大学物理(机械工业出版社)上册-课后练习及答案

大学物理(机械工业出版社)上册-课后练习及答案
大学物理(机械工业出版社)上册-课后练习及答案

第一章 质点的运动

1-1 已知质点的运动方程为:2

3010t t x +-=,

2

2015t t y -=。式中x 、y 的单位为m ,t 的单位为s。试

求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。

分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.

解 (1) 速度的分量式为t t x

x 6010d d +-==

v t t

y

y 4015d d -==v

当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为

12

0200s m 0.18-?=+=y x v v v

设v o 与x 轴的夹角为α,则2

3

tan 00-==x

y αv v

α=123°41′

(2) 加速度的分量式为2s m 60d d -?==

t a x

x v , 2s m 40d d -?-==

t

a y y v

则加速度的大小为22

2

s m 1.72-?=+=

y x a a a

设a 与x 轴的夹角为β,则3

2tan -==

x y

a a β β=-33°41′(或326°19′)

1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。

分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为

t a d )

(d =v v

后再两边积分. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.

(1) 由题 v v

B A t

a -==d d (1) 用分离变量法把式(1)改写为

t B A d d =-v

v

(2)

将式(2)两边积分并考虑初始条件,有

??=-t t B A 0d d d 0v v v v

v 得石子速度 )1(Bt

e B A --=v

由此可知当,t →∞时,B

A

→v 为一常量,通常称为极限速度

或收尾速度.

(2) 再由)1(d d Bt e B

A

t y --==

v 并考虑初始条件有 t e B

A

y t

Bt y

d )1(d 00?

?--= 得石子运动方程)1(2-+=-Bt

e B A t B A y

1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加

速度,即a = - k v 2

,k 为常数。在关闭发动机后,试证:

(1)船在t 时刻的速度大小为 100

+=t kv v v ;

(2)在时间t 内,船行驶的距离为 ;

(3)船在行驶距离x 时的速率为v =v 0e -kx 。 [证明](1)分离变数得

, 故 ,

可得:

. (2)公式可化为,

由于v = d x/d t , 所以:

积分

因此 .

(3 ) 要求 v ( x ),可由 dx

dv v dt dx dx dv dt dv a ===

,有 01

ln(1)x v kt k

=+2

d d v

k t v =-020

d d v t

v v

k t v =-??0

11

kt v v =+0

01v v v kt

=

+00001

d d d(1)1(1)

v x t v kt v kt k v kt =

=+++00001

d d(1)(1)x

t

x v kt k v kt =++??

01

ln(1)x v kt k

=+

kdx v

dv

dx dv v

kv -=?=-2 积分得

kx

x v

v e v v kx v v dx k v dv -=-=?-=??00

,ln 0证毕. 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台

上,求小车移动的速度和加速度。

解:人前进的速

度v 0,则绳子前进的速度大小等于车移动的速度大小,

222

202

22203/222220()()()l v t H h dl

dt H h v d l dt H h v t =+-∴=

-=??-+?

?

所以小车移动的速度2

20220)(t

v h H t

v v --=

小车移动的加速度[]

2/3220

2

2

2)

()(t

v h H v h H a +--=

1-5 质点沿轴运动,其加速度和位置的关系为

262x a +=,a 的单位为 m/s 2,x 的单位为 m 。质点在

x =0处,速度为10m/s ,试求质点在任何坐标处的速度值。

解: ∵

分离变量:

两边积分得

由题知,

时,

,∴

1-6 如图所示,一弹性球由静止开始自由下落高度 h 后落在一倾角

30=θ的斜面上,与斜

面发生完全弹性碰撞后作抛射体运动,问它第

二次碰到斜面的位置距原来的下落点多远。

解:小球落地时速度为gh v 20=

建立直角坐标系,

以小球第一次落地点为坐标原点如图

0060cos v v x =

200060cos 2

1

60cos t g t v x +

= (1) 0

0060sin v v y =

200060sin 2

1

60sin t g t v y -

= (2) 第二次落地时 0=y g

v t 0

2=

所以 m g

v t g t v x 8.0260cos 2160cos 202

00

0==

+= 1-7一人扔石头的最大出手速率为v =25m/s ,他能

击中一个与他的手水平距离L=50m ,高h=13m 的目标吗?在此距离上他能击中的最大高度是多少?

解:由运动方程2

1cos ,sin 2

x vt y vt gt θθ==-,消去t 得轨迹方程

22

2

(1)2g y xtg tg x v

θθ=-

+ 以x =05.0m ,v =25ms -1

代入后得

222

2250(1)50225

5020(1)

5

20()11.25

4

g

y tg tg tg tg tg θθθθθ=-

+??=-+=--+ 取g =10.0,则当 1.25tg θ=时,max 11.25y =〈13 所以他不能射中,能射中得最大高度为max 11.25y =

1-8 一质点沿半径为R 的圆周按规律2

02

1bt t s -=v 运动,

v 0 、b 都是常量。(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?

分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈

x x v

v t x x v t v a d d d d d d d d ===

x x adx d )62(d 2

+==υυc

x x v ++=32

22210

=x 100=v 50=c 1

3s m 252-?++=x x v h

图1-18 习题1-4

数自然可求得.

解 (1) 质点作圆周运动的速率为bt t

s

-==

0d d v v 其加速度的切向分量和法向分量分别为

b t s a t -==22d d , R

bt R a n 2

02)(-==v v

故加速度的大小为

2

4

02222)(R

bt b R a a a t

n -+=

+=v 其方向与切线之间的夹角为

??

????--==Rb bt a a θt n

20)(arctan arctan v

(2) 要使|a |=b ,由

b bt b R R

=-+4022)(1

v 可得b

t 0v =

(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为

b

s s s t 220

0v =-=

因此质点运行的圈数为bR

R s n π4π22

v == 1-9 已知质点的运动方程为:

t h z t R y t R x ωπωω2,sin ,cos ===,式中ω、、h R 为正的常量。求:(1)质点运动的轨道方程;(2)质点的速度大小;(3)质点的加速度大小。 解: (1)轨道方程为 2

22R y x =+ t h z ωπ2=

这是一条空间螺旋线。

在O xy 平面上的投影为圆心在原点,半径为R 的圆,螺距为h (2)t R dt

dx

v x ωωsin -==

2

2

2

2224πωh R v v v v z

y

x

+=++=

(3)t R a x ωωcos 2-= t R a y ωωs i n 2

-=

0=z a , 22

2ωR a a a y x =+=

1-10飞机以100m·s -1的速度沿水平直线飞行,在离

地面高为100m 时,驾驶员要把物品投到前方某一地面目标处。问:(1)此时目标在飞机下方前多远?(2)投放物品时,驾驶员看目标的视线和水平线成何角度?(3)物品投出2s 后,它的法向加速度和切向加速度各为多少? 解:

(1

21y gt t 2452x m ∴===,(2) 5.12=

=θx

y

arctg

(3

22222n v dv dt 1.96/,10.0

(m 9.80/,10.0

(9.62/9.8)

t t t a a m s g a a g

a m s g m s ∴===+=∴===2=或1.88/s ,g=9.8)

或,g = 1-11一无风的下雨天,一列火车以v 1=20m/s 的速度匀

速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°

角下降,求雨滴下落的速度v 2。(设下降的雨滴作匀速运动)

解:以地面为参考系,火车相对地面运动的速度为

V 1,雨滴相对地面竖直下落的速度为V 2,旅客看到雨滴下

落速度V 2’为相对速度,它们之间的关系为 221'v v v =+ 121/75 5.36v v tg ms -∴=

=

1-12升降机以加速度a 0=1.22m·s -2上升,当上升速

度为2.44m·s -1时,有一螺帽自升降机的天花板脱落,天花板与升降机的底面相距2.74m ,试求:(1)螺帽从天花板落到底面所需时间;(2)螺帽相对于升降机外固定柱子的下降距离。解:(1)以升降机为参考系,此时,螺丝相

对它的加速度为a ’=g+a,螺丝落到底面时,有

2

1

0()2

0.705h g a t t s

=-+==

(1)

(2)

v’

u

(2)由于升降机在t 时间内的高度为2

01

'2h v t at =+

则'0.716d h h m =-=

1-13飞机A 相对地面以v A =1000km/h 的速率向南飞行,另一飞机B 相对地面以v B =800 km/h 的速率向东偏南30°方向飞行。求飞机A 相对飞机B 的速度。

解:

(

)

1000,400400310004004003tg 4052',

A B A B

v j v j i v v v j j i θθ==+=-+∴=

==-方向西偏南

916/v km h =

1-14 一人能在静水中以1.10m·s -1

的速度划船前进,

今欲横渡一宽为1000m 、水流速度为0.55m·s -

1的大河。(1),那么应如何确定划行方向?到达正对岸需多少时间?(2)如果希望用最短的时间过河,应如何确定划行方向?

船到达对岸的位置在什么地方?

解:如图(1)若要从出发点横渡该河而到达正对岸的一点,则划行速度和水流速度u 的合速度的方向正对着岸,设划行速度v '合速度v 的夹角为α

sin sin 0.55/1.10.5

cos v u

u

v ααα'∴===='=31.0510cos d d t s v v α

===?'

如图(2)用最短的时间过河,则划行速度的方向正对着岸

,500d d

t l ut u m v v ∴=

===''

1-15设有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处,飞机相对空气的速率为v ',而空气相对地面的速率为u ,A 、B 间的距离为l 。

(1)假定空气是静止的(即u =0),求飞机来回飞行的时间;

(2)假定空气的速度向东,求飞机来回飞行的时间; (3)假定空气的速度向北,求飞机来回飞行的时间。

解:由相对速度的矢量关系'v v u =+有

(1)空气时静止的,即u =0,则往返时,飞机相对地面的飞行速度就等于飞机相对空气的速度v ’(图(1)),故飞机来回飞行的时间02'''

AB BA l l l

t t t v v v =+=

+= (2) 空气的速度向东时,当飞机向东飞行时,风速与飞机相对空气的速度同向;返回时,两者刚好相反(图(2)),故飞机来回飞行的时间为

21102(1

'''

AB BA

l l u t t t t v u v u v -=

+=+=-+-

(3) 空气的速度向北时,飞机相对地面的飞行速度的大小由'v v u =+可得为v ,故飞机来回飞行

的时间为

1

22

202(1)'

AB BA

l l u t t t t v v v -=+=+==

=-

第二章 质点动力学

2-1如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

解:如图由受力分析得

(1)(2)2(3)2(4)

g

g

A A

B B A B A B

A B mg T ma T mg ma a a T T a a -=-===1

解得

=-52=-5

2-2如本题图所示,已知

两物体A 、B 的质量均为m=3.0kg ,物体A 以加速度a =1.0m/s 2 运动,求物体B 与桌面间的摩擦力。(滑轮与连接绳的质量不计)

解:分别对物体和滑轮受力分析(如图),由牛顿定律

和动力学方程得,

习题2-2图

习题2-1图

a A

a B

()()()

1f 111f (1)''(2)2'(3)'2(4)

5'6'7(4)7.22

A T A T

B T T A B T T T T m g F m a F F m a a a F F m m m F F F F mg m m a

F N

-=-======-+=

==解得

2-3 如图所示,细线不可伸长,细线、定滑轮、动滑轮的质量均不计已知

314m m =322m m =。求各物体运动

的加速度及各段细线中的张力。 解:设m 1下落的加速度为a 1,因而动滑轮也以a 1上升。再设m 2相对动滑轮以加速度a ′下落,m 3相对动滑轮以加速度a ′上升,二者相对地面的加速

度分别为:1a a -'(下落)和1a a +'(上升),设作用在m 1上的线中张力为T 1,作用在m 2和m 3上的线中张

力为T 2。列出方程组如下:

2

1133212221

1112)()

(T T a a m g m T a a m T g m a m T g m =+'=--'=-=-

代入314m m =,322m m =,可求出:

51g a =

,52g a =',52g a =,533g a =,g m T 1154

=,g m T 1252

=

2-4光滑的水平面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦系数为μ。物体的初速率为v 0,求:(1)t 时刻物体的速率;(2)当物体速率从v 0减少到v 0/2时,物体所经历的时间及经过的路程。 解:(1)设物体质量为m ,取图示的自然坐标系,由牛顿定律得,

02

2

22t

v 2

v (1)

(2)(3)4dv 4dt u v N n f t f N

v F ma m R dv F m a m

dt

F uF v dv

u R dt ===-=-=-

??0由上三式可得=()R 对()式积分得=-

00Rv v R v t

μ∴=

+

(2) 当物体速率从v 0减少到v 0/2时,由

0Rv v R v t

μ∴=

+可得物体所经历的时间0t R v μ

'=

经过的路程t t 00

0vdt dt ln 2Rv R

s R v t μμ

'

'

=

+?

?

==

2-5从实验知道,当物体速度不太大时,可以认为空气的阻力正比于物体的瞬时速度,设其比例常数为k 。将质量为m 的物体以竖直向上的初速度v 0抛出。 (1)试证明物体的速度为

t m k

t

m k

e v e k

mg v --+-=0)1(

(2)证明物体将达到的最大高度为

)1ln(020mg

kv k g m k mv H +-=

(3)证明到达最大高度的时间为

)1ln(0mg

kv k m

t H +=

证明:由牛顿定律可得

习题2-3

000

0022

0200ln (1)(2),()

ln(13t

v

v m m

t t k

k

x mg mg kv mdv dt mg kv

mg kv m mg t v e v e k mg kv k

mvdv

dx mg kv

mg kv u du kdv

k mgdu k mgdu

dx mdu dx mdu m u m u

mv kv m g x k k mg m t k --+-=++∴==-++=-

++==∴=-+=-+∴=-+=?

?

??dv

(1)-mg-kv=m ,

dt

,dv -mg-kv=mv ,dx 令,)

()0

ln

0t ln mg kv mg kv

mg kv m v k mg k +++∴=+当时,=即为到达最高点的时间

2-6 质量为m 的跳水运动员,从距水面距离为h 的

高台上由静止跳下落入水中。把跳水运动员视为质点,并略去空气阻力。运动员入水后垂直下沉,水对其阻力为-b v

2,其中b 为一常量。若以水面上一点为坐标原点O ,竖直向下为Oy 轴,求:(1)运动员在水中的速率v 与y 的函数关系;(

2)跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)

解:运动员入水可视为自由落体运动,所以入水时的速度为

0v =

02

20//0100

mg-f-F=ma mg=F f=bv dv a=dt v dy (2)0.4,0.1m v

y ln 5.76m

b y v v by m by m

dv v dy

dv b mv

dy

b dv m v

v v e m v v v ---=∴-=-=====??b

将已知条件

代入上式得,m

=-= 2-7一物体自地球表面以速率v 0竖直上抛。假定空气

对物体阻力的值为f =-km v 2,其中k 为常量,m 为物体质量。试求:(1)该物体能上升的高度;(2)物体返回地面时速度的值。

解:分别对物体上抛和下落时作受力分析(如图),

h

12

0m 1ln()2v 01

ln()

2(2)m v=v 1g y

v

v v

vdv dy g k g k y k g k g k k g vdv dy g k k =-++∴=-+∴+=-∴+

?

?

?

?

22

2

2

20max 22

2-/0dv mvdv

(1)-mg-k v =m

=,dt dy v v v 物体达到最高点时,=,故v h=y =dv mvdv

下落过程中,-mg+k v =m

=dt dy

-v v ()

2-8 质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力f = - k v ,k 为常数,求:(1) 子弹射入沙土后,

速度随时间变化的函数式;(2) 子弹进入沙土的最大深度。

解:(1)由题意和牛顿第二定律可得:

dt

dv m

kv f =-=, 分离变量,可得:vdt

dv m k =-

两边同时积分,所以:t m

k e

v v -=0

(2)子弹进入沙土的最大深度也就是v=0的时候子弹的位移,则:

由vdt

dv m k =-

可推出:dv k

m

vdt -

=,而这个式子两边积分就可以得到位移:00max 0v m m

x vdt dv v k k

==-=?? 。

2-9 已知一质量为m 的质点在x 轴上运动,质点只受到

指向原点的力2

/x k f -=,k 是比例常数。设质点在

A x =时的速度为零,求质点在4/A x =处的速度的大

y

f =-kv

mg

v

小。

解:由题意和牛顿第二定律可得:

dx dv

mv dt dx dx dv m dt dv m x

k f ===-

=2

再采取分离变量法可得:mvdv dx x k

=-2 ,

两边同时取积分,则:mvdv dx x

k

v A A ??=-024/

所以:mA

k

v 6=

2-10 一颗子弹在枪筒里前进时所受的合力大小为

3/1044005t F ?-=,子弹从枪口射出时的速率为

m/s 300。设子弹离开枪口处合力刚好为零。求:

(1)子弹走完枪筒全长所用的时间t ;(2)子弹在枪筒中所受力的冲量I ;(3)子弹的质量。 解:(1)由3/1044005

t F ?-=和子弹离开枪口处合力

刚好为零,则可以得到:03/1044005

=?-=t F 算出t=0.003s 。

(2)由冲量定义:

0.003

0.003

5

00.00352

400410/3400210/3

0.6I Fdt t dt

t t N s

==-?=-?=??

?

()

(3)由动量定理:0.003

0.60.6/3000.002I Fdt P mv N s m kg

==?==?==?所以:

2-11 高空作业时系安全带是非常必要的。假如一质量为51.0 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来。已知此时人离原处的距离为2.0 m ,安全带弹性缓冲作用时间为0.50 s 。求安全带对人的平均冲力。

分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲

力作用的时间是不同的;而在过程的初态和末态,人体的

速度均为零.这样,运用动量定理仍可得到相同的结果.

解 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为

gh 21=v (1)

在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有

()12Δv v m m t -=+P F (2)

由式(1)、(2)可得安全带对人的平均冲力大小为

()N 1014.1Δ2ΔΔ3?=+=+

=t

gh mg t m Δmg F v

2-12长为60cm 的绳子悬挂在天花板上,下方系一质量为1kg 的小球,已知绳子能承受的最大张力为20N 。试求要多大的水平冲量作用在原来静止的小球上才能将绳子打断?

解:由动量定理得000I mv I v m

?=-?∴=

如图受力分析并由牛顿定律得,

20

20

220/202.47mv T mg l mv T mg l

mg I l I Ns

-=

=+≥∴+?≥?≥

2-13一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为19.6m 。爆炸1.0s 后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为100m 。问第二块落在距抛出点多远的地面上?(设空气的阻力不计)

解:取如图示坐标系,根据抛体运动规律,爆炸前,物体在最高点得速度得水平分量为

(

)

1

010x 2x 12y 2x 0x (1),v 2mv mv 30mv mv 414v v 100x x v x t

=

=+=2

11112

1

物体爆炸后,第一块碎片竖直下落的运动方程为1

y =h-v t-gt 2

当碎片落地时,y =0,t=t 则由上式得爆炸后第一块碎片抛出得速度为1h-gt 2

=()

t 又根据动量守恒定律,在最高点处有

1

=()

211

=-22联立以上()-()式得爆炸后第二块碎片抛出时的速度分量分别为=2=2x 11

212x 2

2

22y 222214.7v t 5y =h+v t -60,x 500m

y ms v v ms gt y --====2

1

211h-gt 2t 爆炸后第二块碎片作斜抛运动,其运动方程为x =x +()

1()

2

落地时由式(5)和(6)可解得第二块碎片落地点得水平位置=

2-14质量为M 的人手里拿着一个质量为m 的物体,此人用与水平面成θ角的速率v 0向前跳去。当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出。问:由于人抛出物体,他跳跃的距离增加了多少?(假设人可视为质点)(自己算一遍)

解:取如图所示坐标,把人和物视为一系统,当人跳跃到最高点处,在向左抛物得过程中,满足动量守恒,故有

()0000

0m cos ()

v u mu v cos m mu

v v- cos m sin t g m sin x vt u

m g

v Mv m v u v v v v v θθθθθ

=+-???+M 式中为人抛物后相对地面的水平速率,-为抛出物对地面得水平速率,得=+

+M

人的水平速率得增量为==

+M

而人从最高点到地面得运动时间为=所以人跳跃后增加的距离为

==(+M )

2-15铁路上有一静止的平板车,其质量为M ,设平板车可无摩擦地在水平轨道上运动。现有N 个人从平板车的后端跳下,每个人的质量均为m ,相对平板车的速度均为u 。问:在下列两种情况下,(1)N 个人同时跳离;(2)一个人、一个人地跳离,平板车的末速是多少?所得的结果为何不同,其物理原因是什么?(典型)

解:取平板车及N 个人组成的系统,以地面为参考系,平板车的运动方向为正方向,系统在该方向上满足动量守恒。

考虑N 个人同时跳车的情况,设跳车后平板车的速度为v ,则由动量守恒定律得

0=Mv+Nm (v -u )

v =Nmu/(Nm+M) (1)

又考虑N 个人一个接一个的跳车的情况。设当平板车上商有n 个人时的速度为v n ,跳下一个人后的车速为v n -1,在该次跳车的过程中,根据动量守恒有

(M+nm )v n =M v n -1+(n-1)m v n -1+m(v n -1-u) (2) 由式(2)得递推公式

v n -1=v n +mu/(M+nm) (3) 当车上有N 个人得时(即N =n ),v N =0;当车上N 个人完全跳完时,车速为v 0,

根据式(3)有, v N-1=0+mu/(Nm+M)

v N-2= v N-1+mu/((N-1)m+M) ………….

v 0= v 1+mu/(M+nm)

将上述各等式的两侧分别相加,整理后得,

0n 0

mu v nm

,1,2,3....v v

M nm M Nm n N N +≤+=∑

N

=1=M+由于故有,即个人一个接一个地跳车时,平板车的末速度大于N 个人同时跳下车的末速度。这是因为N 个人逐一跳离车时,车对地的速度逐次增加,导致跳车者相对地面的速度也逐次增加,并对平板车所作的功也相应增大,因而平板车得到的能量也大,其车速也大。

2-16 一物体在介质中按规律x =ct 3 作直线运动,c 为

一常量。设介质对物体的阻力正比于速度的平方:

2kv f -=,试求物体由x 0 =0 运动到x =l 时,阻力所

作的功。

分析 本题是一维变力作功问题,仍需按功的定义式

??=x F d W 来求解.关键在于寻找力函数F =F (x ).根

据运动学关系,可将已知力与速度的函数关系F (v ) =k v 2 变换到F (t ),进一步按x =ct 3 的关系把F (t )转换为F (x ),这样,就可按功的定义式求解.

解 由运动学方程x =ct 3 ,可得物体的速度

23d d ct t

x

==

v 按题意及上述关系,物体所受阻力的大小为

3/43/242299x kc t kc k F ===v

则阻力的功为

??=x

F W d 3

/73/23/40

3/20

7

27d 9d 180cos d l kc x x kc x W l

o l

-

=-==?=???x F

2-17一人从10m 深的井中提水,起始桶中装有10kg 的水,由于水桶漏水,每升高1m 要漏去0.2kg 的水。求水桶被匀速地从井中提到井口,人所作的功。(典型)

解:水桶在匀速上提的过程中,加速度为0,拉力和重力平衡,在图示坐标下,水桶重力随位置的变化关系为

G =mg -αgy

其中α=0.2kg/m,人对水桶的拉力的功为

10

(mg gy dy 882J W α=?-)=

2-18如本题图所示,A 和B 两块板用一轻弹簧连接

起来,它们的质量分别为m 1和m 2。问在A 板上需加多大的压力,方可在力停止作用后,恰能使在跳起来时B 稍被提起。(设弹簧的劲度系数为k )

解:选取如图所示坐标系,取原点处为重力势能和弹性势能零点,作各种状态下物体的受力图。对A 板而言,当施以外力F 时,根据受力平衡有

11221122121212

(1)

ky -mgy =12(3)

F G F

ky mgy y y M N O F y F G G A N B +++''1211121

22221212=当外力撤除以后,由机械能守恒定律得,11

22

和为、两点对原点的位移。因为=ky ,F =k ,G =m g 上式可以写为,F -F =2G (2)由()和()式可得=当板跳到点时,板刚被提起,此时弹性力F =G ,

且F =F ,由式(3)可得F =G +G =(m +m )g

2-19如本题图所示,质量为m 、速度为v 的钢球,射向质量为M 的靶,靶中心有一小孔,内有劲度系数为k 的弹簧,此靶最初处于静止状态,但可在水平面上作无摩擦滑动,求子弹射入靶内弹簧后,弹簧的最大压缩距离。

解:设弹簧得最大压缩量为x0。小球与靶共同运动得速度为v1。由动量守恒定律,有

(

)1

222100()(1)

111mv ()kx 222212x mv m M v m M v =+++又由机械能守恒定律,有

=由()式和()式可得 2-20以质量为m 的弹丸,穿过如本题图所示的摆锤后,速率由v 减少到v/2。已知摆锤的质量为M ,摆线长度为l ,如果摆锤能在垂直平面内完成一个完全的圆周运动,弹丸的速度的最小值应为多少?

解:

习题2-19图

2

h

h

22

h

v

mv m v'(1)

Mv'

g(2)

l

v'

1

v'2gl Mv'3

2

v

M

M M

+

由水平方向的动量守恒有,

2

为了使摆锤能在垂直平面内作圆周运动,在最高

点时,摆线中的张力F=0,则,

M=

式中为摆线在圆周最高点的运动速率。

又由机械能守恒定律得

1

=+()

2

解上述三个方程,可得担丸所需速率的最小值为

2-21如本题图所示,一质量为M的物块放置在斜

面的最底端A处,斜面的倾角为α,高度为h,物块与斜

面的滑动摩擦因数为μ,今有一质量为m的子弹以速度

v0 沿水平方向射入物块并留在其中,且使物块沿斜面向上

滑动,求物块滑出顶端时的速度大小。

解:

(

)

01

2

cos()(1)

v

11

u2

22

12

v

mv M m v

α

α

α

=+

=+

2

22

21

在子弹与物块的撞击过程中,在沿斜面的方向上,

根据动量守恒有

在物块上滑的过程中,若令物块刚滑出斜面时的速度

为,并取A点的重力势能为0。由系统的功能原理可得

h

-(m+M)gcos(m+M)v(m+M)gh-(m+M)v

sin

由()、()式可得

2-22 如图2-40所示,在光滑水

平面上,平放一轻弹簧,弹簧一

端固定,另一端连着物体A、B,

它们质量分别为

A

m和

B

m,弹

簧劲度系数为k,原长为l。用力推B,使弹簧压缩0x,

然后释放。

求:(1)当A与B开始分离时,它们的位置和速度;(2)

分离之后,A还能往前移动多远?

解:(1)当A和B开始分离时,两者具有相同的速度,

根据能量守恒,可得到:2

2

2

1

)

(

2

1

kx

v

m

m

B

A

=

+,所

以:

x

m

m

k

v

B

A

+

=; x l=

(2)分离之后,A的动能又将逐渐的转化为弹性势

能,所以:

2

2

2

1

2

1

kx

v

m

A

=,则:

A

x=

2-23 如图2-41所示,光滑斜面与水平面的夹角为α=30°,

轻质弹簧上端固定。今在弹簧的另一端轻轻地挂上质量为

M= 1.0kg的木块,木块沿斜面从静止开始向下滑动。当木

块向下滑x=30cm时,恰好有一质量m=0.01kg的子弹,沿

水平方向以速度m/s

200

=

v射中木块并陷在其中。设弹

簧的劲度系数为N/m

25

=

k。求子弹打入木块后它们的

共同速度。

解:由机械能守恒条件可得到碰撞前木快的速度,碰

撞过程中子弹和木快沿斜面方向动量守恒,(瞬间)可得:

22

1

11sin

22

Mv kx Mgxα

+=

1

0.83

v

?=

(碰撞前木快的速度)

1

cos

Mv mv m M v

α'

-=+

()

0.89

v'

?=-

2-24 二质量相同的

小球,一个静止,另一个以速

度0与静止的小球作对心碰

撞,求碰撞后两球的速度。(1)

假设碰撞是完全非弹性的;(2)

假设碰撞是完全弹性的;(3)假设碰撞的恢复系数5.0

=

e。

解:由碰撞过程动量守恒以及附加条件,可得

(1)假设碰撞是完全非弹性的,即两者将以共同的

速度前行:mv

mv2

=

所以:

2

1

v

v=

(2)假设碰撞是完全弹性的,

2

1

mv

mv

mv+

=

2

2

2

1

2

02

1

2

1

2

1

mv

mv

mv+

=

两球交换速度,0

1

=

v

2

v

v=

习题2-21图

图2-40 习题2-22 图

(3)假设碰撞的恢复系数5.0=e ,也就是

210mv mv mv +=

5.020

101

2=--v v v v

所以:0141v v =

, 024

3v v = 2-25如本题图所示,一质量为m 的钢球,系在一长为l 的绳一端,绳另一端固定,现将球由水平位置静止下摆,当球到达最低点时与质量为M ,静止于水平面上的钢块发生弹性碰撞,求碰撞后m 和M 的速率。

2222M M M m 1

mv mgl v 2

111

mv mv Mv 222mv mv Mv m M v m M v v '+'+'∴==解:由机械能守恒得,碰前的速度为=,由碰撞前后动能和动量守恒得==-=

+

2-26 如图2-43所示,两个质量

分别为m 1和m 2的木块A 、B ,用一劲度系数为k 的轻弹簧连接,放在光滑的水平面上。A 紧靠墙。今用力推B 块,使弹簧压缩x 0然后

释放。(已知123m m =)求:(1)释放后B A 、两滑块速度相等时的速度大小;(2)弹簧的最大伸长量。

解:分析题意,可知在弹簧由压缩状态回到原长时,是弹簧的弹性势能转换为B 木块的动能,然后B 带动A 一起运动,此时动量守恒,可得到两者相同的速度v ,并且此时就是弹簧伸长最大的位置,由机械能守恒可算出其量值。

202

0222121kx v m = v v 2)(2102m m m +=

所以m

k

x v 3430

= (2)

22122

0222

12121v m m kx v m )(++= 那么计算可得:02

1

x x =

2-27如本题图示,绳上挂有质量相等的两个小球,两球碰撞时的恢复系数e =0.5。球A 由静止状态释放,撞击球B ,刚好使球B 到达绳成水平的位置,求证球A 释放前的张角θ 应满足cos θ = 1/9。

证明:设球A 到达最低点的速率为v

,根据机械能守恒有

()

2

212(1cos ),2

(1)

,,0.50.5(2)(3)

3

(2),(3)441

(5)2

1451cos 9

A B B A

B A B A B B mv mg l v A B v v v v e v

v v v A B mv mv mv v mv mgl v θθ=-=-=

=-=+==

==

所以,设碰撞后,两球的速率分别为由题意得:

即,两球碰撞时水平方向动量守恒:由式得

碰撞后B 球机械能守恒,故有将(),()代入()得:

2-28 如图2-45所示,一质量为m ,半径为R 的球壳,静止在光滑水平面上,在球壳内有另一质量也为m ,半径为r 的小球,初始时小球静止在图示水平位置上。放手后小球沿大球壳内往下滚,同时大球壳也会在水平面上运动。当它们再次静止在水平面上时,问大球壳在水平面上相对初始时刻的位移大小是多少?

解:系统在水平方向上不受外力,因而系统质心的水平位置始终不变。如图所示,初始时,系统的质心到球心O 的距离为(从质心公式算)

2

r

R x C -=

小球最终将静止于大球壳的最下方,而系统质心的水平

位置始终不变,因而大球壳在水平面上相对初始时刻的

习题2-25图

图2-43 习题2-26 图

位移大小(另外从质心公式算)2

r

R x -=? 2-29 如图2-46所示,从坐标原点以v 0的初速度发射一发炮弹,发射倾角θ = 45°。当

炮弹到达g

v x 3220

1= 处时,突

然爆炸分成质量相同的两块,其中一块竖直下落,求另一块落地时的位置x 2是多少?

解:炮弹爆炸后其质心仍按原抛物线轨道运动,因而落地

后的质心坐标为g

v x C 20

=

由式2

12

211m m x m x m x C ++=,且 m m m ==21,有

g

v

g v x x x C 20

20

1234)311(22=

-=-=第三章 刚体力学

3-1 一通风机的转动部分以初角速度ω0绕其轴转动,

空气的阻力矩与角速度成正比,比例系数C 为一常量。若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,

又因为转动定理 dt

d J

J M ωβ== dt

d J

C ωω=-∴ dt J C d t ??-=∴00ωωωω t J

C -=0ln

ωω t J

C e

-=0ωω

当021ωω=

时,2ln C

J

t =。 (2)角位移?=

t

dt 0

ωθ?

-=2ln 0

0C J

t J

C dt e

ωC

J 0

21ω=

所以,此时间内转过的圈数为C

J n πωπθ

420=

=。 3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为

)(12

22b a ab J +σ

=。

其中a ,b 为矩形板的长,宽。

证明一:如图,在板上取一质元dxdy dm σ=,对与板

面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ?

=2

dxdy y x a a b b σ?

?

--+=2222

22)(

)(12

22b a ab +=

σ

证明二:如图,在板上

取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为

212

1

b dm ?,根据平行轴定理,对与板面垂直的、通过几何中

心的轴线的转动惯量为

22)2(121x a

dm b dm dJ -+?=

dx x a

b dx b 23)2(121-+=σσ 3312

1121ba a b dJ J σσ+==∴?)(1222b a ab +=σ

(这

道题以右边为坐标原点,左为正方向)

3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,

T

图2-46 习题2-29 图

图3-28 习题3-3图

大学物理(第五版)上册课后习题答案马文蔚

习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。 下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理 简明教程 第二版 课后习题 答案 赵进芳

大学物理 简明教程 习题 解答 答案 习题一 1-1 |r ?|与r ?有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时, 有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先 计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理上册课后习题答案

大学物理上册课后习题答案

习题解答 习题一 1-1 |r ?|与r ? 有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解: (1)r ?是位移的模,?r 是位矢的模的增量, 即r ?1 2r r -=,1 2 r r r ? ?-=?; (2)t d d r 是速度的模,即t d d r = =v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题 1-1图 (3) t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量.

∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d τ τ???+= 式中dt dv 就是加速度的切向分量. ( t t r d ?d d ?d τ??Θ与的运算较复杂,超出教材规定,故不予 讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r = 2 2 y x +,然后根据v =t r d d ,及a = 2 2d d t r 而求得结果; 又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种 方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 j y i x r ? ??+=, j t y i t x t r a j t y i t x t r v ??? ???? ?222222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理第一章答案

1.5一质点沿半径为 0.10m的圆周运动,其角位置(以弧度表示)可用公式表示:θ= 2 +4t 3.求: (1)t = 2s时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答] (1)角速度为 ω= dθ/dt = 12t2 = 48(rad2s-1), 法向加速度为 an = rω2 = 230.4(m2s-2); 角加速度为 β= dω/dt = 24t = 48(rad2s-2), 切向加速度为 at = rβ= 4.8(m2s-2). (2)总加速度为, 当at = a/2时,有4at2 = at2 + an2,即.由此得, 即,

解得. 所以=3.154(rad). (3)当at = an时,可得rβ= rω2, 即24t = (12t2)2, 解得. 1.7一个半径为R = 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体 A.在重力作用下,物体A从静止开始匀加速地下降,在Δt = 2.0s内下降的距离h= 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度. [解答]圆盘边缘的切向加速度大小等于物体A下落加速度. 由于,所以 at = 2h/Δt2 = 0.2(m2s-2). 物体下降3s末的速度为 v = att = 0.6(m2s-1), 这也是边缘的线速度,因此法向加速度为 =

0.36(m2s-2). 1.8一升降机以加速度 1.22m2s-2上升,当上升速度为 2.44m2s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m.计算: (1)螺帽从天花板落到底面所需的时间; (2)螺帽相对于升降机外固定柱子的下降距离. [解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为.由题意得h = h1 - h2,所以,解得时间为 = 0.705(s). 算得h2 = - 0.716m,即螺帽相对于升降机外固定柱子的下降距离为 0.716m. [注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程, 由此可计算钉子落下的时间,进而计算下降距离. 第一章质点运动学 1.1一质点沿直线运动,运动方程为x(t) = 6t2 - 2t 3.试求: (1)第2s内的位移和平均速度;

大学物理(吴柳主编)上册课后习题答案

大学物理(吴柳主编) 上册课后习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

说明: 上册教材中,第5,6,7等章的习题有答案; 第1,2,4,8章的习题有部分答案; 第3,9,10,11章的习题没有答案。 为方便学生使用,现根据上学期各位老师辛苦所做的解答,对书上原有的答案进行了校对,没有错误的,本“补充答案”中不再给出;原书中答案有误的,和原书中没有给出答案的,这里一并给出。错误之处,欢迎指正! 第1章 1.4. 2.8×10 15 m 1.5.根据方程中各项的量纲要一致,可以判断:Fx= mv 2/2合理, F=mxv , Ft=mxa , Fv= mv 2/2, v 2+v 3=2ax 均不合理. 第2章 2.1 (1) j i )2615()2625(-+-m; )/]()2615()2625[(45 1151020)2615()2625(s m j i j i t r v -+-=++-+-=??= (2)52m; 1.16m/s 2.2 (1) 4.1 m/s; 4.001m/s; 4.0m/s (2) 4m/s; 2 m.s -2 2.3 3m; m 3 4π ; 140033-s .m π方向与位移方向相同; 1.0m/s 方向沿切线方向 2.5 2π (m); 0; 1(s) 2.6 24(m); -16(m) 2.8 2 22 t v R vR dt d +=θ 2.10 (1) 13 22 =+y x (2) t v x 4sin 43ππ-=;t v y 4 cos 4π π=;t a x 4cos 1632ππ-=;t a y 4sin 162ππ-= (3) 2 6= x ,22=y ;π86- =x v ,π82=y v ;,2326π-=x a 2 322π-=y a 2.12 (1) ?=7.382θ,4025.0=t (s),2.19=y (m) (2) ?=7.382θ,48.2=t (s),25.93=y (m)。 2.14 (1) 22119x y - = (2) j t i v 42-=;j a 4-= (3) 0=t 时,j r 19=; 3=t 时,j i r +=6。(4)当9=t s 时取“=”,最小距离为37(m )。

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ···················································································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···························· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···························· [×] 4. 质点作圆周运动时的加速度指向圆心. ················································································ [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠ . · ··············································································· [√] 6. 只有切向加速度的运动一定是直线运动. ············································································ [√] 7. 只有法向加速度的运动一定是圆周运动. ············································································ [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ································································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ···································· [√] 10. 牛顿定律只有在惯性系中才成立. ························································································ [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 12. 一小球沿斜面向上运动,其运动方程为2 54SI S t t =+-() ,则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22 r at i bt j =+ (其中a 、b 为常量)则 该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速 度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1 v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

《大学物理学》第二版上册课后答案

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相 等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什 么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一 定保持不变? (5) r ?和r ?有区别吗?v ?和v ?有区别吗? 0dv dt =和0d v dt =各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求 出22r x y = + dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a =你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此 其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均

大学物理(机械工业出版社)上册课后练习答案

第一章 质点的运动 1-1 已知质点的运动方程为:2 3010t t x +-=, 2 2015t t y -=。式中x 、y 的单位为m ,t 的单位为s。试 求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。 分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向. 解 (1) 速度的分量式为t t x x 6010d d +-== v t t y y 4015d d -==v 当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为 12 0200s m 0.18-?=+=y x v v v 设v o 与x 轴的夹角为α,则2 3 tan 00-== x y αv v α=123°41′ (2) 加速度的分量式为2s m 60d d -?== t a x x v , 2 s m 40d d -?-== t a y y v 则加速度的大小为22 2 s m 1.72-?=+= y x a a a 设a 与x 轴的夹角为β,则3 2tan -== x y a a β β=-33°41′(或326°19′) 1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。 分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为 t a d ) (d =v v 后再两边积分. 解选取石子下落方向为y 轴正向,下落起点为坐标原点. (1) 由题 v v B A t a -== d d (1) 用分离变量法把式(1)改写为 t B A d d =-v v (2) 将式(2)两边积分并考虑初始条件,有 ??=-t t B A 0d d d 0v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速 度或收尾速度. (2) 再由)1(d d Bt e B A t y --== v 并考虑初始条件有 t e B A y t Bt y d )1(d 00? ?--= 得石子运动方程)1(2-+=-Bt e B A t B A y 1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加 速度,即a = - kv 2 ,k 为常数。在关闭发动机后,试证: (1)船在t 时刻的速度大小为 1 00 += t kv v v ; (2)在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +; (3)船在行驶距离x 时的速率为v=v 0e kx 。 [证明](1)分离变数得 2 d d v k t v =-, 故 020 d d v t v v k t v =-??, 可得: 11 kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t , 所以:00001 d d d(1)1(1) v x t v kt v kt k v kt = =+++ 积分 000 1 d d(1)(1)x t x v kt k v kt = ++? ?.

第一章大学物理答案

第一章 思考题 1-1何谓参考系和坐标系?为什么要引入这些概念? 答:为描述物体的运动状态而选择为标准的参考物体称为参考系;与参考系相固结的坐标系称为坐标系;因为运动具有相对性,并对物体相对于参考系的运动规律要作出定量描述。 1-2何谓位置矢量?试写出位置矢量在直角坐标系Oxyz 中的正交分解式,并说明如何计算其大小和方向?为什么说用位置矢量与用位置坐标描述质点的位置是等效的? 答:由参考点指向质点所在位置的矢量; 222 cos ,cos ,cos r xi yj zk r r x y z x y z r r r αβγ=++==++=== 因为一旦质点所在位置的位置坐标确定,则其对应的位置矢量也就唯一确定,反之亦然。 1-3试说明位移和路程的意义及两者之间的区别. 答:位移是指质点在一段时间间隔内位置的变化;而路程是指在一段时间间隔内质点沿轨迹所经过的路径的总长度。区别:1.位移是矢量,而路程是标量;2.物理意义不同;3.位移只与始末位置有关。 1-4试说明速度的定义,其大小和方向如何计算? 答:速度是位置矢量对时间的变化率。 大小:ds v v dt == 方向:沿质点所在位置处曲线的切线方向,并指向质点运动的一方。 1-5速度和速率有何区别?有人说:“一辆汽车的速度最大可达每小时120千米,它的速率为向东每小时75千米?”你觉得这种说法有何不妥? 答:1.速度是矢量,而速率是标量;2.物理意义不同。只能说速率最大或最小;速率是标量。 1-6试说明加速度的定义. 答:速度对时间的变化率或位矢关于时间的二阶导数。 1-7当质点作平面运动时,试列出其位置矢量、位移、速度和加速度等矢量的分量表示式,由此如何计算这些量的大小和方向? 答:1.在角坐标系中: r xi yj =+ ,r xi yj ?=?+? ,dx dy v i j dt dt =+ 2222d x d y a i j dt dt =+ 22r r x y ==+ ,22r r x y ?=?=?+? tan ,tan y y x x αα?'== ? 22x y v v v v == + ,22x y a a a a ==+

大学物理教程 上 课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 或1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 位移的大小 r ==r V (3) 2x dx v t dt = = 2x x dv a dt = =, 2y y dv a dt == 当2t s =时,速度和加速度分别为 22a i j =+r r r m/s 2 1-4 设质点的运动方程为 cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 (2)质点的速率为 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作 用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的 阻力(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等 于地球半径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能; (2) 卫星在地球引力场中的引力势能. 解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有 卫星的动能为 212 6k GMm E mv R == (2)卫星的引力势能为 2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以 500/m s 的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后 停止。求: (1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

相关文档
最新文档