ICP发射光谱分析

原子发射光谱法及其应用

原子发射光谱法及其应用 摘要:本文介绍了原子发射光谱法的原理、特点及分析仪器。并对原子发射光谱法尤其是电感耦合等离子体原子发射光谱法在环境、冶炼、矿产开发、材料等领域的应用做了介绍。 关键词:原子发射、光谱法、应用 1.原子发射光谱法概述 1.1原子发射光谱法简介 原子发射光谱法(AES,atomic emission spectrometry),是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种。 原子发射光谱法的研究对象是被分析物质所发出的线光谱,利用待测物质的原子或离子所发射的特征光谱线的波长和强度来确定物质的元素种类及其含量。 原子发射光谱分析过程分为三步,即激发、发光和检测。第一步是利用激发光源使试样蒸发,解离成原子,或进一步解离成离子,最后使原子或离子得到激发,发射辐射;第二步是利用光谱仪把光源发射的光按波长展开,获得光谱;第三步是利用检测系统记录光谱,测量谱线波长、强度,根据谱线波长进行定性分析,根据谱线强度进行定量分析。 1.2原子发射光谱法发展概况 原子发射光谱法是光学分析法中产生和发展最早的一种。早在1860年,德

国学者霍夫(Kirchhoff)和本生(Bunsen)把分光镜应用于化学分析,发现了光谱与物质组成之间的关系,确认和证实各种物质都具有其特征光谱,从而奠定了光谱定性分析的基础。 随着光谱仪器和光谱理论的发展,发射光谱分析进入了新的阶段。火焰、火花和弧光光源稳定性的提高,给定量分析的发展开辟了道路。20世纪20年代,W.Gerlach提出了内标原理,奠定了定量分析的基础;30年代,棱镜光谱仪形成了系列,促进了定量分析的发展,形成了定量分析的经验公式;40年代,棱镜光谱仪飞速发展,使发射光谱分析得到了广泛的应用;50年代,光栅光谱仪基本上形成系列;60年代,电感耦合等离子体(ICP)光源的引入,大大推动了发射光谱分析的发展。 近几十年来,中阶梯光栅光谱仪、干涉光谱仪等仪器的出现,加之电子计算机的应用,使发射光谱分析进入了自动化阶段。 原子发射光谱法不仅过去曾在原子结构理论的建立及元素周期表中某些元素的发现过程中对科学的发展起到重要推动作用,而且已经并将继续在各种材料的定性定量分析中占有重要地位。 1.3原子发射光谱法的特点 与其他分析方法相比,原子发射光谱法具有如下特点。 (1)灵敏度高。一般光源灵敏度可达0.1~10μg·g-1(或μg·ml-1),ICP 光源可达10-4~10-3μg·ml-1。 (2)选择性好。每种元素的原子被激发后,都产生一组特征光谱,根据这些特征光谱,便可以准确无误地确定该元素的存在,所以发射光谱分析至今仍是元素定性分析的最好方法。

第一章原子发射光谱法解读

第一章、原子发射光谱法 一、选择题 1.闪耀光栅的特点之一是要使入射角α、衍射角β和闪耀角θ之间满足下列条件( ) (1) α=β(2) α=θ(3) β=θ(4) α=β=θ 2光栅公式[nλ= b(Sinα+ Sinβ)]中的b值与下列哪种因素有关?( ) (1) 闪耀角(2) 衍射角(3) 谱级(4) 刻痕数(mm-1) 3. 原子发射光谱是由下列哪种跃迁产生的?( ) (1) 辐射能使气态原子外层电子激发(2) 辐射能使气态原子内层电子激发 (3) 电热能使气态原子内层电子激发(4) 电热能使气态原子外层电子激发 4. 摄谱法原子光谱定量分析是根据下列哪种关系建立的(I——光强, N基——基态原子数, ?S——分析线对黑度差, c——浓度, I——分析线强度, S——黑度)?( ) (1) I-N基(2) ?S-lg c(3) I-lg c(4) S-lg N基 5. 下述哪种光谱法是基于发射原理?( ) (1) 红外光谱法(2) 荧光光度法(3) 分光光度法(4) 核磁共振波谱法 6. 当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是( ) (1) K(2) Ca(3) Zn(4) Fe 7. 以光栅作单色器的色散元件,若工艺精度好,光栅上单位距离的刻痕线数越多,则( ) (1) 光栅色散率变大,分辨率增高(2) 光栅色散率变大,分辨率降低 (3) 光栅色散率变小,分辨率降低(4) 光栅色散率变小,分辨率增高 8. 发射光谱定量分析选用的“分析线对”应是这样的一对线( ) (1) 波长不一定接近,但激发电位要相近(2) 波长要接近,激发电位可以不接近 (3) 波长和激发电位都应接近(4) 波长和激发电位都不一定接近 9. 以光栅作单色器的色散元件,光栅面上单位距离内的刻痕线越少,则( ) (1) 光谱色散率变大,分辨率增高(2) 光谱色散率变大,分辨率降低 (3) 光谱色散率变小,分辨率增高(4) 光谱色散率变小,分辨率亦降低 10. 在下列激发光源中,何种光源要求试样制成溶液?( ) (1)火焰(2)交流电弧(3)激光微探针(4)辉光放电 11. 用发射光谱进行定性分析时,作为谱线波长的比较标尺的元素是( ) (1)钠(2)碳(3)铁(4)硅 12. 基于发射原理的分析方法是( ) (1) 光电比色法(2) 荧光光度法(3) 紫外及可见分光光度法(4) 红外光谱法 13. 发射光谱法用的摄谱仪与原子荧光分光光度计相同的部件是( ) (1)光源(2)原子化器(3)单色器(4)检测器 14. 下面哪些光源要求试样为溶液, 并经喷雾成气溶胶后引入光源激发?( ) (1) 火焰(2) 辉光放电(3) 激光微探针(4) 交流电弧 15. 发射光谱分析中, 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是( ) (1) 直流电弧(2) 低压交流电弧(3) 电火花(4) 高频电感耦合等离子体 16. 电子能级差愈小, 跃迁时发射光子的( ) (1) 能量越大(2) 波长越长(3) 波数越大(4) 频率越高 17. 光量子的能量正比于辐射的( ) (1)频率(2)波长(3)传播速度(4)周期 18. 下面哪种光源, 不但能激发产生原子光谱和离子光谱, 而且许多元素的离子线强度大于原子线强度?( )

光谱分析-原子发射光谱仪-ICP-iCAP7000-Qtegra软件操作规程

iCAP 7000 Qtegra 软件操作规程 1.确认实验条件准备 1.1室内湿度达到22~25度,湿度为40~65%,且保持恒定。 1.2打开排风设备, 确认稳压器供电稳定,零地电压<5v 1.3确认氩气供应充足,分压调至0.6Mpa. 钢瓶内总压不小于1.5Mpa。开大量 流吹扫仪器半小时(若仪器长是间未开,建议大流量吹扫2小时以上) 1.4确认冷却循环水水量充足,打开冷却循环水(确保仪器大量吹扫后开水机), 查看水压,未点火之前为85psi. 点火后约为75psi。水温是否设定在20度 1.5 安装好蠕动泵管,开泵,设定雾化器流量0.5l/min. 检查进样排废情况。 2.点燃等离子体 2.1 打开仪器主机左侧电源开关, 双击仪器控制软件, 打开软件控制界面板. 如下图所示. 2.2 确认所有联锁正常,如下图所示, 全部亮绿灯后, 方可以点燃等离子体.

2.3 点击控制面板上的, 弹出如下对话框,按实际需要设定点火后的参数. Warm up仪器预热时间, 通常设定为15~20 minutes. Spectrometer Optimization 光谱仪优化,建议勾选, Run performance Check 及 perform Detection Limit Check 为仪器性能检查, 日常测试可不勾选. 若使用手动进样, 则将Use Manual Sampling 勾选上. 并设定wash time通常都设定为30s, 若测定样品比较容易残留管路, 可将值设大些, Uptake time 表示样品提升时间,根据进样管路长度设定,通常设定为30s. 设置完成后,点击OK, 仪器开始自动预热,按软件提示,将样品管放出纯水中.约20min分钟后,仪器预热及光谱仪优化成功.软件提示success.如下图所示. 检查log view (下图红框)中的光谱仪优化后的x,y 值, 要求分别控制在±3以内.

ICP发射光谱法的特点

ICP发射光谱法的特点 ICP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点: 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。 3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP光谱法最主要的优点之一。 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。 ICP发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面: 1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。 2. 因为工作时需要消耗大量Ar气,所以运转费用高。 3. 因目前的仪器价格尚比较高,所以前期投入比较大。 4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。 ICP发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。 ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。截止到上世纪80年代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl及元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。 ICP发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。 ICP发射光谱法包括了三个主要的过程,即: 由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射; 将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱; 用检测器检测光谱中谱线的波长和强度。 由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。 优点: 1. 多元素同时检出能力。 可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征

ICP发射光谱常见问题

ICP发射光谱常见问题 1、影响等离子体温度的因素有: 载气流量:流量增大,中心部位温度下降; 载气的压力:激发温度随载气压力的降低而增加; 频率和输入功率:激发温度随功率增大而增高,近似线性关系,在其他条件相同时,增加频率,放电温度降低; 第三元素的影响:引入低电离电位的释放剂(如T1)的等离子体,电子温度将增加。 2、电离干扰的消除和抑制 原子在火焰或等离子体的蒸气相中电离而产生的干扰。它使火焰中分析元素的中性原子数减少,因而降低分析信号。在标准和分析试样中加入过量的易电离元素,使火焰或等离子体中的自由电子浓度稳定在相当高的水平上,从而抑制或消除分析元素的电离。此外,由于温度愈高,电离度愈大,因此,降低温度也可减少电离干扰。 3、试剂酸度对ICP-AES法的干扰效应主要表现在哪些方面? 提升率及其中元素的谱线强度均低于水溶液;随着酸度增加,谱线强度显著降低;各种无机酸的影响并不相同,按下列顺序递增:HCl HNO3 HClO4 H3PO4 H2SO4;谱线强度的变化与提升率的变化成正比例。 4、ICP-AES法中的光谱干扰主要存在的类型 谱线干扰;谱带系对分析谱线的干扰; 连续背景对分析谱线的干扰; 杂散光引起的干扰。 5、ICP-AES法分析中灵敏度漂移的校正 在测定过程中,气体压力改变会影响到原子化效率和基态原子的分布;另外,毛细管阻塞、废液排泄不畅,会使溶液提升量和雾化效率受到影响;以及电压变化等诸多因素都会使灵敏度发生漂移,其校正方法可每测10个样品加测一个与样品组成接近的质控样,并根据所用仪器的新旧程度适当缩短标准化的时间间隔。 6、ICP分析中如何避免样品间的互相沾污? 测量时,不要依次测量浓度悬殊很大的样品,可把浓度相近的样品放在一起测定,测定样品之间,应用蒸馏水或溶剂冲洗之。 7、ICP-AES法中,用来分解样品的酸,必须满足的条件 尽可能使各种元素迅速、完全分解;所含待测元素的量可忽略不计;分解样品时,待测元素不应损失;与待测元素间不形成不溶性物质;测定时共存元素的影响要小;不损伤雾化器、炬管等。 8、在ICP-AES法中,为什么必须特别重视标准溶液的配置? 不正确的配置方法将导致系统偏差的产生;介质和酸度不合适,会产生沉淀和浑浊;元素分组不当,会引起元素间谱线干扰;试剂和溶剂纯度不够,会引起空白值增加、检测限变差和误差增大。 9、配制ICP分析用的多元素贮备标准溶液的注意事项 溶剂用高纯酸或超纯酸;用重蒸的离子交换水;使用光谱纯、高纯或基准物质; 把元素分成几组配制,避免谱线干扰或形成沉淀。 10、当采用有机试剂进行ICP分析时,有哪些特殊要求? 高频功率一般应高于水溶液试样;冷却气流量要增高,载气流量要减少,同时应通入较高流量的辅助气;对炬管的结构和安装也有某些特殊要求;多采用链状结构的有机溶剂作稀释剂。 11、什么叫稀释剂?ICP-AES法用的稀释剂有哪些要求? 一般粘度大的试样,用气动雾化进样较难,常用低粘度的有机溶剂去稀释试样,这种有机溶剂称为稀释剂。对其要求有:①粘度较低; ②分子中的碳原子数较少;③有中等的挥发性;④不产生或少产生有毒气体;⑤允许有较高的进样量而不致使等离子体熄灭;⑥在炬管口产生的碳沉积较少。 12、稀释剂对ICP分析有哪些影响? 稀释剂的粘度对雾化进样、速率产生影响;密度、粘度和表面张力影响形成雾滴的初始致敬;沸点影响雾滴的挥发及进入ICP通道的有机溶剂蒸发量,从而影响ICP的稳定性。

电感耦合等离子体发射光谱法在化学分析中的应用&ICP发射光谱仪特点

ICP发射光谱仪特点 ICP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点: 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。 3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP 光谱法最主要的优点之一。 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。 ICP发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面: 1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。 2. 因为工作时需要消耗大量Ar气,所以运转费用高。 3. 因目前的仪器价格尚比较高,所以前期投入比较大。 4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。 ICP发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。 ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。截止到上世纪80年代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl及元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。 ICP发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。 ICP发射光谱法包括了三个主要的过程,即: 由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射; 将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱; 用检测器检测光谱中谱线的波长和强度。 由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。 优点: 1. 多元素同时检出能力。 可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征

第六章原子发射光谱法

第六章 原子发射光谱法 一、选择题 1、下列各种说法中错误的是( ) A 、原子发射光谱分析是靠识别元素特征谱线来鉴别元素的存在 B 、对于复杂组分的分析我们通常以铁光谱为标准,采用元素光谱图比较法 C 、原子发射光谱是线状光谱 D 、原子发射光谱主要依据元素特征谱线的高度进行定量分析 2、原子发射光谱中,常用的光源有( ) A 、空心阴极灯 B 、电弧、电火花、电感耦合等离子炬等 C 、棱镜和光栅 D 、钨灯、氢灯和氘灯 3、谱线强度与下列哪些因素有关:①激发电位与电离电位;②跃迁几率与统计权重;③激发温度;④试样中元素浓度;⑤电离度;⑥自发发射谱线的频率( ) A 、①,②,③,④ B 、①,②,③,④,⑤ C 、①,②,③,④,⑥ D 、①,②,③,④,⑤,⑥ 4、用原子发射光谱分析法分析污水中的Cr 、Mn 、Cu 、Fe 等(含量为10-6数量级),应选用下列哪种激发光源( ) A 、火焰 B 、直流电弧 C 、高压火花 D 、电感耦合等离子炬 5、原子发射光谱的产生是由于:( ) A 、原子的次外层电子在不同能态间跃迁 B 、原子的外层电子在不同能态间跃迁 C 、原子外层电子的振动和转动 D 、原子核的振动 6、矿石粉未的定性分析,一般选用下列那种光源为好( ) A 、交流电弧 B 、直流电弧 C 、高压火花 D 、等离子体光源 二、填空题: 1、原子发射光谱分析中,对激发光源性能的要求是 , 。对照明系统的要求是 , 。 2、等离子体光源(ICP)具有 , , , 等优点,它的装置主要包括 , , 等部分。 3、在进行光谱定性分析时,在“标准光谱图上”,标有102852M g r ,符号,其中Mg 表 示 ,I 表示 ,10表示 ,r 表示 ,2852表示 。 4、原子发射光谱定量分析的基本关系是 。 三、解释术语 1、激发电位和电离电位 2、共振线、灵敏线和最后线

ICP实验报告

电感耦合等离子体原子发射光谱法测定Hg2+的含量 分析化学20114209033 饶海英 实验目的: 1、巩固电感耦合等离子体原子发射光谱分析法的理论知识 2、掌握ICP-AES光谱仪的基本构成及使用方法 3、掌握用ICP-AES法测定样品中Hg2+的方法 实验原理: ICP发射光谱分析是将试样在等离子体中激发,使待测元素发 射出特有波长的光,经分光后测量其强度而进行的定量测定分析 方法。ICP具有高温、环状结构、惰性气氛、自吸现象小等特点, 因而具有基体效应小、检出限低、线性范围宽等优点,是分析液 体试样的最佳光源。目前,此光源可用于分析周期表中绝大多数 元素(约70多种),检出限可达10-3~10-4ng/g-1级,精密度在1%左 右,并可对百分之几十的高含量元素进行测定。 ICP发射光谱法(ICP-AES)分析是将试样在等离子光源中激 发,使待测元素发射出特征波长的辐射,经过分光,测量其强度 而进行定量分析的方法。ICP光源直读光谱仪做原子发射光谱分析 使用的仪器设备包括激发光源和光谱仪两个部分。当高频发生器 接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。 开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 实验步骤: 1.仪器条件 根据实验要求设定好仪器的各个参数,包括ICP高频发生器、感应线圈、等离子体焰炬观察高度、氩气流量、积分时间、分析线波长。 2.配制标准溶液系列

ICP电感耦合等离子体发射光谱仪ICAP6300光谱仪原理解析

ICP电感耦合等离子休发射光谱仪 -ICAP6300光谱仪原理及使用说明书 赞(1 发布人:上海铸金分析仪器有限公司2014-11-08 11:32:48 ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪原理及使用说明书 一、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪工作原理和结构 (一)、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪工作原理:ICP (即电感耦合等离子体)是由高频电流经感应线圈产生高频电磁场,使工作气体(Ar)电离形成火焰状放电高温等离子体,等离子体的最高温度10000K。试样溶液通过进样毛细管经蠕动泵作用进入雾化器雾化形成气溶胶,由载气引入高温等离子体,进行蒸发、原子化、激发、电离,并产生辐射,光源经过采光管进入狭缝、反光镜、棱镜、中阶梯光栅、准直镜形成二维光谱,谱线以光斑形式落在540X 540个像素的CID检测器上,每个光斑覆盖几个像素,光谱仪通过测量落在像素上的光量子数来测量元素浓度。光量子数信号通过电路转换为数字信号通过电脑显示和打印机打印出结果。 (二八ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪的结构ICP-AES由高频发生器、蠕动泵进样系统、光源、分光系统、检测器(CID)、冷却系统、数据处理等组成。 ICP光谱仪结构示意图:

二、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪操作规程 (一).开机预热 (若仪器一直处于开机状态,应保持计算机同时处于开机状态) 1. 确认有足够的氩气用于连续工作(储量》1瓶)。 2. 确认废液收集桶有足够的空间用于收集废液。 3. 打开稳压电源开关,检查电源是否稳定,观察约1分钟。 4. 打开氩气并调节分压在0.60—0.65Mpa之间。保证仪器驱气1小时以上。 5. 打开计算机。 6. 若仪器处于停机状态,打开主机电源。仪器开始预热。 7. 待仪器自检完成后,启动iTEVA软件,双击“ iTEVA”图标,进入操作软件主界面,仪器开始初始化。检查联机通讯情况。 (二).编辑分析方法 新建方法 点击桌面快捷图标TEVA -输入用户名:Admin,Ok,点击应用栏中“分析” 出现方法列表(最后使用的方法显示在最前面),不选择其中的方法点击取消。 进入分析界面后,点击任务栏中“方法”下拉菜单,选择“新建”,或者点击图标栏第二组第一个“新建方法”图标,进行新方法编辑。 1选择元素及谱线 点击元素变成绿色,并出现谱线列表(列表显示谱线(级次)、相对强度、状态),点击谱线可以看到干扰元素及谱线,双击该谱线即可选定,此时,该谱线前会出现蓝色“V”,点击“确定”完成谱线选择。建议初建方法时多选择几条谱线进行比较。 2设置参数 点击左下角“方法”,在第二项“分析参数”中设置测定重复次数、样品冲洗时间、等离子观测、积分时间等参数。 1)重复次数、样品冲洗时间和积分时间均可改变 2)等离子观测一般选择水平观测 水平观测一一短波、长波都是水平观测 垂直观测——短波、长波都是垂直观测 自动一一短波水平观测,长波垂直观测 谱线选择一一对同一元素中不同谱线设置不同观测方式 3设置工作曲线 点击第九项“标准”,选中“高标”删除,依次“添加”标准,更改标准名称,输入标准浓度,完成工作曲线设置。(注;各种元素都是同一浓度)方法参数设置完成后点击任务栏中“方法”下拉菜单选择“保存”以保存方法。 (三)?点火操作 1. 再次确认氩气储量和压力,并确保驱气时间大于1小时,以防止CID检测器结霜,造成CID检测器损坏。 2. 光室温度稳定在38± 0.2C。CID温度小于-40C。 3. 检查并确认进样系统(炬管、雾化室、雾化器、泵管等)是否正确安装。 4. 夹好蠕动泵夹,把样品管放入蒸馏水中。

ICP电感耦合等离子体发射光谱仪 ICAP6300光谱仪原理解析

ICP电感耦合等离子体发射光谱仪 -ICAP6300光谱仪原理及使用说明书 赞(1 发布人:上海铸金分析仪器有限公司2014-11-08 11:32:48 ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪原理及使用说明书 一、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪工作原理和结构(一)、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪工作原理: ICP(即电感耦合等离子体)是由高频电流经感应线圈产生高频电磁场,使工作气体(Ar)电离形成火焰状放电高温等离子体,等离子体的最高温度10000K。试样溶液通过进样毛细管经蠕动泵作用进入雾化器雾化形成气溶胶,由载气引入高温等离子体,进行蒸发、原子化、激发、电离,并产生辐射,光源经过采光管进入狭缝、反光镜、棱镜、中阶梯光栅、准直镜形成二维光谱,谱线以光斑形式落在540×540个像素的CID检测器上,每个光斑覆盖几个像素,光谱仪通过测量落在像素上的光量子数来测量元素浓度。光量子数信号通过电路转换为数字信号通过电脑显示和打印机打印出结果。 (二)、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪的结构 ICP-AES由高频发生器、蠕动泵进样系统、光源、分光系统、检测器(CID)、冷却系统、数据处理等组成。 ICP光谱仪结构示意图:

二、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪操作规程 (一).开机预热 (若仪器一直处于开机状态,应保持计算机同时处于开机状态) 1.确认有足够的氩气用于连续工作(储量≥1瓶)。 2.确认废液收集桶有足够的空间用于收集废液。 3.打开稳压电源开关,检查电源是否稳定,观察约1分钟。 4.打开氩气并调节分压在0.60—0.65Mpa之间。保证仪器驱气1小时以上。5.打开计算机。 6.若仪器处于停机状态,打开主机电源。仪器开始预热。 7.待仪器自检完成后,启动iTEV A软件,双击“iTEV A”图标,进入操作软件主界面,仪器开始初始化。检查联机通讯情况。 (二).编辑分析方法 新建方法 点击桌面快捷图标TEVA →输入用户名:Admin,Ok,点击应用栏中“分析”出现方法列表(最后使用的方法显示在最前面),不选择其中的方法点击取消。进入分析界面后,点击任务栏中“方法”下拉菜单,选择“新建”,或者点击图标栏第二组第一个“新建方法”图标,进行新方法编辑。 1 选择元素及谱线 点击元素变成绿色,并出现谱线列表(列表显示谱线(级次)、相对强度、状态),点击谱线可以看到干扰元素及谱线,双击该谱线即可选定,此时,该谱线前会出现蓝色“√”,点击“确定”完成谱线选择。建议初建方法时多选择几条谱线进行比较。 2 设置参数 点击左下角“方法”,在第二项“分析参数”中设置测定重复次数、样品冲洗时间、等离子观测、积分时间等参数。 1)重复次数、样品冲洗时间和积分时间均可改变 2)等离子观测一般选择水平观测 水平观测——短波、长波都是水平观测 垂直观测——短波、长波都是垂直观测 自动——短波水平观测,长波垂直观测 谱线选择——对同一元素中不同谱线设置不同观测方式 3 设置工作曲线 点击第九项“标准”,选中“高标”删除,依次“添加”标准,更改标准名称,输入标准浓度,完成工作曲线设置。(注;各种元素都是同一浓度) 方法参数设置完成后点击任务栏中“方法”下拉菜单选择“保存”以保存方法。(三).点火操作 1. 再次确认氩气储量和压力,并确保驱气时间大于1小时,以防止CID检测器结霜,造成CID检测器损坏。 2. 光室温度稳定在38±0.2℃。CID温度小于-40℃。 3. 检查并确认进样系统(炬管、雾化室、雾化器、泵管等)是否正确安装。 4. 夹好蠕动泵夹,把样品管放入蒸馏水中。

ICP发射光谱仪

ICP-900电感耦合等离子体发射光谱仪产品介绍 一、ICP-900型光谱仪工作原理 ICP-900型电感耦合等离子体发射光谱仪又称为ICP光谱仪( Inductive Coupled Plasma )即以电感耦合高频等离子体为激发光源,利用每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析仪器。也被称为ICP原子发射光谱仪。原子发射光谱分析过程主要分三步,即激发、分光和检测。 第一步:激发光源使试样蒸发汽化,离解或分解为原子状态,原子也可能进一步电离成离子状态。原子及离子在光源中激发发光; 第二步:利用分光器把光源发射的光色散为按波长排列的光谱; 第三步:利用光电器件检测光谱,按所测得的光谱波长对试样进行定性分析,或按发射光强度进行定量分析。

二、ICP-900型光谱仪技术性能指标说明 1. 射频发生器(RF): 电路类型电感反馈式自激振荡电 路,全自动点火,同轴 电缆输出匹配调谐,取 功率反馈,进行闭环自 动控制。 工作频率±% 频率稳定性<% 输出功率800-1500w 输出功率稳定性≤% 电磁场泄漏射强度距机身30cm 电场强度E<1V/m 磁场强度H<0.2A 2、进样系统: 输出工作线圈内径25mm, 3匝 炬管 三重同心石英炬 管 同轴型喷 雾器外径 6mm双筒形雾室外径35mm 氩气流量计规格和载气压力表规格等离子气流量计(100-1000)L/h ;-16Lmin)辅助气流量计(10-100)L/h ;-1.66Lmin)载气流量计(10-100)L/h ;-1.66Lmin) 载气稳压阀(0-0.6M Pa)

相关文档
最新文档