高中数学复习专题讲座(第13讲)_数列的通项公式与求和的常用方法

高中数学复习专题讲座(第13讲)_数列的通项公式与求和的常用方法
高中数学复习专题讲座(第13讲)_数列的通项公式与求和的常用方法

题目 高中数学复习专题讲座数列的通项公式与求和的常用方法

高考要求

数列是函数概念的继续和延伸,数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }

的通项 通项及求和是数列中最基本也是最重要的问题之一,与数列极限

及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法

重难点归纳

1 数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数

集中元素的异同 因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性

2 数列{a n }前n 项和S n 与通项a n 的关系式 a n =??

?≥-=-2

,1,11n S S n S n n

3 求通项常用方法

①作新数列法 作等差数列与等比数列 ②累差叠加法 最基本形式是

a n =(a n -a n -1+(a n -1+a n -2)+…+(a 2-a 1)+a 1

③归纳、猜想法

4 数列前n 项和常用求法

①重要公式 1+2+…+n =

2

1n (n +1)

12+22+…+n 2=

6

1n (n +1)(2n +1)

13+23+…+n 3=(1+2+…+n )2=4

1n 2(n +1)2

②等差数列中S m +n =S m +S n +mnd ,等比数列中S m +n =S n +q n S m =S m +q m S n

③裂项求和 将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项 应掌握以下常见的裂项

)!

1(1

!1)!1(1

,

C C C ,

ctg2ctg 2sin 1,!)!1(!,1

11)1(11

1

+-

=+-=-=-+=?+-

=

++-n n n ααn n n n n n

n n r

n r n

n n

α

④错项相消法 ⑤并项求和法

数列通项与和的方法多种多样,要视具体情形选用合适方法 典型题例示范讲解

例1已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1),

(1)求数列{a n }和{b n }的通项公式;

(2)设数列{c n }的前n 项和为S n ,对一切n ∈N *,都有

n

n c c b c b c +

++ 2

11

1=a n +1

成立,求lim

→n n

n S 212+

命题意图 本题主要考查等差、等比数列的通项公式及前n 项和公式、数列的极限,以及运算能力和综合分析问题的能力

知识依托 本题利用函数思想把题设条件转化为方程问题非常明显,

而(2)中条件等式的左边可视为某数列前n 项和,实质上是该数列前n 项和与数列{a n }的关系,借助通项与前n 项和的关系求解c n 是该条件转化的突破口

错解分析 本题两问环环相扣,(1)问是基础,但解方程求基本量a 1、

b 1、d 、q ,计算不准易出错;(2)问中对条件的正确认识和转化是关键

技巧与方法 本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{d n }运用和与通项的关系求出d n ,丝丝入扣

解 (1)∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2,

∴a 3-a 1=d 2-(d -2)2

=2d ,

∵d =2,∴a n =a 1+(n -1)d =2(n -1); 又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2

, ∴

2

2

1

3)2(q

q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,

∴b n =b ·q n -1=4·(-2)n -1 (2)令

n

n b c =d n ,则d 1+d 2+…+d n =a n +1,(n ∈N *

),

∴d n =a n +1-a n =2,

n

n b c =2,即c n =2·b n =8·(-2)n -1;∴S n =

3

8[1-(-2)n ]

2lim ,1

)

2

1(2

)21()

2(1)

2(121222212212-=--

+-=----=

+∞

→++n

n n n

n

n

n n

n S S S S

例2设A n 为数列{a n }的前n 项和,A n =2

3 (a n -1),数列{b n }的通项公式

为b n =4n +3;

(1)求数列{a n }的通项公式;

(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明 数列{d n }的通项公式为d n =32n +1;

(3)设数列{d n }的第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项

的和;D n 为数列{d n }的前n 项和,T n =B r -D n ,求lim

→n 4

n n T

命题意图 本题考查数列的通项公式及前n 项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力

知识依托 利用项与和的关系求a n 是本题的先决;(2)问中探寻{a n }与{b n }的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最

基本的知识点

错解分析 待证通项d n =32n +1与a n 的共同点易被忽视而寸步难行;注意不到r 与n 的关系,使T n 中既含有n ,又含有r ,会使所求的极限模糊不

技巧与方法 (1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问

中挖掘出n 与r 的关系,正确表示B r ,问题便可迎刃而解

解 (1)由A n =

2

3(a n -1),可知A n +1=

2

3(a n +1-1),

∴a n +1-a n =

2

3 (a n +1-a n ),即n

n a a 1+=3,而a 1=A 1=2

3 (a 1-1),得a 1=3,

所以数列是以3为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n

(2)∵32n +1=3·32n =3·(4-1)2n

=3·[42n +C 12n ·4

2n -1(-1)+…+C 1

22-n n ·4·(-1)+(-1)2n ]=4n +3,

∴3+1∈{b n } 而数32n =(4-1)2n

=42n +C 12n

·42n -1·(-1)+…+C 1

22-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ?{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1

(3)由32n +1

=4·r +3,可知r =

43

3

1

2-+n ,

∴B r =

)19(8

27)91(9

127,2

73433

)52(2

)

347(1

212-=

-?-=

+?

-=

+=++++n

n

n n n D r r r r ,

8

9)

(lim

,

3

)(,4

338

113

89)

19(8

278

21

3

49

4

44241

21

2=

∴=+

?-

?=--

-?+=-=∴∞

→++n n n n

n n

n

n

n n n r n a T a D B T

例3 设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项

(1)写出数列{a n }的前3项

(2)求数列{a n }的通项公式(写出推证过程)

(3)令b n =)(

2

11

1

+++

n n n

n a a a a (n ∈N *

),求lim ∞

→n (b 1+b 2+b 3+…+b n -n )

解析 (1)由题意,当n =1时,有

1122

2S a =+,S 1=a 1,

1122

2a a =+,解得a 1=2 当n =2时,有

2222

2S a =+,S 2=a 1+a 2,

将a 1=2代入,整理得(a 2-2)2

=16,由a 2>0,解得a 2=6

当n =3时,有

3322

2S a =

+,S 3=a 1+a 2+a 3,

将a 1=2,a 2=6代入,整理得(a 3-2)2=64,由a 3>0,解得a 3=10

故该数列的前3项为2,6,10

(2)解法一 由(1)猜想数列{a n } 有通项公式a n =4n -2

下面用数学归纳法证明{a n }的通项公式是a n =4n -2,(n ∈N *) ①当n =1时,因为4×1-2=2,,又在(1)中已求出a 1=2,所以上述结论

成立

②假设当n =k 时,结论成立,即有a k =4k -2,由题意,有

k k S a 22

2=

+,

将a k =4k -2 代入上式,解得2k =k S 2,得S k =2k 2,

由题意,有

1122

2

++=

+k k S a ,S k +1=S k +a k +1,

将S k =2k 2

代入得(

2

2

1++k a )2=2(a k +1+2k 2

),

整理得a k +12

-4a k +1+4-16k 2

=0,由a k +1>0,解得a k +1=2+4k , 所以a k +1=2+4k =4(k +1)-2,

即当n =k +1时,上述结论成立

根据①②,上述结论对所有的自然数n ∈N *

成立

解法二 由题意知

n n S a 22

2=

+,(n ∈N *

) 整理得,S n =

8

1(a n +2)2,

由此得S n +1=

8

1(a n +1+2)2

,∴a n +1=S n +1-S n =

8

1[(a n +1+2)2

-(a n +2)2

整理得(a n +1+a n )(a n +1-a n -4)=0, 由题意知a n +1+a n ≠0,∴a n +1-a n =4,

即数列{a n }为等差数列,其中a 1=2,公差d =4

∴a n =a 1+(n -1)d =2+4(n -1),即通项公式为a n =4n -2

解法三 由已知得

n n S a 22

2=

+,(n ∈N *

) ①,

所以有

1122

2

++=

+n n S a ②,

由②式得

1122

2

++=

+-n n n S S S ,

整理得S n +1-22·1+n S +2-S n =0, 解得n n S S ±

=

+21,

由于数列{a n }为正项数列,而2,211>

+

=+n n S S S ,

因而n n S S +

=

+21, 即{S n }是以21=

S 为首项,以

2为公差的等差数列

所以n S = 2+(n -1) 2=2n ,S n =2n 2

故a n =??

?≥-=-=-)

2(,24)

1(,21n n S S n n n 即a n =4n -2(n ∈N *)

(3)令c n =b n -1,则c n =)2(

2

11

1

-+

++n n n

n a a a a

1212111[(

1)(

1)],2

21

21

21

21

n n n n n n +-=

-+-=

-

-+-+

1212n n b b b n c c c +++-=+++ 111111(1)(

)(

)1,335

21

2121

n n n =-

+-++-

=-

-++

121()(1) 1.lim lim 21

n n n b b b n n →∞

→∞

∴+++-=-

=+

学生巩固练习

1 设z n =(

2

1i -)n ,(n ∈N *

),记S n =|z 2-z 1|+|z 3-z 2|+…+|z n +1-

z n |,则lim ∞

→n S n =_________

2 作边长为a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面

积之和分别为_________

3 数列{a n }满足a 1=2,对于任意的n ∈N *都有a n >0,且(n +1)a n 2+a n ·a n +1

-na n +12=0,又知数列{b n }的通项为b n =2n -1+1

(1)求数列{a n }的通项a n 及它的前n 项和S n ; (2)求数列{b n }的前n 项和T n ;

(3)猜想S n 与T n 的大小关系,并说明理由

4 数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *

) (1)求数列{a n }的通项公式;

(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ;

(3)设b n =

)

12(1n a n -(n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的

整数m ,使得对任意n ∈N *均有T n >32

m 成立?若存在,求出m 的值;若不

存在,说明理由

5 设数列{a n }的前n 项和为S n ,且S n =(m +1)-ma n 对任意正整数n

都成立,其中m 为常数,且m <-1

(1)求证 {a n }是等比数列;

(2)设数列{a n }的公比q =f (m ),数列{b n }满足 b 1=

3

1a 1,b n =f (b n -1)(n ≥2,n

∈N *) 试问当m 为何值时,)

(3lim )lg (lim 13221n n n n n n b b b b b b a b -∞

→∞→+++=? 成立?

6 已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145 (1)求数列{b n }的通项b n ;

(2)设数列{a n }的通项a n =log a (1+

n

b 1)(其中a >0且a ≠1),记S n 是数列{a n }

的前n 项和,试比较S n 与

3

1log a b n +1的大小,并证明你的结论

7 设数列{a n }的首项a 1=1,前n 项和S n 满足关系式 3tS n -(2t +3)S n -

1=3t (t >0,n =2,3,4…)

(1)求证 数列{a n }是等比数列;

(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f (1

1-n b )(n =2,3,4…),

求数列{b n }的通项b n ;

(3)求和 b 1b 2-b 2b 3+b 3b 4-…+b 2n -1b 2n -b 2n b 2n +1

参考答案

,)

2

2(

|)2

1(

)

2

1(

|||:.11

1

1+++=---=-=n n

n n n n i i z z c 设解析

2

2)

2

2(12

21]

)22(1[2

1

21-

-=

-

-=+++=∴n

n

n n c c c S

2

212

2

22

21lim +

=+=

-=

∴∞

→n n S

答案 1+

2

2

2 解析 由题意所有正三角形的边长构成等比数列{a n },可得a n =

1

2

-n a ,

正三角形的内切圆构成等比数列{r n },可得r n =

1

2

1

63-n a ,

∴这些圆的周长之和c =lim ∞

→n 2π(r 1+r 2+…+r n )=

2

33π a 2,

面积之和S =lim ∞

→n π(n 2+r 22+…+r n 2

)=

9

πa 2

答案 周长之和

2

33πa ,面积之和

9

πa 2

3 解 (1)可解得

1

1+=

+n n a a n

n ,从而a n =2n ,有S n =n 2+n ,

(2)T n =2n +n -1

(3)T n -S n =2n -n 2-1,验证可知,n =1时,T 1=S 1,n =2时T 2<S 2;n =3时,

T 3<S 3;n =4时,T 4<S 4;n =5时,T 5>S 5;n =6时T 6>S 6 猜想当n ≥5时,T n >S n ,即2n >n 2+1

可用数学归纳法证明(略)

4 解 (1)由a n +2=2a n +1-a n ?a n +2-a n +1=a n +1-a n 可知{a n }成等差数列,

d =

1

414--a a =-2,∴a n =10-2n

(2)由a n =10-2n ≥0可得n ≤5,当n ≤5时,S n =-n 2+9n ,

当n >5时,S n =n 2

-9n +40,故S n =?????>+-≤≤+-5

4095

1 922

n n n n n n

(3)b n =

)1

11(21)

22(1)

12(1+-=

+=

-n n n n a n n )

1(2)]1

11(

)3

121(

)211[(2

121+=

+-

++-+-=

+++=∴n n n n b b b T n n ;

要使T n >

32

m 总成立,需

32

m <T 1=

4

1成立,即m <8且m ∈Z ,故适合条件的

m 的最大值为7 5 解 (1)由已知S n +1=(m +1)-ma n +1 ①, S n =(m +1)-ma n ②,

由①-②,得a n +1=ma n -ma n +1,即(m +1)a n +1=ma n 对任意正整数n 都成立

∵m 为常数,且m <-1

1

1+=

+m m a a n

n ,即{

1

+n n a a }为等比数列

(2)当n =1时,a 1=m +1-ma 1,∴a 1=1,从而b 1

由(1)知q =f (m )=

1

+m m ,∴b n =f (b n -1)=

1

11+--n n b b (n ∈N *

,且n ≥2)

1

111-+

=n n b b ,即

1111=-

-n n

b b ,

∴{n

b 1}为等差数列 ∴

n

b 1=3+(n -1)=n +2,

2

1+=

∴n b n (n ∈N *

)

1

1

(

)

,(lg )[

lg

]lg

,lim lim 1

211n n n n n n m

n m

m

a b a m n m m -→∞

→∞

-=∴?==++++

12231111111

3()3()1lim lim 344512

n n n n b b b b b b n n -→∞→∞+++=-+-++-=++ 而10

lg

1,10,1

1

9

m m m m m =∴

=∴=-

++由题意知

6 解 (1)设数列{b n }的公差为d ,由题意得 ?

?

?

??=-+=1452)

110(1010111d b b 解得b 1=1,d =3,∴b n =3n -2

(2)由b n =3n -2,知S n =log a (1+1)+log a (1+

4

1)+…+log a (1+

2

31-n )

=log a [(1+1)(1+4

1) (1)

2

31-n )],3

1log a b n +1=log a

因此要比较S n 与

31log a b n +1的大小, 可先比较(1+1)(1+

41) (1)

2

31-n )与313+n 的大小,

取n =1时,有(1+1)>3113+?

取n =2时,有(1+1)(1+4

1)>3123+?…

由此推测(1+1)(1+

4

1)…(1+2

31-n )>313+n

若①式成立,则由对数函数性质可判定

当a >1时,S n >

3

1log a b n +1,

② 当0<a <1时,S n <3

1log a b n +1,

下面用数学归纳法证明①式

(ⅰ)当n =1时,已验证①式成立

(ⅱ)假设当n =k 时(k ≥1),①式成立,即

)2

311()4

11)(11(>

-+

+

+k 那么当n =k +1时,

1111(11)(1)(1)(1))2).

4

32

3(1)2

31

31

k k k k k ++

+

+

>

+

=

+-+-++

22

23

2

(32)(34)(31)

[

(32)]31

(31)

k k k k k k +-+++-=

++

2

940,(32)(31)

31

k k k k +=

>∴+>=++

11

1

(11)(1)(1)(1)4

32

31

k k +++

+

>

-+ 因而

这就是说①式当n =k +1时也成立

由(ⅰ)(ⅱ)可知①式对任何正整数n 都成立

由此证得 当a >1时,S n >

3

1log a b n +1;当0<a <1时,S n <

3

1log a b n +1

7 解 (1)由S 1=a 1=1,S 2=1+a 2,得3t (1+a 2)-(2t +3)=3t

∴a 2=

t

t a a t t 33

2,33212+=

+ 又3tS n -(2t +3)S n -1=3t , ① 3tS n -1-(2t +3)S n -2=3t

①-②得3ta n -(2t +3)a n -1=0

t

t a a n n 3321

+=

-,n =2,3,4…,

所以{a n }是一个首项为1公比为

t

t 332+的等比数列;

(2)由f (t )= t

t 332+=

t

13

2+

,得b n =f (

1

1-n b )=3

2+b n -1

可见{b n }是一个首项为1,公差为3

2的等差数列

于是b n =1+32(n -1)=

3

12+n ;

(3)由b n =

3

1

2+n ,可知

{b 2n -1}和{b 2n }是首项分别为1和3

5,公差均为

3

4的等差数列,

于是b 2n =

3

14+n ,

∴b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1 =b 2(b 1-b 3)+b 4(b 3-b 5)+…+b 2n (b 2n -1-b 2n +1) =-

3

4 (b 2+b 4+…+b 2n )=-

3

4·2

1n (3

5+3

14+n )=-9

4 (2n 2+3n )

课前后备注

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结 知识点精讲 一、基本概念 (1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. (2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列 的通项公式. 注:①并非所有的数列都有通项公式; ②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式. 题型归纳及思路提示 题型1 数列通项公式的求解 思路提示 常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法 根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a ②叠乘法:形如1()n n a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a ③构造辅助数列:通过变换递推公式,将非等差(等比)数列 构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法. 利用n S 与n a 的关系求解 形如 1(,)()n n n f S S g a -=的关系,求其通项公式,可依据 1* 1(1)(2,) n n n S n a S S n n N -=? =?-≥∈?,求出n a 观察法 观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n -或者1 (1) n -- 部分.②考虑各项的变化 规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2 n 、{}2n 与(1) n -有 关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式: (1)325374 ,,,,,,;751381911 - --L

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

数列求通项公式及求和9种方法

【方 a n a S n 数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型 亠、S n 是数列{a n }的前n 项的和 S i (n 1) S n S n 1 (n 2 ) S n 1 ”代入消兀消a n 【注意】漏检验n 的值(如n 1的情况 [例 U . ( 1)已知正数数列{a n }的前n 项的和为S n , 且对 任意的正整数n 满足2\金 如1 ,求数列{a n }的 通项公式。 (2)数列{a n }中,印1对所有的正整数n 都有 a 1 a 2 a 3 L a n 『, 求数列 {a n } 的通项公式 【作业一】 2 n 1 n * 1 — 1 ■数列 a n 满足 a 1 3a 2 3 a 3 L 3 a n - (n N ) , 求数列a n 的通项公式. (二).累加、累乘 a 型如 a a f(n) , am f (n )

型一:a n a n 1 f (n),用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 a n a n 1 f(n), a n 1 a n 2 f(n 1), a2 a1 f (2) n 2, 从而a n a1 f (n) f(n 1) L f (2),检验n 1 的情况型二:|电f(n),用累乘法求通项公式(推导等比a n1 数列通项公式的方法) 【方法】n 2,亘也L邑f(n) f(n 1) L f(2) a n 1 a n 2 a i 即色f(n) f(n 1) L f(2),检验n 1的情a1 况 【小结】一般情况下,“累加法”(“累乘法”)里只有n 1个等式相加(相乘). 1 1 【例2】.(1)已知a1 2,a n a n1 ■n^[(n 2),求 a n ■ n 2 (2)已知数列a n满足a n1 - 2a n,且a1 n 2 3 求a n .

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

数列的通项公式与求和的常见方法

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =,12n n a a +-=* ()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,1 3n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=* ()n N ∈,求数 列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++* ()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足2 11=a ,n a a n n 21+=+,* ()n N ∈求 数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈, 13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,*()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,2 51n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可得数列 λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{} n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列 {}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-* ()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新的等差数 列。 例:已知数列{}n a 满足11a =,122 n n n a a a += +*()n N ∈, 求数列{}n a 的通项公式。 变式练习: 1. 已 知 数 列 {} n a 满 足 11 a =, 1(1)n n na n a +=++(1)n n +, * ()n N ∈,求数列{}n a 的 通项公式。 2. 已知首项都为1的两个数列{}n a 、{} n b (0n b ≠* n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b =求数列{}n c 的通 项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ=-++11,即数列? ? ????n n p a 为以p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数 列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1 15 5+++=n n n a a ,11=a ,求数列 {}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列 {}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的 前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2232221n a a a a ++++Λ. 类型二:分组求和法 例. 求数列的前n 项和: 232 1 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 2 1 )12(+ +=,求n S . 类型三:倒序相加法 例.求ο ο ο ο 88sin 3sin 2sin 1sin 2 2 2 2+???+++ο 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式; (2)设n n n b a c = ,求数列}{n c 的前n 项和n T . 类型五:裂项相消法 例.已知数列}{n a 中,) 2(1 += n n a n ,求n S . 1.求数列 1 1 ,,321,211++???++n n 的前n 项和. 2.在数列}{n a 中,1 1211++???++++=n n n n a n , 又1 2 +?=n n n a a b ,求数列}{n b 的前n 项的和. 3.求和 求数列的通项与求和作业 1.已知数列}{n a 的首项11=a (1)若12n n a a +=+,则n a =__________; (2)若12n n a a +=,则n a =_________ 1 11{}:1,{}.31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

数列求通项公式及求和9种方法

数列求通项公式及求和 9种方法 -CAL-FENGHAI.-(YICAI)-Company One1

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a 的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都 有2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-?? 即1 ()(1)(2)n a f n f n f a =?-??,检验1n =的情况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知2 11=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列 {}n a 满足1 2 n n n a a n +=+,且32 1=a ,求n a .

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

数列通项公式与求和的常见解法

数列通项公式的十种求法 {a n }的通项公式。 二、累加法 例2已知数列{a n }满足a n 1 a n 2n 1, 3 (n 1)(n 2 n 、公式法 例1已知数列{a n }满足a n 1 2a n 3 2n , a i 2,求数列{a n }的通项公式。 解:a n 1 2a n 3 2n 两边除以2n 1,得開 a n 3 a n 1 a n 3 2^ 2,人」2门1歹 2, 得鱼 2n 以岂 2 1为首项,以-为公差的等差数列,由等差数列的通项公式, 21 2 2 故数列{》}是 1(n 丐, 3 1 所以数列{a n }的通项公式为a n ( n -)2n 。 评注:本题解题的关键是把递推关系式 a n1 2a n 2n 转化为開 是等差数列,再直接利用等差数列的通项公式求出 a n 1)3,进而求出数列 -,说明数列 2 解:由a n 1 a n 2n 1 得 a n 1 a n 2n 1则 a n (a n [2(n 2[(n 2^ a n 1 ) (a n 1) 1) 1)n 2 1 a n 2 ) 1] [2(n 2) (n 2) 1] I 2 1] @3 a 2) L (2 2 1) 1 (a 2 a 1 ) 4 1) (2 1 1) 1 (n (n 1) 所以数列{a n }的通项公式 为 a n 评注:本题解题的关键是把递推关系式 a n 1 a n 2n 1转化为a n 1 a n 2n 1,进而求 出(a n a n 1) (a n 1 a n 2) L (a 3 a 2) (a ?印) a 1,即得数列{a n }的通项公 式。 求数列{a n }的通项公式。 1) 1

数列的通项及求和公式

数列的通项及求和公式专题课内导学案11 一、基本公式法:等差数列,等比数列。 例1、(1)若{}n a 是等差数列,公差0d ≠, 236,,a a a 成等比,11a =,则n a =_________。 (2)若{}n a 是等比数列,243,,a a a 成等差, 13a =,则n a =_________。 二、已知n S 求n a :11 (2) (1)n n n S S n a S n --≥?=? =?。 类型1、(1)已知2 1n S n n =++,求n a 。 (2)已知101n n S =-,求n a 。 类型2、(1)已知32n n S a =-,求n a ; (2)已知3 32 n n S a =-,求n a ; (3)已知22n n S a +=,求n a 。 类型3、(1)2 24n n n a a S +=,0n a >,求n a ; (2)2 1056n n n S a a =++,0n a >,求n a ; (3)2111 424 n n n S a a = ++,0n a >,求n a 。 类型4、(1)11a =,12n n a S +=,求n a ; (2)11a =,12n n S a +=,求n a ; (3)13a =,11n n S a +=+,求n a 。

类型5、(1)122n n a a a ++???+=,则n a =_____ (2)123n a a a a n ?????=,则n a =_____ (3)12323n a a a na n +++???+=,则n a =_____ (4) 3 12123n a a a a n n +++???+=,则n a =_____ (5)231233333n n a a a a n +++???+=,n a =___ 三、形如1()n n a a f n +-=的递推数列求通项公式,使用累加法。 例1、(1)数列{}n a 中满足12a =,1n n a a n +=+,求n a 的通项公式。 (2)已知数列{}n a 中满足13a =, 12n n n a a +=+,求n a 的通项公式。 (3)求数列2,4,9,17,28,42,???的通项公式。 四、形如 1 ()n n a f n a +=的递推数列求通项公式,使用累乘法。 例1、(1)数列{}n a 中满足15a =,12n n n a a +=?, 求n a 的通项公式。 (2)数列{}n a 中满足14a =,11 n n n a a n +=?+,求n a 的通项公式。 (3)112a = ,111 n n n a a n --=+(2n ≥),求n a 的通项公式。 五、构造法 例1、(1)14a = 2=,求n a ; (2)14a =,22 12n n a a +-=,求n a ; (3)14a =, 144 2n n a a +-=,求n a ; (4)12a =,112(1)n n a a +-=-,求n a ; (5)11a =,1(1)3n n n a na ++=,求n a ; (6)11a =,121n n a a n n +-=+,求n a 。

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

相关文档
最新文档