Natural Ventilation and Indoor Air Quality Practice for Sustainable Buildings a Design Appr

Natural Ventilation and Indoor Air Quality Practice for Sustainable Buildings a Design Appr
Natural Ventilation and Indoor Air Quality Practice for Sustainable Buildings a Design Appr

Natural Ventilation and Indoor Air Quality Practice for Sustainable Buildings: a Design Approach Mario De Grassi 1 and Berardo Naticchia 2

1Dept. of Architecture and Town Planning, University of Ancona

Via delle Brecce Bianche, 60131 Ancona, Italy

Phone +39 071 2204584 Fax +39 071 2204582

E-mail: Degrassi@Idau.Unian.It

2IDAU, Facoltà di Ingegneria,

Via delle Brecce Bianche, 60131 Ancona, Italy

Phone +39 071 2204584 Fax +39 071 2204582

E-mail: Naticchia@Idau.Unian.It

ABSTRACT: An essential role of architecture is to provide built environments that sustain occupants’ safety, health, physiological comfort, and productivity. Because of complexity of modelling for environmental quality design, its importance has often been overlooked in the quest for energy and environmental conservation. About the air quality issue, the benefits of suitable natural ventilation go beyond the need for oxygen and the energy saving in cooling phases. Continuous recirculation of interior air exposes people to concentrated levels of bacteria and chemicals within the building and forced ventilation may often produce incompatible noise level with activity and well-being of occupants.

Green building practices offer an opportunity to create environmentally sound and resource efficient b uildings by using an integrated approach to design. Integration means to face architectural and environmental aspects of design contemporarily, without disjoining them in a hierarchical sequence of resolving. This requires designer ability of understanding and handling complex physical knowledge in order to correctly address preliminary design decisions rather than commissioning the performance assessment when the design features are truly defined. This paper describes VENTPad, a design environment we are developing to help students and architects in understanding and therefore planning suitable internal fluid-dynamic behaviour of buildings (especially focused on wide internal spaces, like concert halls and theatres, which behaviour is more manifold, thus pedagogically more interesting, than residential buildings).

A novel contribution of the system approach, compared with conventional numerical simulation techniques, is the ability to generate explanations about the building physical behaviour, diagnosing contributes of each relevant design decision to the system performance.

KEYWORDS: Preliminary Sustainable Design, Qualitative Modelling, Education

1. INTRODUCTION

Buildings have diverse effects on the environment during their entire life cycles. Although the tangible impacts are visible only after construction begins, decisions made on the drawing board have long-term environmental consequences. To achieve environmental sustainability in the building sector, architects must be educated about environmental issues during their professional training. Faculties have to foster environmental awareness, introduce students to environmental ethics, and developing their skills and knowledge base in sustainable design. In spite of the urgent need, teaching materials specifically designed for sustainable architecture have been virtually non-existent.

While there is a universal consensus on the importance of environmental education in architecture, the questions of what, when, and how to teach specific subjects related to environmental sustainability cannot be easily answered. One reason for this is that architecture covers a vast number of disciplines ranging from art to science; determining the level and extent of environmental education within design, technology, history, theory, practice, and environmental behaviour is a formidable task.

At present, in the absence of a clear pedagogical framework, sustainable design is being presented as an ethical issue rather than science. While a change of lifestyles and attitudes toward the local and global environments is important, the development of scientific approach that addresses the implementation of environmental design goals is urgent.

The unique way to this aim, is that of giving students the scientific skills and modelling bases to seek and find sustainable design solutions rather than giving them a set of typological solutions.

About this issue, while many energy conservation materials and quantitative analysis methods have been developed since the 1970s’, resources for addressing larger environmental design techniques are greatly lacking. To date, advances made in methods to predict and measure building airflows have truly revolutionised the fields of building ventilation and air quality research in the past two decades, so that many simulation techniques for natural ventilation and

indoor

air quality prediction are well established. Anyway a variety of problems arise in synthesising and applying design principles in the context of ‘green buildings’ design in view of the total environmental performance.

This difficulty stems largely from the complexity of the fluid-dynamic behaviour, because of its evident non-linearity and instability. This often forces to place one’s trust in computational or experimental numerical results, without a chance of explaining the causal framework of calculated performance or forecasting the stability of observed physical behaviour.

Consequently, we presently find ourselves armed with a veritable arsenal of tools to evaluate the thermal comfort, air quality and energy conservation efficacy of existing and proposed building ventilation systems. Yet, ironically, we have yet to develop tools to directly answer simple design questions relating to building ventilation: How wide should windows be opened in a given building for wind-driven cross ventilation on a moderate summer day? How should I configure the roof to mitigate air recirculation which obstacles the dilution of internally generated pollutants and exposes people to concentrated levels of bacteria and chemicals within the building?

Incidentally, the role that spaces shape and openings geometry play in setting a local as well as global sound fluid-dynamic behaviour is quite central, so that architectural and environmental design decisions can be never disjoined to study them in a strictly hierarchical sequence.

Then the challenging opportunity facing researchers today is that of synthesising design techniques to handle and explain the complexity concealed in numerical simulation results and experimental data. A method is needed, to examine building environmental response from an engineering point of view rather than a physicist one that is allowing the arrangement of design features by assuming sustainability criteria as the basis for comprehensive evaluation of the environmental building performance.

Such a tool could support the development of students’ and architects’ abilities to explore, assess, and pursue various alternatives for sustainable design with special attention to the close integration between architectural and scientific-technical issues.

The aim we propose requires a qualitative understanding and representation of how the studied system behaves, by deriving from raw and unstructured numerical data and from a ground knowledge of general physical laws, a framework of explicit relationships among a selected set of relevant design variables.

2. THE QUALITATIVE PHYSICAL MODELLING APPROACH

About this aim, computer applications in design have pursued two main development directions: analytical modelling and information technology. The former line has produced a large number of tools for reality simulation (i.e. finite element models), the latter is producing an equally large amount of advances in conceptual design support (i.e. artificial intelligence tools). Nevertheless we can trace rare interactions between computation models related to those different approaches. This lack of integration is the main reason of the difficulty of analytical methods application to the preliminary stage of design, where logical and quantitative reasoning are closely related in a process that we often call ‘qualitative evaluation’.

In this paper, after a brief survey about the current state of qualitative physical modelling applied to design, we propose a general approach of building natural ventilation modelling by means of Bayesian networks.

We are employing this technique to develop VENTPad, a tutoring and coaching system to support natural ventilation modelling of buildings in the preliminary stage of design.

This tool explores the possibility of modelling the causal mechanism that operate in real systems in order to allow a number of integrated logical and quantitative inference about the fluid-dynamic behaviour of buildings.

It represents an innovative connection tool between logical and analytical modelling in preliminary design aiding, able to help students or unskilled architects, both to guide them through the analysis process of numerical data (i.e. obtained with sophisticate Computational Fluid Dynamics software) or experimental data (i.e. obtained with laboratory test models) and to suggest improvements to the design.

VENTPad relies on a probabilistic causal representation, to qualitatively express the knowledge of fluid-dynamics needed to explain the ventilation behaviour of a space.

We view VENTPad as part of a virtual laboratory, a conceptual CAD environment consisting of facilities for assembling, analysing and testing design ideas. By working in this software environment, students can ‘build’ their designs and try out improving them without expense or danger. In simpler domains some commercial software exists that can be viewed as virtual laboratories (e.g. Electronics Workbench) but a novel contribution of VENTPad, compared with these tools, is the ability to generate explanations about the system response, diagnosing contribute of each relevant design parameter or boundary condition to the system behaviour. For educational applications, explanation generation is vital, to help students see what aspects of a situation are important and to tie what they are observing back to fundamental principles.

This aim requires a qualitative understanding and representation of how the studied system behaves, by deriving from raw and unstructured numerical data and from ground knowledge of general physical laws, a framework of explicit relationships among a selected set of variables, which describes the specific system behaviour.

This idea constitutes the original motivations of the research area called ‘qualitative physics’ whose main aim is the development of intelligent tutoring systems and learning environments for physical domains and complex systems. This paper demonstrates how a synergistic combination of qualitative physics and other AI techniques can be used to create

an intelligent learning environment for students learning to analyse and design natural ventilation in buildings. Pedagogically this problem is important because natural ventilation involves the integration of complex physical, thermodynamic and fluid-dynamic knowledge, an area normally closed to architects.

The methodological approach of qualitative physics is based on capturing the tacit knowledge engineers use to organise and control knowledge gained through formal training. The initial motivation for qualitative physics was to set up and guide the solution of textbook motion problems (de Kleer 1975). Since then, research has mainly focused on purely qualitative reasoning (Bobrow 1984), and significant progress has been made. I believe the time is right to begin exploring the integration of qualitative and quantitative reasoning again. In particular, the long-range goal of my research is to develop a system which can automatically perform engineering analyses of design problems in a human-like way. This paper describes a first step towards that goal.

Studies of natural ventilation problem solving have tended to focus on quantitative reasoning. We begin instead with the view that qualitative models are the starting point for the accumulation and use of more sophisticated, quantitative models. This view is widely held in the mental models literature (Gentner and Stevens 1983), and widely but less formally in the engineering community.

In problem solving, the analysis begins by constructing a qualitative understanding of the situation. This initial understanding provides the framework for further analyses, such as deriving and solving sets of equations. Developing a correct qualitative understanding of the problem is essential to solving complex problems. Qualitative simulation is used to verify that questions make sense by ensuring that the behaviour mentioned could actually occur.

We have tested these ideas through implementation in a program called VENTPad, which solves simple natural ventilation design problems typically addressed at the preliminary design stage.

Section 3 of this document, describes the pedagogical problems that motivated the design of VENTPad, including a brief overview of nature of fluid-dynamic issues in design. Section 4 outlines the causal modelling approach of building behaviour that we use to integrate predictive with diagnostic support in guiding the preliminary design and its successive improvement or correction. How VENTPad represents the causal framework, which operates in the airflow behaviour of a simple application, is the subject of Section 5, with Section 6 outlining our plans for future work.

3. COMPLEXITY OF NATURAL VENTILATION PROBLEM IN DESIGN

A variety of problems arise when teaching students how to design and analyse the natural ventilation design principles.

The main problem stems largely from the complexity of the fluid-dynamic behaviour, because of its evident non-linearity and instability which often forces to place one’s trust in computational techniques without critics or possibility of explaining numerical or experimental results.

Advances made in methods to predict and measure building airflows have truly revolutionised the fields of building ventilation and air quality research and practice in the past two decades. Tracer gas techniques have been extended and refined to allow more accurate, better-characterised, and more complete multizone measurements of airflows within buildings. Varieties of rigorously defined ventilation effectiveness metrics have grown out of these advances and have placed ventilation system evaluation on a solid objective basis.

Macroscopic methods of airflow analysis have been generalised to allow integrated modelling of wind-driven, buoyancy-driven, and mechanically-forced airflow in multizone building systems of arbitrary complexity. The global predictive capability of macroscopic simulation methods have been complimented by a constellation of microscopic methods of analysis, together placed under the more familiar rubric of Computational Fluid Dynamics (CFD), that allow investigation of the details of airflow around buildings and within single and, at this point, simply and well-connected collections of rooms.

Consequently, we presently find ourselves armed with a veritable arsenal of tools to evaluate the thermal comfort, air quality and energy conservation efficacy of existing and proposed building ventilation systems. Yet, ironically, we have yet to develop tools to directly answer simple design questions relating to building ventilation: How wide should windows be opened in a given building for wind-driven cross ventilation on a moderate summer day? How should a ventilating monitor and building windows be configured to mitigate internal and solar gains on the same summer day? What size fan is needed to assist stack-driven airflow through the monitor on a more extreme summer day?

A typical numerical output of computational fluid-dynamic software is showed in figure 1, where the natural ventilation air velocity field computed for a concert hall design is graphically rendered. As we can readily realise, the sophisticated data that appear to give all needed information of interest, become intractable when for example we ask ourselves what could we do in order to reduce the re-circulation of air due to the vortex that obstruct the extraction of exhaust air above the stage.

There’s no tool at moment to support this design problem.

Figure 1: Air movement patterns within a concert hall, obtained with numerical simulation.

Because of this lack only a trial and error approach is available to building, improving or correcting design from a natural ventilation point of view. This fact leads students or unskilled engineers to avoid exploring multiple design alternatives and to avoid carrying out trade-off studies; moreover they tend to get bogged down in carrying out routine calculations often spending time merely in solving data input problems.

VENTPad was designed specifically to help students learn natural ventilation by providing an intelligent learning environment that handles qualitative routine calculations, facilitates sensitivity analyses, helps students keep track of modelling assumptions, and detects physically effectiveness of designs.

3.1 FLUID-DYNAMIC MODELS FOR NATURAL VENTILATION IN DESIGN

A building system may be considered to be continuum within which the state variables of temperature T, pressure p, air velocity v, and concentration of species ‘i’ C i vary in space, x, y, z, and in time, t. The variation of these state variables is governed by fundamental mass, momentum and energy conservation principles, bound by environmental and thermal-mechanical-chemical boundary conditions, that allow prediction of the spatial and temporal variation of these state variables (see Awbi 1991 for an overview).

Broadly speaking, two numerical approaches are commonly used for this prediction, namely microscopic and macroscopic analysis.

Microscopic analysis, based typically on finite difference or finite element techniques, approximates the continuously defined state variables by a finite set of spatially discrete but temporally continuous state variables defined at or associated with discrete (mesh) points ‘j’ within the continuum. Microscopic methods of analysis provide the means to predict comfort variables and, importantly, their spatial variation within rooms (air dry bulb temperature and velocity are directly predicted while mean radiant temperature and RH distributions may be easily computed at each of the room air mesh points from computed surface temperatures and vapour-phase water concentrations respectively). As a result, microscopic analytical evaluation of comfort in rooms has become one of the primary applications of computational fluid-dynamics (see, for example Awbi and Gan 1994, Gan 1996). In spite of the direct utility of the microscopic approach to comfort prediction, several limitations must be noted, because of its expensiveness (in terms of data input and computation time often longer than a day), the special expertise needed to implement it and to evaluate the results. For this reason it remains a research tool and is very seldom applied in practice.

Macroscopic analysis, based on idealising the building system as a collection of one or more control volumes (a space whose behaviour is well known) linked by discrete heat or mass transport paths, also approximates the continuously defined state variables by a finite set of spatially discrete but temporally continuous state variables but now the discrete state variables are associated with either the control volumes or discrete transport paths (windows and doors). Macroscopic methods can provide an economic and accessible means to predict simple measures of thermal comfort within rooms (e.g., spatially averaged room air dry bulb temperature, mean radiant temperature, air velocity, and relative humidity). While they can not provide the spatial detail offered by microscopic analysis (frequently missing local phenomena which may considerably affect comfort as air re-circulation which reduce the diffusion of fresh air in specific zones), macroscopic methods can be readily applied to whole building systems and configured to allow an integrated consideration of interacting building systems (e.g. heat transfer in the building fabric and envelope, HVAC systems, lighting systems, and natural ventilation systems).

As in the microscopic case, however, these methods have been formulated to support only a trial and error approach to building design, nevertheless macroscopic analysis allows to link the response of the system directly to key design parameters. For this reason we use a macroscopic model to illustrate our approach of assembling qualitative models; nevertheless microscopic modelling or experimental data could also be used. In this case a more expensive analysis is required in order to extract the causal relationships between relevant state variables and key design parameters.

This makes it possible the integration of both approaches peculiarity; on the one hand the ability of detecting local characteristic of air motion within buildings but on the other hand the possibility of linking these characters directly with key design parameters.

Thus as an example, consider a building system idealised as a collection of zones linked by discrete airflow paths and conductive heat transfer paths.

Macroscopic discrete state variables of pressure and temperature will be associated to each of the zones (i.e. the pressure associated with a specific elevation within the zone identified in the figure 2 and the temperature associated with the spatial mean air temperature within the zone). Similarly, an outdoor ambient reference node will be associated with the ambient pressure and temperature. Surface temperature variables will be associated with the surface of each of the several conductive heat transfer paths within the building system and finally, the mass flow rate of air through each of the several discrete airflow paths will be identified.

,T i ) l

m &) (P 0

Figure 2: Macroscopic discrete representation of a multizone building ventilation model.

With these variables defined, one may apply mass and energy conservation principles to form systems of equations governing heat transfer and airflow in the building system (see Walton 1989 for details).

The model in usual case is constituted of rather complex coupled systems of non-linear equations. For example the individual pressure-flow relations for the discrete paths are generally non-linear but nevertheless depend on key design parameters of the flow path (e.g. size of window opening, speed of a ventilation fan, or height of a monitor window).

In most practical situations, however, it will not be possible to establish this relationship formally as the combined system of equations will be hopelessly complex. Consequently, it will be necessary to establish the relation numerically by systematically varying key design parameters over a range of reasonable values and solving for the system response (i.e. for a given building and ambient and operating conditions). Whether formally or numerically derived, one may establish the relation between system response and the key design parameters for a given design problem and for a given boundary condition vector:

{}(){}{}()

{}{}(){}φφφRH m T f RH f m f T ===,,&& where T , m & and RH are surface temperature, air mass flow rate and relative humidity vectors while φ is the vector of key design parameters.

This relationship could be very complex, because of the non-linearity and the instability of t h e system whose behaviour can drastically change with varying design parameters or boundary conditions.

By combining the system response results developed in terms of the key design parameters, with a comfort metric (i.e. considering for a given zone ‘i’ the dry bulb temperature and air velocity along with the spatial average of the mean

radiant temperature) we may establish the relation between the T , m

&, RH and the design parameters. As we can readily deduce, the mathematical model embodies in general a system of coupled equations, which it is not possible to explicitly solve in terms of design parameters. So we can use this model (as well as a microscopic numerical model) only to predict the behaviour of a well-defined system and nothing we can say about the strategy to be adopted in order to modify that behaviour in a required way.

4. EXPLICIT CAUSAL MODELING OF PHYSICAL BEHAVIOUR

Our efforts was aimed to support the decision making, with particular attention to the preliminary stage of design when the student is involved in complex inferences which integrate prediction and diagnosis in order to guide its trial and error activity. Numerical analysis approaches are directed instead only to predictive analysis while diagnosing numerical data (obtained through simulations or testing physical models) is essential to take corrective actions.

Bayesian Networks (also known as Belief networks or causal diagrams) we have employed in VENTPad, were developed to model distributed processing in reading comprehension, where both semantical expectations and perceptual evidence must be combined to form a coherent interpretation. The ability to co-ordinate bi-directional inferences filled a void in expert systems technology of the early 1980’s, and Bayesian networks have emerged as a general representation scheme for uncertain knowledge. Bayesian networks are directed acyclic graphs in which the nodes represent variables of interest and the links represent informational or causal dependencies among the variables. The strength of a dependency is represented by conditional probabilities that are attached to each cluster of parents-child nodes in the network.

For variables without parents (as the boundary condition variables), the probabilities are unconditional distributions.

With these data, a Bayesian network allows one to calculate the joint distribution over all variables1 from which all probabilistic queries, involved in reasoning, can be answered coherently using probability calculus.

They can be used t o model the causal mechanisms that operate in real systems rather than, as in many other knowledge representation schemes (e.g., rule-based systems and neural networks), the reasoning process. This model is obtained by representing the causal dependencies among the system variables as probabilistic functions (i.e., the probability that variable C assumes the value z when A assumes the value x and B assumes the value y is equal to 0,85, written P(C=z|A=x,B=y)=0.85, means that there’s a high probability that the state (x,y) forces C to assume the value z).

Bayesian networks effectively allow a number of integrated logical and quantitative inferences about the behaviour of physical systems and their application could be an interesting connection tool between logical and analytical procedures in preliminary design aiding.

The inference process based on bayesian networks is described in large body of literature and is best summarised in (Pearl 1988). Anyway I refer to following basic works for key concepts and terminology related to these issues (Pearl 1988, 1996; Shachter 1990; Jensen 1996; Spirtes et al. 1993). Bayesian networks have been applied to problems in medical diagnosis (Heckerman et al. 1992; Spiegelhalter, et al. 1989), map learning (Dean 1990), language understanding (Charniak and Goldman 1989a, 1989b). In architecture design and construction early applications are related to reliability analysis of innovative building products (Naticchia 1999a) and to diagnosis of building failures (Naticchia 1999b).

4.1 CAUSAL MODEL OF NATURAL VENTILATION

As an example, it is useful to think of the ventilation model from a causal point of view, as a network that links the key

m&). The comfort criteria also define a parameters – namely the ‘design space’ - to the physical variables (i.e. T i and

i

causal network along with the variables. The network that we obtain explicitly depicts the causal model of system behaviour where the nodes represent variables of interest (it is useful to think of them as discrete variables, which values represent intervals of the actual domain) and the links represent informational or causal dependencies among the variables.

Figure 3: Network describing the causal structure of the comfort problem.

1 In this paper we avoid focusing on calculation problems related to the resolution of bayesian networks. These issues

are best treated in (Pearle 1988).

To translate the causal network in a Bayesian Causal Network we must express the conditional probabilities which link any variable value with any value combination of its parent nodes.

The solving algorithms provide to spread the effect of an assertion (made by updating the likelihood of a variable), to any variable of the net. In this way the causal framework represented in the net, highlights the system states compatibles with observed data, by increasing the likelihood of specific values of the nodes. As written, this feature allows the investigator to answer a variety of queries, including: abductive queries, such as ‘What is the most plausible explanation for a given set of data?’; and control queries; such as ‘What will happen if we intervene and enlarge the inlet?’. Answers to these queries depend on the causal knowledge embedded in the network. The probabilistic basis of Bayesian networks offers a coherent semantics for co-ordinating top-down and bottom-up inferences, thus bridging information from high-level concepts and low-level percepts. This capability is important for achieving selective attention that is, selecting the most informative data in a specific step of the design. In other words the student is guided not only in diagnosing the reason of a behaviour but also in focusing its attention to weigh the importance of each variable in determining that response or in confirming the diagnosis. The capability of integrating in a unique graphical model, directly accessible to the user, many abstraction levels of the domain is a novel feature which enhance the tutorial role of the expert system, and modify the interaction with the user that directly interact with the graphical knowledge representation envisioning the effect of data he provides directly on the whole knowledge. This allows a sort of sensivity analysis about variables and parameters relevance, which enhances the user skill in perceiving the integrity of design problem normally hidden in other expert systems.

5. APPLICATION

In this section we’ll demonstrate the approach of causal network modelling through a simple case of stack ventilation of a single zone building under steady state conditions of heat transfer.

5.1 STACK VENTILATION OF A SINGLE ZONE BUILDING

Consider a simple single-zone model of a building utilizing a stack ventilation strategy 2.

Figure 4: Single-zone stack-ventilated building model.

A steady wind, characterized by a stagnation pressure p 0, approaches the building from the left as air passes through a window ‘a’ of a cross sectional area A a and exits at a higher opening ‘c’ of a cross sectional area A c , located a distance ?z above the lower opening.

These three variables (A a , A c , ?z ) will be taken as the key design parameters that will be adjusted to achieve thermal comfort. Wind pressure coefficients at the windows C pa and C pc , building conductances ΣUA , internal gains q gain , outdoor air temperature T 0 and heat capacity of air p c

?, are assumed known a priori. Two unknown state variables are associated with this simple idealization, the zone air temperature T i and the zone air pressure p i defined relative to a specific elevation, which will be taken along the horizontal centreline through the lower window.

With the problem thus defined, we can form the heat transfer system equations by demanding conservation of thermal energy:

()()gain a p i c p i q T m c T m c T T UA =?+?∑00??&&

2 This example is adapted from Axley 1997.

We’ll model the airflow through the windows using the familiar orifice equation as it has proven to be a reliable model.

In the absence of wind-driven pressures, both indoor and outdoor air pressures will be assumed to vary hydrostatically in proportion to the indoor and outdoor air densities ρi and ρ0 respectively. Then:

()i a d a p p A C m ?=0?2ρ

and ()()()z g p z g p A C m i i c d c ?????=00?2ρρρ

The airflow system equations may be formed by demanding conservation of airflow, namely by using the equation m a +m c =0. Finally we’ll use the ideal gas law to estimate air densities indoor and out.

In this case the heat transfer and airflow equations are coupled through both the airflow rate and buoyancy terms and the resulting nonlinearity is pathological. Consequently, it was not possible to explicitly express the resulting equations for the indoor air temperature T i in terms of the design variables A a , A c and ?z . Nevertheless, we can numerically solve the equation and plot the indoor air temperature as depicted in figure 5. In addition the inlet air velocity is also plotted as it varies with the inlet window opening A a :

a

a A m v ρ&=

A ( c 2A a

m ) 2

( m 2

,7 m K/W orifice opening discharge coefficient ) 3

2 2 gain pb

Figure 5: Isothermal curves (T i =26°C) and inlet air velocity of the model solution (given the listed variable values) in

terms of the key design parameters.

A designer could use the numerical solution to guide design decision while maintaining the comfort object (i.e. T i ?26°C, v ?0,5 m/s ). For example, with a stack height of 5 m the designer could achieve the comfort objective with the window opening combination (A a , A c )?(1,5 m 2, 1 m 2).

Unfortunately the number of key design parameter is often more than three, so that the use of plotted graphs becomes practically impossible. In this case only a trial and error approach is available to make design decision.

Consider now the simple causal network of figure 6 where the variables are considered as discrete with listed intervals as feasible values.

A a≡ [0.3÷1, 1÷2, 2÷3];

A c≡ [0.3÷1, 1÷2, 2÷3];

?z ≡ [2.5÷5, 5÷10, 10÷20];

v ≡ [0.2÷0.5, 0.5÷2, 2÷4];

T i≡ [22÷24, 24÷26, 26÷28];

Comfort ≡ [Weak, Reasonable, Good]

Figure 6: Causal model of the single-zone stack-ventilated building.

To specify the probability distribution of the network, one must give the prior p robabilities of all root nodes (nodes with no predecessors) and the conditional probabilities of all non-root nodes given all possible combinations of their direct predecessors. Considering the node v, we have to specify the values:

P(v=0.2÷0.5|A a=0.3÷1,?z=2.5÷5);

P(v=0.5÷2|A a=0.3÷1,?z=2.5÷5);

P(v=2÷4|A a=0.3÷1,?z=2.5÷5);

and so forth with all combinations of ?z and A a.

To express such values, say P(v=0.2÷0.5|A a=0.3÷1,?z=2.5÷5) we had to evaluate the probability that using design parameters included within the intervals (A a=0.3÷1,?z=2.5÷5) the inlet air velocity will be included between the values [0.2÷0.5 m/s]. Many approaches are available to solve and automate this problem, which is typical in the fuzzy set theory3.

Once the Bayesian network has been assembled, it allows effectively investigating the stack ventilation design problem both assessing the consequences of a decision on the comfort variables and going back up the causes of a given behaviour.

For instance we may set the variable T i to a given value and the variable Comfort to the value ‘Good’, getting the most likely design parameter values, which achieve the selected state. Afterwards, by setting one or more design parameters we can address the decision about the remaining design parameters by selecting those values with higher related probability. In this manner the design could achieve a good result in terms of internal comfort also overlooking the investigation about the inlet air velocity, which value is constrained by the ‘Good Comfort’ and the air temperature selections.

Moreover the graph we have assembled can be clearly expanded, introducing further causal dependencies between design parameters (i.e. parameters as T0 that we have fixed in this example, or expressing a design parameter by means of more detailed features) and by adding external variables, which affect the microclimate conditions.

Suppose for instance, we want to introduce the relationship between the direction of airflow through the inlet opening and the pattern of air circulation inside the room.

It is possible to embody in the model the knowledge that the airflow may assume one of the three patterns displayed in figure 7, varying the position of the jalousie window sashes showed in the section ‘d’ of figure.

The different patterns considerably influence comfort and air quality in the different locations of the room, that is the configuration ‘a’ produces a significant recirculation of air showed in figure, while the pattern ‘b’ is characterized by high air velocity in the centre location of the room (because of the narrow airflow path which is limited by the vortex).

By using such a network also an unskilled designer could address detailed decision about these fluid dynamic issues in the preliminary stage of design. For instance, he could explain a computational result that appears like the condition ‘a’, by means of an incorrect air insertion through the inlet (i.e. related to the trees located near the building that modify the airflow direction) and address the design modification by placing sashes of type ‘c’ in front of inlet.

Moreover when the situation ‘b’ is recognised he could improve the ventilation behaviour of building simply placing a low hedge as showed in section ‘c’ of figure.

3 With a complex mathematical model a method to simple compute these values could be the MonteCarlo simulation

technique.

Figure 7: Effects of the design details on the internal airflow pattern.

6. DISCUSSION

The aim of VENTPad is that of demonstrating that qualitative physics has advanced enough to support new applications of AI to educational problems. Bayesian causal networks modelling provides representational tools and techniques that can be used to encode a substantial body of knowledge about civil engineering physics, with both diagnostic and predictive inference capabilities.

Automatically generated explanations enable the user to explore the consequences of his or her assumptions, and figure out what modelling assumptions are needed to make further progress. To date, VENTPad is still under development (using the Hugin shell for Bayesian networks analysis) and has only been tested on simple case study. We will be testing it with undergraduate civil engineering students.

Our goal is to have VENTPad continuously available in architecture design courses and to enhance it in a commercial version, which features are extended to support the analysis of multizone models (i.e. residential and office buildings) and nearly external environment of building.

7. REFERENCES

[1] Awbi, H.B., (1991) Ventilation of Buildings, E&FN Spon, London.

[2] Axley, J.W., (1997) Macroscopic Formulation and Solution of Ventilation Design Problems, in proceedings of 18th

AIVC Conference, Ventilation and Cooling, Coventry, GB.

[3] Gan, G., (1996) Effect of combined heat and moisture transfer on the predicted thermal environment, Indoor+Built

Environment, Vol 5 (N°3), 170-180.

[4] Awbi, H.B. and Gan, G., (1994) Predicting air flow ande thermal comfort in offices, ASHRAE Journal, February,

17-21.

[5] Bakker P.G., (1991) Bifurcations in flow patterns: some applications of the qualitative theory of differential

equations in fluid dynamics, Kluwer Academic Publishers.

[6] Bobrow, D., (1984) (Ed.) Qualitative reasoning about physical systems, MIT Press, Cambridge.

[7] Charniak, E., and Goldman, R. (1989a) A Semantics for Probabilistic Quantifier-Free First-Order Languages with

Particular Application to Story Understanding. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 1074–1079. Menlo Park, CA.

[8] Charniak, E., and Goldman, R. (1989b) Plan Recognition in Stories and in Life. In Proceedings of the Fifth

Workshop on Uncertainty in Artificial Intelligence, 54–60. Mountain View, CA.

[9] Dean, T. (1990) Coping with Uncertainty in a Control System for Navigation and Exploration. In Proceedings of

the Ninth National Conference on Artificial Intelligence, 1010–1015. Menlo Park, CA.

[10] de Kleer, J., (1975) Qualitative and quantitative knowledge in classical mechanics, TR-352, MIT AI Lab,

Cambridge, Mass.

[11] Gentner, D. and Stevens, A., (1983) (Eds.) Mental Models, Erlbaum Associates, Hillsdale, N.J..

[12] Heckerman, D., Horvitz, E., and Nathwani, B. (1992) Toward normative expert systems. Part I: The Pathfinder

project. Methods of Information in Medicine, Vol. 31. pp. 90-105.

[13] Jensen, F.V. (1996) An Introduction to Bayesian Networks. Springer, New York.

[14] Naticchia B. (1999a) Qualitative simulation for assessment of chemical-physical compatibility among building

components, In Proceedings of the 8th International Conference on Durability of Building Materials and Components, Vancouver.

[15] Naticchia B., (1999b) Diagnosing aged housing defects: A bayesian network approach for reliability of

rehabilitation effects, In Proceedings of the XXVII IAHS World Congress on Housing, San Francisco.

[16] Naticchia B., (1999c) Physical knowledge in patterns: Bayesian network models for preliminary design, in

Proceedings of the 17th, eCAADe conference, Liverpool, UK.

[17] Pearl, J. (1988) Probabilistic Reasoning in Intelligence Systems. Morgan Kaufmann, San Mateo, CA.

[18] Pearl, J. (1996) Causation, action, and counterfactuals. In Y. Shoham, editor, Theoretical Aspects o f Rationality

and Knowledge, Proceedings of the Sixth Conference, pp. 51-73. Morgan Kaufmann, San Francisco, CA.

[19] Shachter, R. D. (1990) Special issue on influence diagrams. Networks: An International Journal, Vol. 20 (5).

[20] Spiegelhalter, D.; Franklin, R.; a nd Bull, K. (1989) Assessment Criticism and Improvement of Imprecise Subjective

Probabilities for a Medical Expert System. In Proceedings of the Fifth Workshop on Uncertainty in Artificial Intelligence, 335–342. Mountain View, CA.

[21] Spirtes, P., Glymour, C., and Schienes, R., (1993) Causation, Prediction, and Search. Springer-Verlag, New York.

[22] Walton, G. (1989) Airflow Network Models for Element-Based Buildings Airflow Modelling in ASHRAE

Symposium on Calculation of Interzonal Heat and Mass Transport in Buildings, Vancouver.

浅析企业文化对企业发展的意义

贵州广播电视大学 毕业论文 题目: 浅析企业文化对企业发展的意义 姓名:教育层次: 学号: 省级电大: 专业: 分校: 指导教师: 教学点: 2011年4月

目录 摘要 (3) 一、企业文化的定义 (4) 二、企业文化与企业发展的关系 (4) (一)企业文化的形成和作用 (4) (二)加强企业文化建设以推动企业全面发展 (5) 三、发展企业文化的科学方法 (6) (一)发展企业文化的核心是“以人为本” (6) (二)发展企业文化的基础是经营管理理念 (6) (三)建设企业文化必须有一个共同的目标 (7) (四)企业文化在建设发展中必须要有自己的特色 (7) (五)企业文化的力量源泉来自创新 (7) 四、企业文化是企业发展的核心竞争力 (7) 五、参考文献 (9)

浅析企业文化对企业发展的意义 摘要:在知识经济时代,企业文化的作用非常重大。企业文化反映了一个企业的主流价值观。从企业文化对企业核心竞争力的影响、促使企业可持续成长以及企业文化在实际工作中的作用等方面的结合来论证企业文化在企业发展中的巨大作用,对提高企业经济效益,提高职工素质,促进改革的不断深入和持续发展,都具有重要的现实意义。关键词:新形式;企业文化;意义;作用

浅析企业文化对企业发展的意义 近年来,我国企业经济环境产生巨变,面临着巨大的挑战。怎样增强企业核心竞争力以适应信息时代的发展,这是现代企业管理者的一道重要课题。在我国,新兴的企业文化建设,以人性化管理适应了市场经济的要求,适应了当前我国企业走向国际市场的形势。对于企业来说,其重要的使命之一是增强竞争力,追求企业效率,提升经营绩效,企业的种种行为的有效性也大都以此为衡量标准。 一、企业文化的定义 所谓企业文化,现在一般认为它是企业中形成的文化观念、历史传统、共同价值观念、道德规范、行为准则等企业的意识形态。它对提升企业竞争力,推动企业发展起着重大作用。它能在企业管理制度失灵的时候,发挥独到的、有效的管理作用。企业文化不仅是一种管理方法,也是象征企业灵魂的价值导向,反映了一种充实物质生产的精神气质,一种类似于宗教信仰的、精益求精的工作态度与献身事业的生活取向。企业文化理论吸收了行为科学、公共关系学、决策科学、哲学、社会学、心理学、伦理学等学科的精华,在理性与科学的基础上,强调人的精神、道德和心理作用。 从广义上讲,企业文化是社会文化的一个子系统,是一种亚文化。企业文化通过企业生产经营的物质基础和生产经营的产品及服务,不仅反映出企业的生产经营特色、组织特色和管理特色等,更反映出企业在生产经营活动中的战略目标、群体意识、价值观念和行为规范。从狭义上讲,企业文化体现为人本管理理论的最高层次。企业文化重视人的因素,强调精神文化的力量,希望用一种无形的文化力量形成一种行为准则、价值观念和道德规范,凝聚企业员工的归属感、积极性和创造性,引导企业员工为企业和社会的发展而努力,并通过各种渠道对社会文化的大环境产生作用。 二、企业文化与企业发展的关系 (一)企业文化的形成和作用 企业文化是一个企业在经营管理过程中表现出来的价值观念和行为规范的总和。企业文化的形成是以一定的价值观念为核心,通过企业的行为机制,最终衍生为企业形象的过程,从而形成了一个具有多载体、多层次结构的复合型文化。企业文化有三个组成

国际鞋尺码对照表

鞋舌上标注说明:CM即厘米,为鞋的部长度;EUR即欧洲码,为中国人平时购鞋时所说的鞋码;US即美国码,UK即英国码也都是选购运动鞋时的一个参照。脚板窄者选鞋不会有太大影响,脚板宽或厚者需穿大一号甚至大二号的鞋! 鞋子尺码对照表 标准通用尺码对照表 男鞋尺码对照表(标准通用) 女鞋尺码对照表(标准通用)

Adidas 尺码对照表 Adidas 男鞋尺码对照表 欧洲码/EUR 39 40 40.5 41 42 42.5 43 44 44.5 45 46 46.5 47 厘米/CM 24 24.5 25 25.5 26 26.5 26.5 27 27.5 27.5 28 28.5 29 英国码/UK 6 6.5 7 7.5 8 8.5 9 9. 5 10 10.5 11 11.5 12 标准尺码(mm) 240 245 250 255 260 265 270 275 280 285 290 295 女式 欧洲码/EUR 36 36.5 37 38 38.5 39 40 40.5 41 42 42.5 厘米/CM 22 22.5 23 23.5 23.5 24 24.5 24.5 25 26 26.5 英国码/UK 3. 5 4 4. 5 5 5.5 6 6.5 7 7. 5 8 8.5 中性 欧洲码/EUR 36 36.5 37 38 38.5 39 40 40.5 41 42 42.5 43 44 44.5 45 46 厘米/CM 22 22.5 23 23.5 23.5 24 24.5 24.5 25.5 26 26.5 26.5 27 27.5 27.5 28 英国码/UK 3. 5 4 4. 5 5 5.5 6 6.5 7 7.5 8 8.5 9 9. 5 10 10.5 11 Nike 尺码对照表 Nike 男鞋尺码对照表 欧洲码/EUR 38.5 39 40 40.5 41 42 42.5 43 44 44.5 45 45.5 46 47 47.5 厘米/CM 24.5 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 30.5 31 美国码/US 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

企业文化发展规划10篇

企业文化发展规划10篇 i和bi系统组成,企业形象设计是一种形象文化战略,是企业对自身的理念识别、行为识别、视觉识别进行深化实践,使之更具有独特性、鲜明性,同时,借助各种宣传手段和载体传送企业文化,以产生强大的品牌认知力和认同力。 1.建立mi系统。mi是指在企业经营活动中所应遵循的理念,是整个识别系统运作的原动力,它主要指企业经营管理哲学、企业使命和宗旨等。针对嘉裕目前面临的竞争和发展态势及自身资源现状等,公司务必建立其适合自身发展内在要求的经营理念、管理理念、市场竞争理念、市场营销理念、市场发展理念、服务理念、质量理念、人才理念、科技创新理念、产品研发理念、组织结构设计理念体系。 2.建立bi系统。bi是mi的动态展示,它主要包含对内、对外两方面。对内的行为主要包括企业伦理和道德,领导行为规范,员工行为规范,工作作风,服务态度规范,礼仪规范,工作环境和职工福利等项目。对外的行为主要包括公共关系,市场调研,促销活动,流通对策,废弃物处理,公害对策服务对策,公益性文化活动等。企业行为识别系统设计的重点在于员工队伍形象的塑造,所以,公司应当依照以人为本的思想,按照不一样层次不一样岗位制订和设计个人形象。 3.建立vi系统。vi是企业文化具体化、形象化的视觉传达形式,它经过组织化、系统化的视觉方案传达企业经营特征。建立企业视觉

识别系统的过程中,必须运用能够体现公司企业精神理念,具有鲜明视觉和独特的产品与服务环、境形象及标识。产品形象。公司要从品牌、科技、质量、服务、外观设计、包装等方面着手,树立嘉裕良好产品形象。环境形象。公司要以绿化、美化、硬化、净化、亮化为资料,以现代化、花园式为目标,建立一把手职责制,实行环境建设评先、评优考核,使用一票否决制,构建公司绿色格局,使嘉裕经过环境形象系统促进企业发展。 实施制度在建工程。 企业文化与企业的体制机制相辅相成,仅有经过充分体现先进企业文化的体制机制和各项管理制度及岗位行为规范,才能真正规范企业全体人员意识和行为。制度是整个企业对文化的一种规范,它也是企业管理的薄弱环节。在制度方面我的想法是经过我在大学里的专业知识的积累,将企业文化建设与人力资源管理相结合 1.规范培训制度和体系,丰富培训资料和层次。企业要把企业文化教育培训、岗位职业道德规范培训、岗位技能操作规范培训等资料纳入公司管理制度中。2.健全公司绩效考评管理制度,把企业文化建设成效纳入公司部门个人绩效考评体系。3.开展思维创新,管理创新,技术创新,建立健全公司激励和约束机制。 实施典型示范工程。 先进的典型人物和典型事迹是企业精神、优秀理念生动、形象的体现和象征,具有很强的示范、辐射、传成作用,没有个性鲜明的典型就没有独特的企业文化。嘉裕在实施企业文化建设中应当把先进企

论企业文化-企业核心理念-企业核心价值观-对企业发展的重要性

论企业文化、企业核心理念及企业核心价值观对企业发展的重要性对于企业来讲,确立本企业文化、企业核心理念及企业核心价值观是企业发展尤为重要的组成部分,是提高企业发展力不可或缺的重要手段之一;而不断地对企业文化及企业核心理念进行实践、宣传与规范管理是促进企业发展行之有效的措施。在文化宣传上,企业可以通过广播、字报、标语等形式进行文化的宣传,让企业文化深入到企业每位员工心中,从而形成一种无形的凝聚力。目前,很多企业通过企业内部杂志、期刊、网页等形式,将企业文化向外界宣传,从而让更多人对企业文化进行了解并对企业产生信任与支持。当外界对企业进行充分了解时,可以使企业的知名度有效的提高。与此同时,企业还要通过不断地进行实践,完善符合企业长期发展的企业文化及企业核心理念,使得企业文化及企业核心理念促进企业的稳步发展。 一、建设坚持以人为本的企业文化及企业核心理念原则。企业在对文化及企业核心理念进行建设时,要坚决坚持以人为本,从企业发展的各个方面考虑到企业中的员工,维护员工的利益,尊重员工的权利,关心员工的生活,让员工深切的感受到企业主人翁的效果,使员工成为企业文化及企业核心理念建设的主体,在企业的发展与经营过程中,充分发挥出员工应有的积极性与能动性,并不断地对企业员工进行培养。 二、在经济与知识发展的今天,对企业的发展要求更高,企业能否在市场经济中占据一席之地,取决于是否具有较强的竞争能力。而企业的竞

争力在于企业是否有可持续发展的战略目标,是否有能力对战略目标进行不间断地创新,也在于企业是否能够充分利用各种资源,尤其是对人力资源的利用情况。企业应该根据现实的人才结构与人力资源状况,科学且合理的进行现有人才的培养与人才的引进,制定出符合企业长期发展的战略计划与目标,使得企业中的员工之间能够充分的交流与合作,加强人才队伍的建设,确保人力资源能够满足企业的长期发展目标。 三、企业还应该建立相应的激励制度,将员工的工作积极性调动与激发出来,不断地组织员工进行新知识培训与学习,充分挖掘企业员工的潜在能力,充分发挥其创新能力,提高企业员工的整体综合素质,让企业中的员工充分服务于企业的发展,为企业的发展奠定人才基础。 四、充分发挥领导者的领袖作用。对于企业的文化建设过程来讲,其实就是企业价值体系以及精神底蕴的自我塑造过程,是促进企业长期发展的战略性问题。企业领导者,是企业中的主要领军人物,这一部分人物必须充分发挥其作用,完成自己的使命,担负起企业文化及企业核心理念的精神领袖的重任。他们不仅要作为企业文化及企业核心理念的组织人物、设计人物、创新人物、领导人物,还要不断地对企业文化及企业核心理念进行倡导,并要忠实于企业文化及企业核心理念,以身作则,将企业文化及企业核心理念的落实。领导人员的带头作用,是促进企业文化建设与落实的有效措施之一,起到有效的标靶作用。 五、企业文化及企业核心理念与管理制度的有机结合。企业进行企业文化及企业核心理念建设的过程,其实就是将此企业文化及企业核心理念逐渐社会化的渐变过程。在此过程中,从客观的角度上来讲,是企业文化

农场企业文化发展规划

南口农场企业文化发展规划 指导思想:在三元集团公司的统一领导下,紧紧围绕南口农场改革和发展的中心任务,以巩固首都文明单位、北京市模范职工之家为动力,在继承南口农场企业文化积累的基础上,解放思想,与时俱进,通过创新企业文化内容、创建学习型企业、打造企业外部形象、增强企业内聚力,逐步提高企业文化力,达到与集团公司企业文化的高度融合,初步构筑具有南口特色的三元文化。 一、创新思维模式,努力创建学习型企业 二、按照现代企业制度要求,重新审视完善现行规章制度 三、全力打造南口农场良好的企业形象 四、加强社会公德教育,使南口农场与区域环境共同发展 五、开展健康向上的文体活动,丰富职工业余文化生活 一、创新思维模式,努力创建学习型企业 现代企业管理的发展正在以加速度进行,一个企业想成功,必须努力建成学习型企业。学习型企业是未来企业发展的方向,企业不学习、不创新就没有生路。学习型企业有6大特点:一是学习基础上的精简;二是管理层次的扁平化;三是有弹性;四是不断自我创造;五是善于学习;六是自主管理。南口农场人才培养工程实施以来,在全场上下已形成一个学习的氛围,但是还称不上学习型企业。创建学习型企业要以更新观念为先导,以管理科学为接口,以创造组织学习环境为基础,塑造学习型领导、学习型团队,使广大员工有较强的应变能力和团队精神,从而激发企业的创新力,在激烈的市场竞争中不断取胜。 落实南口农场“十五”后三年规划,以土地开发为龙头,进行体制创新,进一步解放思想,创新思维模式是关键。企业领导要带头学习新知识、新方法、新思路,进一步解放思想,提高市场意识、超前意识、创新意识,由目前“制度+控制”的管理方式逐步过渡到“制度+控制”与“学习+激励”相结合的管理,通过联系实际的正规培训、报酬制度改革、担任挑战性工作、进行再就业培训等多种形式,培养员工的学习习惯和能力,通过培养人来创造性地完成工作,提高企业效益。 二、按照现代企业制度要求,重新审视完善现行规章制度 南口农场历史上已经形成了一系列的制度,有些是近几年形成的新制度,有些是沿袭多年的老制度。根据集团公司逐步建立现代企业制度的要求,结合农场实际,要对现行的所有制度进行重新审视,对已经存在但不适宜未来发展的制度要加以修订,不完善的要尽快建立和完善,通过严格班子议事制度、深入场务公开来规范决策程序,约束领导干部职务行为,实施科学管理,从而提高办事效率和企业效益。 三、全力打造南口农场良好的企业形象 加强与传媒的联系,在积极向“北京三元集团”报投稿的基础上,努力与社会媒体增强联系,大力宣传企业产品、资源。充分利用现有宣传阵地,不断提高《南农青年报》办报水平,及时更新南口农场网站内容。适时修订宣传画册,宣传农场的绿色资源和土地资源,树立企业形象,扩大企业知名度和美誉度。探索树立新的品牌,针对构件厂产品已打入蒙古国的实际,择其优者探索树立品牌,提高产品的市场竞争力。重视企业内部形象,随着经济水

论企业文化在企业发展中的作用

论文提纲: 一、企业文化对企业的生存和发展的作用。 二、企业文化与企业的生存与发展息息相关,决定着企业的生死存亡。

浅谈企业文化在企业发展中的作用 在知识经济时代,企业文化的作用非常重大。那么什么是企业文化呢?美国麻省理工学院教授爱德加.沙因(EDGAR.SCHEIN)认为企业文化是在企业成员相互作用的过程中形成的,为大多数成员所认同的,并用来教育新成员的一套价值体系(包括共同意识、价值观念、职业道德、行为规范和准则等)。国内学者认为企业文化就是企业在各种社会活动及经营活动中,努力贯彻并实际体现出来的,以文明取胜的群体竞争意识。这包括价值观、道德、精神追求、生活习俗、思维方式等。我认为企业文化就是在一个企业的核心价值体系的基础上形成的,具有延续性的共同的认知系统和习惯性的行

为方式。这种共同的认知系统和习惯性的行为方式使企业员工彼此之间能够达成共识,形成心理契约。企业文化是组织成员思想、行为的依据。 企业文化从本质上看是一种产生于企业之中的文化现象,它的出现与现代企业管理在理论和实践的发展密不可分,从管理的角度看,企业文化是为达到管理目标而应用的管理手段,因此,企业文化不仅具有文化现象的内容,还具有作为管理手段的内涵。首先,企业文化是以企业管理主体意识为主导、追求和实现一定企业目的的文化形态,并不是企业内部所有人员的思想、观念等文化形态的大杂烩。从一定意义上说,企业文化就是企业管理的文化。其次,企业文化是一种组织文化,有自己的共同目标、群体意识及与之相适应的组织机构和制度。企业文化所包含的价值观、行为准则等意识形态和物质形态均是企业群体共同认可的,与无组织的个体文化、超组织的民族文化、社会文化是不同的。再次,企业文化是一种"经济文化"。企业文化是企业和企业职工在经营生产过程和管理活动中逐渐形成的,离开企业的经济活动,就不可能有企业文化的形成,更谈不上形成优秀的企业文化。 企业文化在企业的生存和发展过程中有着一系列核心价

中国美国国际鞋码对照表

鞋码对照表,中国/美国/国际鞋码对照表 鞋码,通常也称鞋号,是用来衡量人类脚的形状以便配鞋的标准单位系统。目前世界各国采用的鞋码并不一致,但一般都包含长、宽两个测量。长度是指穿者脚的长度,也可以是制造者的鞋楦长。即使在同一个国家/地区,不同人群和不同用途的鞋,例如儿童、运动鞋,也有不同的鞋码定义。下面是尺码对照表,可以帮你解决如何挑选正确的码数;经过量度脚长与脚宽,让你能够挑选到合适的鞋子。 国际标准鞋号表示的是脚长的毫米数。 中国标准采用毫米数或厘米数。如:245是毫米数,24 1/2是厘米数,表示一样的尺码。 换算公式: 厘米数×2-10=欧制(欧制+10)÷2=厘米数 厘米数-18+=美制美制+18-=厘米数 厘米数-18-=英制英制+18+=厘米数 (欧码+10)×5=中国鞋号,如欧码35的鞋,对应的中国鞋号为225;欧码37对应的中国鞋号为235。 鞋号换算表(单位:毫米)34号——22035号——22536号——23037号——23538号——24039号——24540号——25041号——25542号——26043号——26544号——27045号——275。 男人鞋尺码对照表: 女人鞋尺码对照表:

儿童鞋尺码对照表: 国际(成年人)女鞋码尺寸对照表:

国际(成年人)男子鞋码尺寸对照表:

标准通用尺码对照表 男鞋尺码对照表(标准通用) 尺码 39 40 41 42 43 44 45 46 47 脚长(mm) 美国码 7 8 9 10 日本码 国际码 245 250 255 260 265 270 275 280 285 女鞋尺码对照表(标准通用) 尺码 35 36 37 38 39 40 41 42 脚长(mm) 美国码 5 6 7 8 日本码 国际码 225 230 235 240 245 250 255 260 Adidas 尺码对照表 Adidas 男鞋尺码对照表 中国码 38 2/3 39 1/3 40 40 2/3 41 1/3 42 42 2/3 43 1/3 44 44 2/3 45 1/3 46 美国码 6 7 8 9 10 11 英国码 6 7 8 9 10 11 标准尺码(mm) 240 245 250 255 260 265 270 275 280 285 290 295 Nike 尺码对照表 Nike 男鞋尺码对照表 中国码 39 40 41 42 43 44 45 美国码 6 7 8 9 10 11

企业文化发展规划

企业文化发展规划——策划与制定  自企业文化理念体系创立后,企业文化发展争取用五年时间,形成适应经济全球化趋势及我国经济发展的、符合企业战略的、反映企业特色的企业文化体系。通过“内强素质、外塑形象”策略,全面打造企业素质和形象;通过“内化于心、外化于行”的策略,促使文化理念深入人心,促进员工自觉认知、认同和践行及养成习惯;通过“以文化人,以文兴业”的策略,转变观念,规范行为,优化面貌,建立具有凝聚力的人文环境。另外,以文化力驱动学习力,以学习力促进创新力,以创新力提升竞争力,达到企业超越力和发展力显着增强,实现企业管理品质的飞跃。总之,促成企业文化与企业战略的和谐统一、企业发展与员工发展的和谐统一,永葆企业鲜活而恒久的生命力。 (一)企业文化发展第一年:构建体系,强化宣贯。 1、企业文化发展目标 构建企业文化体系(含理念识别体系、行为识别体系和视觉识别体系);搭建企业文化建设平台(如成立企业文化部门);初步普及企业文化理论,宣传推广公司企业文化体系内容。 2、企业文化发展内容 (1)构建公司企业文化理念识别体系和行为识别体系。 优秀的企业文化是公司基业常青的基因密码。优秀企业文化体系的建立是打造优秀企业文化的开端,它明晰了企业文化的深刻内涵和科学内容,明晰了企业战略;是塑造优质的企业形象和形成良好人文环境的基础。因此,公司首先要通过全员参与,群策群力,在总结、发掘、提炼与继承企业优秀文化传统的基础上,集思广益,博采众长,形成公司具有时代特色的企业文化理念识别体系和行为识别体系。 (2)健全管理制度,建立管理机制。 以文化理念为指导,重新审视、修订和完善公司原有的管理制度、企业规章和企业规范,把文化理念融入具体的管理规章制度之中,促使企业文化与企业管理紧密结合。另外,建立企业文化管理机制(包括正

浅谈新形势下企业文化建设的意义和作用

浅谈新形势下企业文化建设的意义和作用 1 企业文化的意义 企业文化是一个企业在一定的社会、文化、政治、经济等背景下,为实现企业目标在长期的生产经营和建设实践中形成的,被该企业广大职工群众所接受的共同的行为准则,以及企业形象、经营理念、道德规范、企业精神等。企业的发展既要靠有效的经营运行机制,同时还要靠用一种精神去统一人们的思想,约束人们的行为。发展企业文化的目的就在于用一种无形的、精神的东西去统一职工的思想和行动,统一职工的行为价值观念。通过发展企业文化,有利于增强企业的凝聚力和向心力,增强企业的活力,使每一个企业职工都能感受到一种文化的氛围,一种精神支柱的存在。 企业文化是一个企业在长期生产经营中倡导、积累、筛选与提炼形成的人本管理理论,它以企业管理哲学和企业价值观为核心,以企业最高目标、企业精神、优良作风、礼仪风俗、行为规范、标识、英模、环境、传播网络等为主要内容,能够激发和凝聚企业员工归属感、积极性和创造性,是企业的灵魂和精神支柱。 企业的发展,根本的因素是人,是企业的职工。职工主观能动性的发挥,在很大程度上影响着企业的发展。而企业文化的精髓就是强调人的价值,注重人的因素,注重在更高层次上挖掘人的潜力和潜能。因此,加强企业文化建设,对于推动企业的两个文明建设具有十分重要的意义。海尔现象启示我们:企业文化之所以对企业经营管理起作用,是靠了其对职工的熏陶、感染和引导。企业文化中所包容的共同理想、价值观念和行为准则作为一个群体心理定势及氛围存在于企业职工中。在这种企业文化面前,职工会自觉地按照企业的共同价值及行为准则去从事工作、学习、生活,发自内心地为企业创造财富,这种作用是无法去度量和计算的。 企业要生存发展就必须寻求更科学、更系统、更完整的管理体系。企业文化提供了必要的企业组织结构和管理机制,当代企业要保持平稳和持续发展,必须开发具有自己特色的企业文化。 2 新形势下企业文化建设的主观因素 2.1 坚持“以人为本”促进企业与员工的和谐发展 坚持以人为本是马克思主义的本质要求,中国共产党人的奋斗历程,也体现了马克思主义“以人为本”的精神。党的十七大提出的“加强和改进思想政治工作,注重人文关怀和心理疏导”中,“注重人文关怀”与十六届三中全会提出的“坚持以人为本,树立全面、协调、可持续发展的发展观,促进经济社会和人的全面发展”是一脉相承的。企业作为为社会的一个重要组成部分,他必然要遵循马克思主义关于“人的全面发展”的思想理论,因此,在构建和谐企业的过程中,必须把“以人为本”这个根本要求贯穿并融入到企业的生产经营和改革发展过程中,从而达到促进企业与员工两者和谐发展的最高境界。 企业的发展,根本的因素是人,是企业的职工。职工主观能动性的发挥,在很大程度上影响着企业的发展。而企业文化的精髓就是强调人的价值,注重人的因素,注重在更高层次上挖掘人的潜力和潜能。而企业领导者必须成为推动企业文化建设的中间力量,带动广大职大的积极性和主动性。企业文化从某种特定意义上可以说是“企业家”文化,因为企业是由领导者进行管理的,企业文化在很大程度上取决于领导者的决心和行动。企业领导者应该带头学习企业文化知识,对企业文化的内涵要有深刻的认识,对本企业文化有独到的见解,对本企业发展有长远的战略思考。要亲自参与文化理念的提炼,指导企业文化各个系统的设计,

国际的鞋尺码对照表

鞋舌上标注说明:CM即厘米,为鞋的内部长度;EUR即欧洲码,为中国人平时购鞋时所说的鞋码;US即美国码,UK即英国码也都是选购运动鞋时的一个参照。脚板窄者选鞋不会有太大影响,脚板宽或厚者需穿大一号甚至大二号的鞋! 鞋子尺码对照表 标准通用尺码对照表 男鞋尺码对照表(标准通用) 女鞋尺码对照表(标准通用)

Adidas 尺码对照表Adidas 男鞋尺码对照表 欧洲码/EUR 3 9 40 40. 5 41 4 2 42. 5 43 44 44. 5 45 4 6 46. 5 4 7 厘米/CM 2 4 24. 5 25 25. 5 2 6 26. 5 26. 5 27 27. 5 27. 5 2 8 28. 5 2 9 英国码/UK 6 6.5 7 7.5 8 8.5 9 9. 5 10 10. 5 1 1 11. 5 1 2 标准尺码(mm) 240 245 250 255 260 265 270 275 280 285 290 295 女式 欧洲码 /EUR 36 36. 5 37 38 38. 5 3 9 40 40. 5 41 4 2 42. 5 厘米/CM 22 22. 5 23 23. 5 23. 5 2 4 24. 5 24. 5 25 2 6 26. 5

英国码/UK 3. 5 4 4. 5 5 5.5 6 6.5 7 7. 5 8 8.5 中性欧洲码 /EUR 36 36. 5 37 38 38. 5 3 9 40 40. 5 41 4 2 42. 5 43 44 44. 5 45 4 6 厘米/CM 22 22. 5 23 23. 5 23. 5 2 4 24. 5 24. 5 25. 5 2 6 26. 5 26. 5 27 27. 5 27. 5 2 8 英国码/UK 3. 5 4 4. 5 5 5.5 6 6.5 7 7.5 8 8.5 9 9. 5 10 10. 5 1 1 Nike 尺码对照表Nike 男鞋尺码对照表 欧洲码/EUR 38. 5 39 4 40. 5 4 1 42 42. 5 43 4 4 44. 5 4 5 45. 5 4 6 47 47. 5 厘米/CM 24. 5 24. 5 2 5 25. 5 2 6 26. 5 27 27. 5 2 8 28. 5 2 9 29. 5 3 30. 5 31 美国码/US 6 6.5 7 7.5 8 8.5 9 9.5 1 0 10. 5 1 1 11. 5 1 2 12. 5 13 标准尺码(mm) 240 245 250 255 260 265 270 275 280 285 290 Nike 女鞋尺码对照表 欧洲码 /EUR 35 35. 5 36 36. 5 37. 5 3 8 38. 5 3 9 40 40. 5 41 4 2 43

上海石化公司企业文化发展规划

上海石化公司企业文化发 展规划 Prepared on 22 November 2020

上海石化公司企业文化发展规划 企业文化是企业的核心竞争力之一,体现了企业的经营哲学。优秀的企业文化,是企业管理的灵魂,是企业综合实力的标志,是企业凝聚和激励全体员工的精神内核,更是企业生存和发展的重要资源。 上海石化企业文化建设,经过多年积淀,已取得长足的进步。公司的企业文化建设大致经历了三个历史阶段:上世纪80年代中期至90年代中期是企业文化的初创时期;90年代中、后期是企业形象识别系统(CIS)的设计、推行时期;进入新世纪,是企业文化建设的整体推进时期。2000年11月,上海石化第一次党代会通过了《关于加强上海石化企业文化建设的若干意见》,标志着公司企业文化的理论框架初步确立。六年来,公司按照《若干意见》所确立的发展目标,组织开展了理论探索、知识普及和实践活动,提高了认识,统一了思想,企业文化建设正在步入快速发展和规范运作的轨道。 面向未来,上海石化正进入改革、调整、发展的关键时期。上海石化的企业文化应该成为支撑企业改革、调整、发展的文化,支撑全体员工事业信念的文化,支撑队伍素质不断提高的文化。为加快优秀企业文化建设步伐,促进企业战略与企业文化协调发展,构建和谐企业,特制定本实施纲要。 一、企业文化建设的发展目标、指导原则和主要任务 1、发展目标 适应企业经济发展和实现战略目标的要求,建设具有激励、约束、凝聚、导向、辐射等功能,以人为本,特色鲜明,被广大员工所普遍认知、认同,对内有较高向心力,对外有较大影响力,趋向成熟稳定的优秀企业文化。 2、指导原则

——以人为本、创造和谐。坚持改革发展成果共享,促进员工全面发展,构建和谐的劳动关系,形成企业热爱员工、员工热爱企业的良好氛围。致力于企业与社会、企业与员工、企业与自然的和谐相处,促进企业全面、协调、可持续发展。 ——兼容并蓄、注重特色。导入中国石化核心价值观,借鉴、引用兄弟单位成功经验,汲取上海城市精神和海派文化精华。注重挖掘、整理、提炼具有企业特质的文化内涵,突出企业的鲜明个性,走具有上海石化特色的企业文化建设之路。 ——讲求实效、循序渐进。紧密结合企业实际,克服形式主义,制定切实可行的企业文化建设方案。既要做到高起点,追求精品工程,又要做到由表及里,由内而外,重点突破,循序渐进,促进企业文化的精神、制度、行为、物质四大要素协调发展。 ——整体规划、系统运作。充分认识企业文化建设的复杂性和长期性,制定切实可行的整体规划和阶段性实施方案,有目标、有步骤的推进各项实践活动。系统运作,分层落实,同心协力,把企业文化建设的任务真正落到实处。 ——领导带头、全员参与。企业中高级管理人员要做企业文化的倡导者、培育者和推动者,率先垂范,亲力亲为。全体员工要做企业文化的实践者、创造者和传播者,把个人价值与企业的发展目标有机结合起来,推动企业文化建设的蓬勃开展。 ——继承传统、不断创新。根植历史积累,继承优秀传统,传承企业文脉。坚持与时俱进、追求卓越,永不满足,持续进行理论创新、体制创新、管理创新,建设符合先进文化和时代发展方向的优秀企业文化。 3、主要任务 ——进一步丰富企业理念。以树立和落实低成本战略的理念为重点,梳理、整合、宣传上海石化现有的企业宗旨、企业精神、企业战略目标、企业管理理念等企业文化理念,挖掘、整理、归纳提炼各专业条线的管理理念,开展群众性企业文化实践活动,进一步丰富、完善公司理念系统。 ——进一步强化制度建设。以完善“三基”工作、内控制度、HSE体系为重点,推动理念与制度的融合,发挥理念对制度的导向和支撑作用,使制度切实体现理念的精神实质,并通过制度的执行使理念落到实处。

浅谈企业文化对企业发展的影响

摘要:成功的企业文化可以成就一个企业,失败的企业文化也可以毁灭一个企 业,企业文化绝不是装点门面的摆设 ,而是每个成功企业必须具有的理念,它在 市场大潮中发挥着无可替代的作用,是企业管理的重要部分,更是企业的核心竞 争力,对企业的发展有重大的影响。 一个企业本身特定的管理文化 ,即企业文化,是当代社会影响企业本身业绩 的深层重要原因。并且在近十年内 ,企业文化将成为决定企业兴衰的关键因素。 企业文化对经济的发展和企业的行为产生了深远的影响。纵观世界成功企业的经 营实践 ,人们往往可以看到 ,一个企业之所以能在激烈的市场竞争中脱颖而出 , 常胜不败 ,归根到底是因为在其经营实践中形成和应用了优秀的、独具特色的企 业文化。 一、企业文化与企业发展的关系 1.企业文化概述

企业文化一词,源于美国英文“Corporate Culture”,Corporate有团体的, 法人的,共同的等意思,所以企业文化又称公司文化,组织文化和管理文化。关 于企业文化的定义国内外大约有400多种。人们使用的词语组合不同,但含义基 本是一致的,即企业在一定价值体系指导下所选择的那些普遍的,稳定的,一贯 的行为方式的总和。 “企业文化有广义和狭义之分,广义的企业文化是指企业的物质文化,行为 文化,制度文化,精神文化的总和,狭义的企业文化是指以企业价值观为核心的 1 企业意识形态”。从这一定义看,企业文化是狭义文化的概念,是精神文化。但 是,企业文化常常要通过企业制度和物质形态表现出来,不同的企业文化有不同 的企业管理制度,表现出不同的物质形态,相应地也创造出不同的物质财富。如 图中所示,这就是企业文化的三层次结构:深层企业文化、中层企业文化和表层 企业文化。

★鞋子尺码对照表大全(标准通用)★美国码★日本码★国际码★英国码★

★鞋子尺码对照表大全(标准通用)★美国码★日本码★国际码★英国码★ 鞋子尺码对照表 标准通用尺码对照表 男鞋尺码对照表(标准通用) 尺码39 40 41 42 43 44 45 46 47 脚长(mm)23.6-24 24.1-245 24.6-250 25.1-255 25.6-260 26.1-265 26.6-270 27.1-275 27.6-280 美国码 6.5 7 7.5 8 8.5 9 9.5 10 10.5 日本码24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 国际码245 250 255 260 265 270 275 280 285 女鞋尺码对照表(标准通用) 尺码35 36 37 38 39 40 41 42 脚长(mm)22.1-225 22.6-230 23.1-235 23.6-240 24.1-245 24.6-250 25.1-255 25.6-260 美国码5 5.5 6 6.5 7 7.5 8 8.5 日本码22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 国际码225 230 235 240 245 250 255 260 Adidas 尺码对照表 Adidas 男鞋尺码对照表 中国码38 2/3 39 1/3 40 40 2/3 41 1/3 42 42 2/3 43 1/3 44 44 2/3 45 1/3 46 美国码6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 英国码5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 标准尺码(mm)240 245 250 255 260 265 270 275 280 285 290 295 Nike 尺码对照表 Nike 男鞋尺码对照表 中国码38.5 39 40 40.5 41 42 42.5 43 44 44.5 45 美国码6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 英国码5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 标准尺码(mm)240 245 250 255 260 265 270 275 280 285 290 Nike 女鞋尺码对照表 中国码35 35.5 36 36.5 37.5 38 38.5 39 40 40.5 41 美国码4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 英国码2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 标准尺码(mm)220 220 225 230 235 240 245 250 255 260 265 Reebok 尺码对照表 Reebok 男鞋尺码对照表

谈谈对企业文化的认识

谈谈对企业文化的认识

谈谈对企业文化的认识 【篇一:我对公司企业文化的认识】 我对公司企业文化的理解和认识 一、企业文化的内涵 企业文化是企业在长期经营管理过程中所形成、倡导,并经过筛选提炼而形成的物质文化、行为文化、制度文化和精神文化的总和。它包括企业价值观、经营理念、企业形象、行为规范及物质载体等。价值观是企业发展的最高指导原则;经营理念是支撑企业价值观的各种信条、观念,是企业发展与竞争策略的指导思想;行为方式是企业文化中最真实、最直接和最重要的部分,它特别要求理念与行为的一致性。企业文化全面而细致地渗透在企业活动的方方面面,随着企业的发展而发展。企业文化既是企业的“无形资产”,也是企业的灵魂。 二、企业文化的作用 企业文化是现代企业建设不可缺少的内容,它客观存在于每个企业之中。积极的企业文化能够促进企业的生存与发展,使得企业长盛不衰;消极落后的企业文化却极大地阻碍着企业的发展。企业总是在不断发展中培育着积极的企业文化,这是因为积极的企业文化不但能够为员工营造一种积极的工作氛围、激励员工努力工作,也能够增强企业内部的向心力和凝聚力,促进企业的生存与发展,可以说是企业应对市场竞争、创建一流企业和建立百年企业的内化动力。具体分析如下: 1、积极的企业文化能够凝聚团队力量和激发员工的工作积极性。积极的企业文化所形成的文化氛围和价值导向是一种精神激励,能够调动与激发员工的积极性、主动性和创造性,把人们的潜在智慧诱发出来,使员工的能力得到全面发展,并提高下属机构和员工的自主管理能力和活力,增强企业的整体执行力。共同的企业价值观念可以形成

共同的目标和理想,促使职工把企业看成是一个命运共同体,把本职工作看成是实现共同目标的重要组成部分,从而使整个企业步调一致,在企业中营造一种团结友爱、相互信任的和睦气氛,从而在企业职工之间形成强大的凝聚力和向心力。此外,企业精神和企业形象对企业职工有着极大的鼓舞作用,特别是企业文化建设取得成功,在社会上产生影响时,企业职工会产生强烈的荣誉感和自豪感,那时他们会加倍努力,用自己的实际行动去维护企业的荣誉和形象。 1 2、积极的企业文化能够增强企业核心竞争力。积极的企业文化强调把企业理念渗透到制度文化、物质文化和行为文化之中,渗透到企业管理体制、激励机制和经营策略之中,渗透到企业经营管理的每一个环节和整个过程之中。在企业实际运作中,企业文化起到文化纽带、精神纽带、道德纽带、物质纽带、利益纽带等一系列作用,对形成和增强企业核心竞争能力起着至关重要的作用。 3、积极的企业文化能够延长企业的生命力。任何一个企业都有生命周期:投入期、成长期、成熟期和衰退期。但为什么还有一些百年老店经久不衰?这主要源自于企业文化的作用力。提高企业创新能力是企业文化重要的组成部分,一个没有创新的企业意味着要面临危机和被淘汰。因而,企业文化中的创新精神、特别是企业家的创新能力能够有效地延长企业的生命力,使企业在激烈的市场竞争中经久不败。总之,积极的企业文化作用、服务于企业经营和管理的各个环节,创建科学的企业文化体系,对于延长企业生命力,实现企业可持续发展有着至关重要的作用。 三、中建通远企业文化的内容 经过中建通远近二十年的发展,形成了公司特有的企业文化:立德、进取、求是、创新。 1、立德

公司企业文化建设规划

公司2010-2012年企业文化建设规划 2010年是"十一五"的最后一年,也是决定公司今后发展局面的关键一年。为继续深入贯彻"三个代表"重要思想,认真贯彻落实以人为本、全面、协调、可持续发展的科学发展观,适应市场竞争的需要,充分发挥企业文化在提高企业管理水平、增强核心竞争力、促进企业又好又快发展中的积极作用,我公司在深入贯彻落实公司三届四次职工代表大会和2010年党委工作会精神的基础上,根据集团公司企业文化建设工作安排意见和公司党政中心工作安排,结合公司新形势、新任务发展实际,现制定公司2010-2012年企业文化建设规划。 一、目的意义 企业文化是企业员工在企业长期的生产经营活动中形成的、为全体员工所遵守和信奉的价值观念、基本信念和行为准则,是企业凝聚和激励全体职工的重要力量,是企业的灵魂和精髓,是现代企业的管理思想,是企业持续发展的精神支柱和动力源泉,也是企业核心竞争力的重要组成部分。建设先进的企业文化是我公司深化改革、加快发展、做强做大的迫切需要;是发挥党的政治优势、建设高素质员工队伍、促进员工全面发展的必然选择;是提高管理水平、增强凝聚力和核心竞争力的战略举措。建设先进的企业文化,不仅能够为企业的持续稳定发展提供强大的精神动力,而且能够有效地改善和提升企业的形象,使企业保持旺盛的生机和活力。 当今世界上的知名企业都从增强内部凝聚力和市场竞争力出发,提炼形成有个性特点的企业文化,用先进的价值理念培养塑造高素质的员工队伍,以品牌制胜战略在市场竞争中占得先机,使企业不断发展壮大。百度公司在近三十年的发展历程中一直十分重视企业文化建设,初步形成了具有时代特点的"燃气文化"。在培育企业精神、提炼企业核心理念和企业宗旨、推动制度创新、塑造企业形象、提高员工素质等方面进行了有益的探索,取得了丰硕成果。但是,随着企业发展战略新形势的需要,公司在企业文化建设中还存在与

浅谈企业文化与企业凝聚力

浅谈企业文化与企业凝聚力 姜晶晶(0810350023) 【摘要】:“人兴万事兴”。在市场竞争愈愈激烈、优胜劣汰游戏愈来愈残酷的今天,企业管理理念的变化呈现出一种文化的趋势,企业文化就像一根纽带,把企业和员工紧紧的联系在一起,使每个员工产生归属感和荣誉感,随着文化凝聚力在文化的功能中越来越重要,这种功能可以在企业内部形成一种合力,从而提升企业竞争力。因此,凝聚力对企业发展起着至关重要的作用。 21世纪以来,国外对企业文化的研究比较系统,尤其是对企业文化的功能之一—凝聚功能的研究与实践结合比较密切,并且取得了一定的研究成果。国内企业可以借鉴国外以有的经验,更好的为自身实力的提升提供有价值的参考。[1] 【关键字】:企业文化;企业凝聚力;对策措施 中图分类号:F270 G640文献标示码:A 一、企业文化与企业凝聚力 (一)企业文化 在企业进入国际化竞争白热化的今天,企业经营环境发生了巨大的变化,一切以人为本,能够激发和凝聚员工的归属感、积极性、主动性和创造性,正成为企业取得和维系竞争优势的关键要素。 1.企业文化的内涵 企业文化(公司文化),在我国有时称之为企业精神,它是指一个企业在长期生产经营过程中,把企业内部全体员工结合在一起了的理想信念、价值观念、管理制度、行为准则和道德规范的总和。它以全体员工为对象,通过宣传、教育、培训和文化娱乐、交心联谊等方式,以最大限度地统一员工意志,规范员工行为,凝聚员工力量,为企业总目标服务。企业文化能够激发和凝聚企业员工归属感、积极性、主动性和创造性的人本管理理论,是企业的灵魂和精神支柱。 2.企业文化的作用 企业文化通过“文化优势”形成一种无形的压力,推动力。它代表了该企业员工整体精神,对企业员工有感召力,凝聚力。实践表明,企业文化渗透在企业组织结构、规章制度和员工行为之中,是企业独特内涵、素质和风格,是现代企业灵魂和持久动力,是以人为本的管理思想在现代企业中的重要体现形式,对凝聚企业的人力资源产生巨大作用。其作用主要在于: (1)导向的作用。企业管理理念、规章制度、企业精神、行为规范等能够引导员工行

企业文化建设发展规划

[标签:标题] 篇一:企业文化发展规划 2011至2015年**地产企业文化建设规划 一、指导思想 深入贯彻落实科学发展观,修正公司企业文化理念,在继承公司优秀传统文化的基础上,广泛借鉴国内外企业现代管理和企业文化优秀成果,以先进的理念、制度、行为、形象推动文化落地,努力形成具有独特魅力与活力的公司企业文化体系,使之成为公司不可或缺的软实力,把公司建设成为文化先进、管理科学、诚信规范、形象良好、实力雄厚、竞争力强、效益显著的现代文化企业,为实现公司战略目标提供强大的文化支撑。 二、基本原则 1、系统性原则。公司企业文化是一个完整科学的体系,建设具有特色的公司企业文化是一项系统工程,必须尊重企业文化的建设的内在规律,有计划的、按步骤地从基础工作做起,在理念文化、制度文化、行为文化、形象文化等层面上重点突破,相互协调,相互作用,系统推进。 2、继承与创新相结合的原则。公司企业文化建设要继承公司优秀传统文化,更要与时俱进,不满现实、不安现状,激发创新活力、向上动力和内在潜力,以超前意识进行创新和超越,不断赋予企业文化建设以新的内涵,在实践中丰富企业文化建设的内容和载体,使公司企业 文化始终充满生机和活力。 3、人本原则.企业是由人组成的,人是企业文化建设的根本对象。公司企业文化建设为公司战略服务,但出发点和归宿是全体员工。建设公司企业文化,必须自始自终围绕全面提高员工素质、调动员工积极性、主动性和创造性,实现员工与公司的共同成长这一主题进行。 4、特色化原则。优秀的企业文化一定是不可复制的竞争力。公司的战略目标决定了公司企业文化必须具有鲜明特色。要建立以彰显公司个性的企业形象识别系统,以独特的视觉、听 觉系统,让人们感受公司独特的产品和服务,形成公司特色企业文化的强大辐射力、感召力 和影响力。 5、实践的原则.公司文化建设必须坚持理念重要、实践更重要、自觉实践最重要,增强企业文化建设的科学性和实效性,重在建设,重在操作,重在实效,切实把企业文化要求体现到组织、人员、产品和服务上,辐射到相关产业链中。 三、框架体系 **地产企业文化建设体系主要由文化理念体系、形象体系、行为体系及相应的子文化体系四部分构成. 1、文化理念体系. 文化理念体系是公司企业文化建设体系的核心和基础。企业理念反映企业的价值追求、文化素养和社会责任,是企业文化的灵魂。公司企业文化理念体系构架主要包括核心理念、应 用理念和子理念。核心理念指企业使命、愿景、核心价值观、企业精神等。应用理念主要是指在核心理念指导下形成的公司经营理念、经营战略、经营宗旨、经营准则等。子理念主要指核心理念和应用理念派生出的人本观、安全观、质量观、廉洁观、诚信观、创新观、客户观、开放观等。 2、形象体系 公司形象体系包括视觉识别系统和环境建设系统两部分。视觉识别系统是指公司名称、标

相关文档
最新文档