供碱基回放功能,在边键入时边读出碱基,防止输入错误。点击Edit菜单中的“Readback on”即可。 2,利用复制和粘贴:当我们序列已经作为TXT文件存在或其它oligo不能直接open的文件格式,如word文件.html格式,这个功能就显得很有用了。在相应文件中复制序列后在序列展示窗口粘贴,oligo会自动去除非碱基字符。当序列输入或粘贴完成后,点击Accept/Discard菜单中的Accept浮动命令,即可进入引物设计模式。 3,如果序列已经保存为Seq格式或者FASTA,GenBank格式时,oligo就可以直接打开序列文件。wpe.mB0A .

点击File菜单中的“Open”浮动命令,找到所需文件,打开即可。 进入引物设计模式后,oligo一般会弹出三个窗口,分别是6-碱基频率窗口,碱基退火温度窗口以及序列内部碱基稳定性窗口,其中的退火温度窗口是我们引物设计的主窗口,其它的两个窗口则在设计过程中起辅助作用,比如6-碱基频率窗口可以使我们很直观地看到所设计引物在相应物种基因组中的出现频率,如果我们的模板是基因组DNA或混合DNA时,该信息就显得有用了,而内部稳定性窗口则可以显示引物的5’端稳定性是否稍高于3’端等。一,普通引物对的搜索: 以Mouse 4E(cDNA序列)为例。我们的目的是以Mouse 4E(2361 bp)为模板,设计一对引物来扩增出600-800bp长的PCR产物。 1,点击“Search“菜单中的”For Primers and Probes“命令,进入引物搜索对话框; 2,由于我们要设计的是一对PCR引物,因此正、负链的复选框都要选上,同时选上Compatible pairs。 在Oligo默认的状态下,对此引物对的要求有:a,无二聚体;b,3’端高度特异,GC含量有限定,d,去除错误引发引物等。 3,剩下的工作是确定上、下游引物的位置及PCR产物的长度以及引物设计参数。n"\ 3i].x ①单击:“search Ranges”按钮,弹出“Search Ranges”对话框。输入上游引物的范围:1-2000,下游引物的位置:100-2300;PCR产物的长度600-800bp。 ②单击“Paramaters”按钮进入“Search Parameters”对话框,对话框种分三个活页,分别是:不同设定,参数以及更多参数。 ③在“普通设定”窗口,为我们提供了对引物非常直观的设定方法,从高到低分六个等级,最后还有一个用户定制选项。 ④当我们对引物的各种参数的含义及应该设定多大值并不是特别清楚时,就可以直接设定Very high/High等来完成对引物设计参数的设定。 ⑤当我们选中“Automatically Change String”后,Oligo会在引物搜索过程中:如果在高等级设定中无法找到引物对时自动降低一个定级来进行搜索,知道找到引物对。在设计反向PCR 引物对时,就选中“Inverse PCR”复选框。 ⑥我们还可以让引物的长度可以改变,以适应设定的Tm值或PE?(Prime Effitions,引发效率)。也可以限定所选引物对的最大数目。 ⑦在“Parameters”窗口中,实际上需要我们改动的只有引物的长度,根据试验的要求作相应

Oligo 7 使用教程 个人总结

Oligo 7使用教程 本人根据自己的使用情况进行了一下总结,由于该软件是新近使用,故有什么不对的地方还望各位专家谅解并进行补充,只希望能对大家有一点帮助。 另附Oligo7软件的下载地址: https://www.360docs.net/doc/751805108.html,/bbs/viewthread.php?tid=4770823 首先,同Oligo 6 一样,File菜单下,选择New sequence ,打开窗口将目的序列粘贴进来,或是选择Open定位到目的cDNA序列(在primer中,该序列已经被保存为Seq文件),这是最初打开时的界面:

然后就是进行引物的设计了。Search 菜单下,选择for primes &probes ,即出现引物搜寻窗口: 根据自己的实际情况选择Parameters 或Ranges设置引物的相关参数和范围。然后选择Search即开始进行引物的 搜索,之后会出现软件所列出的依据得分(Score)高低排 列设计的引物。

双击每一行所列出的引物会弹出该对引物的具体信息,以及软件对该对引物的相关评价。 双击之后在最初的Sequence 窗口中就会出现下面的窗口:

点击绿色方形图标前面的i标志可了解对应的具体信息。 之后便是对该引物的具体分析了,这部分的分析同Oligo 6基本上是一样的。选择Analyze菜单,如下图:

(1)Analyze中,第一项为Key info,点击Selected primers,会给出两条引物的概括性信息,其中包括引物的Tm值,此值Oligo是采用nearest neighbor method计算,会比Primer5中引物的Tm值略高,此窗口中还给出引物的Delta G和3’端的Delta G.3’端的Delta G过高,会在错配位点形成双链结构并引起DNA聚合反应,因此此项绝对值应该小一些,最好不要超过9。 (2)Analyze中第二项为Duplex Formation,即二聚体形成分析,可以选择上游引物或下游引物,分析上游引物间二聚体形成情况和下游引物间的二聚体情况,还可以选择Upper/Lower ,即上下游引物之间的二聚体形成情况。引物二聚体是影响PCR反应异常的重要因素,因此应该避免设计的引物存在二聚体,至少也要使设计的引物形成的二聚体是不稳定的,即其Delta G值应该偏低,一般不要使其超过4.5kcal/mol,结合碱基对不要超过3个。Oligo此项的分析窗口中分别给出了3’端和整个引物的二聚体图示和Delta G 值。 (3)Analyze中第三项为Hairpin Formation,即发夹结构分析。可以选择上游或者下游引物,同样,Delta G值

圆盘剪的设计与参数选择

圆盘剪的设计与参数选择 【摘要】本文结合实际工程,介绍了推拉式酸洗线上圆盘剪的结构特点,刀具侧向间隙及刀盘重合度调整的方法等。并给出了剪切力、驱动功率的计算公式和实际例子。本圆盘剪已在华美推拉式酸洗线上使用。 【关键词】圆盘剪设计参数 目录: 1.圆盘剪概述 2.圆盘剪主要技术性能 3.圆盘剪结构 3.1机架 3.2调宽装置 3.3刀刃侧向间隙调整装置 3.4刀盘重合度调整装置 4.有关参数的选择和计算 4.1刀盘直径和厚度的选择 4.2刀盘重合度和侧向间隙的选择 4.3剪切力的计算 4.4剪切力矩的计算 4.5剪切电机功率校核 5.结束语 参考文献 1.圆盘剪概述 带钢在轧制过程中,有时边部会产生细小的裂缝等缺陷,如不及时切掉,极可能在后续加工过程中产生断带事故。所以在酸洗机组中均设置圆盘剪,以便去掉边缘损伤,并使成品带钢达到要求的宽度。另外圆盘剪还广泛用在冶金带钢生产线的其它机组中,如横切机组、纵剪机组、重卷机组、拉矫机组、镀锡机组及焊接机组等。 圆盘剪按其用途和构造可分为两大类:带两对刀盘和多对刀盘.两对刀盘的圆盘剪只用来剪切带材的边部,故称切边圆盘剪或切边剪;多对刀盘的圆盘剪在剪切带材边部的同时并将带材纵切成多条较窄的带材,故称分条圆盘剪或分条剪。 圆盘剪按其传动方式又分为拉剪和动力剪;所谓拉剪,即刀盘没有传动装置,直接由机后的张力辊及卷取机等设备将带钢拉过圆盘剪进行剪切. 本文介绍的圆盘剪是用在推拉式酸洗线上。它的特点是传动系统中装有超越离合器,当机组速度低于穿带速度时,圆盘剪按动力剪状态工作;当机组速度超过穿带速度时,离合器将脱开传动系统,圆盘剪按拉剪状态工作。 为了使切边时不产生毛刺,并保持最小的宽度公差。必须用防跑偏装置加以控制,以使带钢对中和无冲击地进入圆盘剪。因此,在圆盘剪的入口侧布置了一套夹送辊纠偏装置。 2.圆盘剪主要技术性能 带钢厚度: 1.8~4.0mm 带钢宽度:700~1350mm 带钢强度极限:σb≤610Mpa 机组速度: 酸洗出口(圆盘剪):最大 120m/min 穿带速度:最大 60m/min 剪刃直径:φ350mm 剪刃厚度:30mm 最大工作间距:1590mm 最小工作间距:630mm 切边精度:0~+1mm 3.圆盘剪结构 546

罗氏第一链cDNA合成试剂盒Transcriptor First Strand cDNA Synthesis Kit 中文说明书

反应次数目录号反应次数 04 379 012 001 50次,包括10次对照反应 04 896 866 001 100次 04 897 030 001 200次 试剂盒包装与含量小瓶/瓶盖标签适用于a) 04 379 012 001 b) 04 896 866 001 c) 04 897 030 001 1 红色 Transcriptor Reverse Transcriptase(逆转录酶) a) 1瓶,25 μl (20 U/μl) b) 1瓶,50 μl (20 U/μl) c) 2瓶,各50 μl (20 U/ μl) 储存缓冲液:200 mM 磷酸钾,2 mM 二硫苏糖醇,0.2% Triton X-100(v/v),50% 甘油(v/v),pH 约为7.2? 2 无色 Transcriptor RT Reaction Buffer(5×) (逆转录缓冲液) a) 1瓶,1 ml b) 1瓶,1 ml c) 2瓶,各1 ml 5×浓度:250 mM Tris/HCl,150 mM KCl,40 mM MgCl2,pH约为8.5(25°C)? 3 无色 Protector RNase Inhibitor (RNase抑制剂) a) 1瓶,50 μl(40 U/μl) b) 1瓶,100 μl(40 U/μl) c) 2瓶,各100 μl(40 U/μl) 储存缓冲液:20 mM Hepes-KOH,50 mM KCl,8 mM 二硫苏糖醇,50 % 甘油(v/v),pH 约为7.6 (4°C)? 4 黄色/ 紫色 Deoxynuc-leo-tide Mix (dNTP) a) 1瓶,100 μl(黄色瓶盖) b) 1瓶,200 μl(紫色瓶盖) c) 2瓶,各200 μl(紫色瓶盖) dATP, dCTP, dGTP, dTTP各10 mM?5 蓝色 Anchored-oligo(dT)18 Primer (锚定oligo(dT)18引物) a) 1瓶,100 μl(50 μM) b) 1瓶,200 μl(50 μM) c) 2瓶,各200 μl(50 μM) 6 Random Hexamer a) 1瓶,100 μl(600 μM) 蓝色 Primer(随机引物) b) 1瓶,200 μl(600 μM) c) 2瓶,各200 μl(600 μM) 7 绿色 Control RNA (对照RNA) a) 1瓶,20 μl(50 ng/μl) 包含提取于永生细胞系(K562)的总RNA 片段稳定溶液? 8 绿色 Control Primer Mix PBGD (对照基因引物) a) 1瓶,40 μl 5 μM 人类PBGD特异性正向与反向引物? 9(b和c为瓶7) 无色 Water, PCR-grade a) 1瓶,1 ml b) 2瓶,各1 ml c) 3瓶,各1 ml 注意:货号为04 896 866 001和04 897

相关文档
最新文档