Solvent Effect in Dynamic Superstructures from Au Nanoparticles and CdTe Nanowires

Solvent Effect in Dynamic Superstructures from Au Nanoparticles and CdTe Nanowires
Solvent Effect in Dynamic Superstructures from Au Nanoparticles and CdTe Nanowires

Solvent Effect in Dynamic Superstructures from Au Nanoparticles and CdTe Nanowires:Experimental Observation and Theoretical Description

Jaebeom Lee,*,?Azamat Orazbayev,?Alexander https://www.360docs.net/doc/755232296.html,orov,*,?and Nicholas A.Kotov*,§

Department of Nanomedical Engineering,College of Nanoscience and Nanotechnology,Pusan National Uni V ersity,Miryang,627-706,Korea,Department of Physics and Astronomy,Ohio Uni V ersity,

Athens,Ohio 45701,and Department of Chemical Engineering,Materials Sciences and Engineering,and Biomedical Engineering,Uni V ersity of Michigan,Ann Arbor,Michigan 48109Recei V ed:No V ember 5,2008;Re V ised Manuscript Recei V ed:December 9,2009

Solvent effects on luminescence in nanocolloids are typically related to changes in the dielectric constant around the light-emitting species,but they can have a completely different nature in complex dynamic nanoscale assemblies.Hybrid superstructures were assembled from Au nanoparticles (NPs)and CdTe nanowires (NWs)via poly(ethylene glycol)(PEG)bridges and provide the ?rst example of solvent-responsive dynamic nanoscale assemblies from NWs.The photoluminescence (PL)intensity of the CdTe NWs was found to be dependent on the hydrophilic/hydrophobic balance of the solvent (water,methanol,ethanol,and 2-propanol)surrounding the superstructure and displayed slow equilibration kinetics.PL gradually decreased over a period of 2000s by ca.50%for ethanol and ca.70%for 2-propanol,whereas it remained constant for water and methanol.This phenomenon was attributed to the solvent dependence of the radius of gyration (R F )of the PEG bridges between the NPs and NWs,which swells in ethanol and 2-propanol.The average distance between the NPs and NWs affects the plasmon -exciton interactions responsible for optical processes in the superstructure,and expansion results in a decrease of the luminescence enhancement of CdTe by Au NPs.Theoretical modeling was carried out to con?rm the mechanism of the solvent effect.Exciton -plasmon resonance was described as a combination of two components:?eld enhancement and energy transfer.Although carrying some limitations and being inherently approximate,this approach was able to describe the distance dependence of the PL intensity of NP -NW system well.The suggested theoretical model expands the understanding of plasmon -exciton electronic systems and can be applied to many semiconductor -metal superstructures.

1.Introduction

There has been considerable interest in the nanomaterial assembly of hybrid superstructures through biological,organic,and polymeric tethers in order to better understand the funda-mental physicochemical properties on the nanoscale and tailor materials for novel electronic,sensing,nonlinear optical,and biomedical applications.1-17Intensive research has been carried out on superstructures from nanoparticles (NPs).18-23These hybrid assemblies of greater complexity than single nanocolloids can be adapted for a variety of novel molecular-engineered applications.18-23However,there are only few reports on the combination of zero-and one-dimensional materials in super-structures,exempli?ed,for instance,by the combination of NPs and carbon nanotubes.24-28The introduction of nanowires (NWs)or nanotubes in the superstructures is interesting from the fundamental point of view,but also from the perspective of the utilization of special optical and electronic effects of one-dimensional quantum-con?ned systems,29,30predominantly for sensing and light harvesting.Other fundamentally interesting studies,such as mimicking large biological systems,31-34also become possible with such assemblies.All of these applications become possible as long as one can (1)identify the methods of the assembly of NP -NW superstructures and (2)understand

how their electronic properties vary with environment.Solvent effects are indispensible for sensing,performing charge-transfer reactions,and understanding their behavior at biointerfaces.In this study,a nanostructured system was created from NPs and NWs conjugated by poly(ethylene glycol)(PEG)chains.Unlike many other systems made from NPs and one-dimensional nanomaterials,these superstructures are dynamic;that is,they are able to change their structure in response to local conditions.This property originates from the ?exible nature of the PEG bridges between the NPs and NWs,which are conformationally responsive to many environmental parameters.As such,the coiling of the PEG linker is affected by interactions with solvents,which results in an increase in the gap between the NPs and NWs in the NP -PEG -NW superstructure for certain solvents.Resonance conditions between the plasmonic and excitonic excitation modes in the superstructures result in changes in the intensity of photoluminescence (PL)in response to the swelling of PEG,thereby providing coupling between the mechanical transitions in the superstructure assembly and its optical properties.The distinction of the time-based PL spectra in various solvents obtained experimentally was also explained theoretically.In addition to con?rming the mecha-nisms of the solvent effect,this part of work also expands the understanding of the nature of exciton -plasmon resonance and related phenomena.2.Experimental Section

Cd(ClO 4)2·H 2O,thioglycolic acid (TGA),Al 2Te 3,condensed H 2SO 4,and NaOH were purchased from Aldrich (Milwaukee,

*To whom correspondence should be addressed.E-mail:jaebeom@pusan.ac.kr (J.L.),govorov@https://www.360docs.net/doc/755232296.html, (A.O.G.),kotov@https://www.360docs.net/doc/755232296.html, (N.A.K.).?

Pusan National University.?

Ohio University.§

University of Michigan.

J.Phys.Chem.C 2010,114,1404–1410

140410.1021/jp809780m 2010American Chemical Society

Published on Web 01/06/2010

WI)and used as received.The H2SO4was diluted to0.5M with18M?deionized water(Barnstead E-pure system).This deionized water was used in all experiments.t-BOC-NH-PEG-COO-NHS(MW3400)was purchased from NEKTAR, San Carlos,CA,where NHS and t-BOC stand for N-hydrox-ysulfosuccinimide and tert-butoxycarbonyl groups,respectively. 1-Ethyl-3-(3-dimethlaminopropyl)carbodiimide hydrochloride (EDC),N-hydroxysulfosuccinimide(NHS),and tri?uoric acetic acid(TFA)were purchased from Aldrich for conjugation. The synthesis of CdTe NWs from the NPs is described in detail elsewhere.29,35Atomic force microscopy showed the average diameter of CdTe NPs to be3.7nm within a10% standard deviation.The CdTe NWs in water had a diameter, mean length,and PL of5.8(1.1nm,1027(92nm(giving an aspect ratio of180),and644nm,respectively.The Au NPs were synthesized by Jana et al.’s method using HAuCl4,sodium citrate,and NaBH4.36Transmission electron microscopy(TEM; JEOL2010F)showed NPs that were3.7nm in size and had a narrow size distribution.

The stabilizer of Au NPs was then substituted to L-cysteine (Aldrich,Milwaukee,WI)in order to obtain the-NH2 functional group using the following procedures:Two milliliters of Au NPs was mixed with2-5mL of acetone and centrifuged at35000g(14000rpm)for30min to separate the Au NPs.The remnant acetone in the separated solution was dried at60°C in an oven.The Au NPs were dispersed into an L-cysteine solution (2.5×10-7M)and immersed in an ultrasonic bath for several seconds when aggregates were observed.The L-cysteine-stabilized Au NPs were left to stand at room temperature with gentle stirring for1h and then centrifuged before the next step. The approximate molarities of the respective nanomaterials and the molar ratio were calculated;for example,the molarities of the CdTe NWs and Au NPs were ca.3.99×10-9and4.51×10-6M,respectively.The molar ratio between the NWs and NPs was approximately1130:1.The CdTe NWs were diluted four times from the original solution to?t the molarity. Polymer tethering between the Au NPs and CdTe NWs resulting in NP-PEG-NW was accomplished using two reactive termini,namely,amide groups on the NPs and carboxylic groups on the CdTe NWs.Initially,the functionalized PEG molecules(t-BOC-NH-PEG-COO-NHS)were at-tached to the NH2groups of the Au NPs through a reaction with the NHS end.NHS is a good leaving group when there are amide groups.A solution of PEG(10mg)was prepared in 560μL of deionized water and140μL of dimethyl sulfoxide (DMSO).The L-cysteine-stabilized Au NPs were dispersed into the700μL of PEG solution and stirred for12h.This caused the tethering of PEG polymers to the Au NP surfaces.A long reaction time and a signi?cant excess of NHS reagent ensured almost complete conversion of all accessible surface amino groups.37The t-BOC protection of the terminal amine of PEG was removed by adding1-5μL of TFA for20min.The regenerated-NH2terminus of PEG was conjugated to the CdTe NWs using standard conjugation techniques,namely,the EDC/ sulfo-NHS cross-linking procedure.38Fresh solutions of0.2M EDC and25mM NHS were prepared in a phosphate-buffered saline(PBS)solution(pH7.2).The solutions of EDC,NHS, and CdTe NWs were mixed at a1:1:10ratio with gentle stirring, and the PEG-tethered Au NPs were then added to this solution at a CdTe NW/Au NP volume ratio of1:1.The solution was stirred gently for30min and left to stand for2h at room temperature.The surface plasmon of the Au NPs was measured at the end of each experimental step using a UV-vis spectro-photometer(Agilent,model8453).

The PL of the PEG-tethered Au NP/CdTe NW system was monitored using a time-based?uorescence photometer(Fluo-romax-3,Jovin Yvon,Horiba,NJ)with four different solvents, namely,water,methanol,ethanol,and2-propanol.The prepared sample(10μL)in the initial solvent was added to a3-mL cuvette to measure the optical properties.The effect of the small volume of the initial solvent was considered to be negligible. All solvents(spectrophotometric grade or higher,anhydrous) were purchased from Aldrich(Milwaukee,WI)and used without further puri?cation.The PL intensity was monitored every 30-60s for30min at an excitation wavelength of420nm and emission wavelengths of644-666nm in the respective solvents.

3.Results and Discussion

The UV-vis spectrum of the PEG-coated Au NPs indicates that the surface plasmon absorbance moved slightly to the red and broadened in comparison with that of free NPs(Figure1a), as a result of the change in the local dielectric environment of the NPs.Broadening of the spectrum is certainly undesirable, but it is probably fairly inevitable because the attachment of PEG increases the diversity of average dielectric constant around the particles and could result in some dynamic aggregates as well,connected by hydrogen bonds through the PEG chains. The?atter broadened peaks also provide more stable plasmon-exciton resonance conditions considering variation of PL spectra of NWs in different solvents(Figure1b).The red shift of the Au NP absorbance is quite bene?cial in our case because it results in stronger spectral overlap with the PL peak of the NWs, which emit at longer wavelengths than the corresponding NPs. Scanning TEM images of NP-PEG-NWs were obtained to gain insight into the structure of the prepared superstructures (Figure1c).One can clearly see that the NW is surrounded by a cloud of polymers with imbedded Au NPs,which con?rms the expected structure of the NP-PEG-NW assembly.Note that one needs to treat the structure of these assemblies not as something rigid and very well-de?ned.There is most certainly a great deal of variation in the positioning of the NPs around the NWs at any given moment.To some degree,we cannot really assign a very well-de?ned structure to this kind of assembly because of its dynamic nature.This feature will probably be a property of many nanoscale assemblies around the temperature(s)of phase transition(s).

The PL of the CdTe NWs was measured in water,methanol, ethanol,and2-propanol.The emission wavelengths of the NWs red-shifted slightly in more hydrophobic solvents(Figure1b), which alter the electromagnetic environment around the NWs, resulting in a slight change in the energy band gap.39The time-based?uorescence spectra of the free NWs were virtually independent of the hydrophilic-hydrophobic balance of the solvent and demonstrated a slight increase in PL intensity with time(Figure2a).The same experiment with the NP-PEG-NW superstructure revealed a strong dependence of PL on the solvent (Figure2b).The PL intensity of the NWs in all solutions stabilized after ca.30min within a20%standard deviation. The high variability of the PL intensity after immersion into a different solvent might come from the following sources:(1) irregular response of the spacer(i.e.,PEG polymer in different solvents might induce distance deviations between many Au NPs and a CdTe NW in the NW-NP superstructure,resulting in various luminescence intensities in the NP-PEG-NW)and (2)the uncontrollable aggregation of the NP-PEG-NW superstructures,which will certainly increase the intensity variability due to scattering as the detection time passes. However,the standard deviation of PL was kept steady within

Solvent Effect in Au NP-CdTe NW Superstructures J.Phys.Chem.C,Vol.114,No.3,20101405

20%over the whole period of experiments (i.e.,2000s).This indicates that progressive aggregation was probably not the major source of PL variability,although dynamic aggregation that results in stochastic formation and dissolution of smaller aggregates still needs to be considered.

We were primarily interested in the effect of the solvent on the PL of the NP -PEG -NW superstructure because this system is expected to be quite dynamic as a result of the PEG bridges.The PL kinetics of NP -PEG -NW in water and methanol were similar to each other and to analogous kinetics of NWs without Au -PEG.Overall,they demonstrated almost no change.The luminescence was stable,as expected.No conformational changes were expected in the PEG bridges when an aliquot of the initial aqueous solution was dissolved in water.The hydrophobic -hydrophilic balance of methanol is close to that of water and PEG as well.Importantly,these experiments also demonstrate that there is no change in the intensity of luminescence within the 2000-s time frame due to oxidation with dissolved oxygen.

The PL of the NWs decreased fairly slowly in ethanol,dropping by ca.50%over the 2000-s period.NP -PEG -NW in 2-propanol showed a rapid decrease in PL intensity,stabiliz-ing at ca.a 70%drop.Within the ?rst 10min,the drop was around 40%,which correlates very well with the kinetics of PEG swelling in liquid media measured by other researchers.40According to their ellipsometric experiments,ca.40%of the PEG volume swelled within 10min,whereas less swelling of PEG was observed in water.

The observed solvent effect on PL can be explained by the swelling dynamics of PEG chains in different solvents,causing the average hydrodynamic diameter of PEG (i.e.,R F )to increase.41-43The main backbone of PEG can be folded and unfolded by hydrogen-bonding and hydrophobic interactions.Possible conformations of PEG in aqueous solutions can take on a “folded”trans -trans -gauche con?guration,in which the oxygen atoms form hydrogen bonds in a variety of ways,leading to a helical supramolecular structure.Therefore,in solvents such as ethanol,PEG expands to form a polymer brush,whereas the PEG polymer chain deswells in water.37,40,43-47The conformation of a linearly tethered polymer on a nanomaterial can be a cushion that controls the distance (R F )between NP and NW in the nanostructure.There are fairly fast components of

the

Figure 1.PL spectra of the NWs and TEM images of the NP -PEG -NW superstructures.(a)UV -vis spectra of the Au NPs (1)and PEG-conjugated Au NPs (2).(b)Normalized PL of the CdTe NWs before conjugation in the different solvents:(a)water,(b)methanol,(c)ethanol,and (d)2-propanol.(c)Scanning TEM images of Au NPs and PEG-tethered CdTe NWs.The scale bar is 200

nm.

Figure 2.Time-based photoluminescence of NP -PEG -NW in different solvents.(a)NWs without Au NP conjugation:(1)in ethanol and (2)in 2-propanol.(b)NWs with Au NP conjugation:(1′)in water (blue dotted line),(2′)in methanol (red line),(3′)in ethanol,and (4′)in 2-propanol.The vertical lines on each data line show the standard deviations at the respective times.

1406J.Phys.Chem.C,Vol.114,No.3,2010Lee et al.

process of conformational change in PEG,but the steady-state luminescence is controlled by the slowest process,which is the unfolding of the jammed PEG chains.

Therefore,the mechanism of the solvent effect on PL in NP -PEG -NW can be described as follows:Because there is a strong overlap in the emission spectrum of NWs and the broadened adsorption spectrum of Au NPs (Figure 1a,b),one can expect to see ef?cient plasmon -exciton resonance similarly to the previously studied NP -PEG -NP superstructures.9The resonant conditions result in strong enhancement of the lumi-nescence of CdTe NWs.9The intensity of the surface plasmon ?eld coupled to exciton decreases rapidly with increasing distance from the Au NPs.39,48Therefore,when the gap between the NPs and NWs increases from R f in water to R f ′in,say,2-propanol,it results in a drop in the exciton -plasmon hybridization.Consequently,the PL decreases as well (Figure 3).Therefore,there is a signi?cant drop in the emission in the solvents that cause greater swelling of PEG,such as ethanol and 2-propanol.

This mechanism correlates very well with the experimental data but can also be con?rmed by theoretical calculations.For this purpose,we depict the NP -PEG -NW system as an NW with a shell of Au (Figure 4).Considering the schematics in Figures 3and 4,we must stress again that there will always be considerable spread in distances between Au NPs and CdTe NWs and the suggested description needs to be understood as variations of the average gap between the NPs and NW.The model in Figure 4also does not incorporate important factors,such as the granularity of the Au shell and the randomness of attached Au NPs.However,the described approximations and simpli?cations do help when one needs to develop a conceptual description of the mechanism leading to the solvent-sensitive optical responses.The continuous shell model allows for the analytical calculation of the plasmon-induced electromagnetic enhancement inside the NW in the long-wavelength limit,λ.R shell ,where λand R shell are the incident-light wavelength and shell radius,respectively.

To accomplish the theoretical description of electronic effects in NP -PEG -NW,,we suggest using a combination of two well-known processes as the ?rst approximation for exciton -plasmon interactions.The ?rst one is the ?eld enhancement effect generated by plasmons from metal NPs.It describes the concentration of electromagnetic ?eld inside the semiconductor component due the plasmon resonance in the metal NPs.The second one is Fo ¨rster energy transfer (FRET)describing the

transfer of excitons from the NWs to the Au NPs.This part of the model depicts the ?ow of energy from the semiconductor component of the superstructure to the metal component.The model in Figure 4has cylindrical symmetry and is described by four dielectric constants:ε0,εm (ω),εPEG ,and εs .Here,ε0)1.8is the high-frequency dielectric constant of water (note that,for optical properties,the low-frequency dielectric constant also known as the static dielectric constant equal to 80is not applicable because of relatively slow kinetics of reorganization of dipolar water molecules);εm (ω)is the dielectric constant of Au taken from the tables;49and εPEG )2and εs )7.2are the dielectric constants of polymer and CdTe,respectively.In our model,the NW -shell complexes are oriented randomly in a solution,and the incident-light electric ?eld E b ext forms an arbitrary angle θwith the NW axis (Figure 4,inset).According to the boundary conditions,50the ?eld component parallel to the NW (E b |)is not changed inside the dialectic cylinder,whereas the perpendicular component (E b ⊥)can be strongly altered,especially in the vicinity of plasmon resonance.The perpendicular component of the total electric ?eld inside the NW is obtained from the boundary conditions and Poisson equation

as

Figure 3.Schematic cross-sectional diagram of the hybrid PEG-tethered NW -NP superstructures in different solvents:(a)in hydrophilic solvents and (b)in hydrophobic solvents.R F (R ′F )represents the radius of gyration of PEG at the respective solvent conditions.R F is larger than R ′F..The red circles depict CdTe NWs,and the boundary yellow circles denote the Au NPs.These images are not drawn to scale.Consider also the variability of lengths of PEG chains and,conse-quently,the gap between the Au NPs and CdTe

NW.

Figure 4.(a)Calculated enhancement factors P (λ)for the NW -NP

complex in water and ethanol.Internal and external radii of Au shell are given by R 1)2.9nm +R F and R 2)2.9nm +R F +?Au shell .The NW radius is R NW )2.9nm;the parameter ?Au shell is described in the text.(b)Calculated ratio between the PL intensities for ethanol and water [PL(λemiss ,R F,ethanol )/PL(λemiss ,R F,water )].To calculate this ratio,the lengths of PEG in the solvents were taken as R F,water )3nm and R F,ethanol )4.9nm;λemiss )650nm and λabs )400nm.Inset:Dielectric model of the structure used in calculations.

Solvent Effect in Au NP -CdTe NW Superstructures J.Phys.Chem.C,Vol.114,No.3,20101407

where E ext(tot),⊥represents the perpendicular component of the

external(total)?elds inside the NW;R W is the NW radius;and

R1and R2are the radii of the internal and external surfaces,

respectively,of the Au shell(see the inset in Figure4and the

?gure caption),which are related to R f and the diameter of the

NPs but,strictly speaking,are not exactly equal to them because

of differences in the models in Figures3and4.Also,γm)

εm/ε0,γPEG)εPEG/ε0,andγs)εs/ε0.For the parallel compo-

nents,E tot,|)E ext,|.The net enhancement factor for the?elds

insidetheNW,whichisthecumulativemeasureofexciton-plasmon

interaction responsible for PL changes,should be found by

averaging over all anglesθ

As mentioned above,FRET of excitons to the metal NPs is

another important component that will help describe exciton-

plasmon interactions in the system,which in?uences the PL

response.To estimate the energy-transfer rate,we now assume

that a localized exciton for an NW is transferred to several Au

NPs.The rate for transfer to one Au NP can be estimated using

the standard FRET theory applied to a semiconductor-metal

donor-acceptor pair

where R NP is the Au NP radius,εeff)(2ε0+εs)/3,ωexc is the

NW-exciton frequency,d is a distance between the centers of

NW and NP,and d exc≈0.1nm is the typical exciton dipole in a colloidal nanocrystal(for more details,see ref44).From this

expression,we obtain the following estimate for the FRET rate

to one Au NP:γ1,transfer≈1/(23ns).To obtain this number,we have assumed that d)R W+R F+R NP,R F)3nm,and R NP) 1.75nm.In the next step,we should notice that an exciton can be transferred to several neighboring Au NPs.If we now include transfer to all neighboring Au NPs from an exciton located in the center of the NW(see Figure3a),the total rate of transfer becomesγtrasfer≈1/(1.3ns).51Time-resolved PL study of isolated nanowires provided a relatively short exciton lifetime,τ0≈1ns.In addition,the quantum yield of our NWs is about 1%(Y)0.01),which gives a radiative lifetime ofτrad≈100 ns.Now,we can see that Fo¨rster transfer is an important process becauseγtransfer≈γ0)1/τ0.In particular,the exciton lifetime of NW-PEG-NP superstructure becomes essentially shortened toτNW-NP)1/(γtrasfer+γ0)<1/γ0.This shortening of lifetime has been observed,for example,in ref2.

Now,we need to combine the?eld enhancement and the

FRET process as two energy?ow components contributing to

the solvent dependence of PL in Figure2.We can conclude

that(a)the electromagnetic?eld intensity in the NW depends

on R F,and this solvent effect should be described by a factor P(ω),and(b)FRET from a CdTe NW to Au NPs depends on R F,and therefore,the PL intensity of NW becomes sensitive to the distance R F.As expected,these two mechanisms work against each other,and according to the experimental data in Figure2,mechanism a wins.Now,we investigate whether we can reproduce this effect mathematically.The PL intensity of a semiconductor emitter is given by

whereγrad0)1/τrad is the radiative rate of isolated NWs andγ0 .1/τ

rad

)Yγ

.44The important electromagnetic factors P(λabs) and P(λemiss)describe the plasmon-induced enhancement for the emission and absorption processes,respectively,and the pa-rameterγtransfer(λemiss)describes the NW-NP energy transfer.52 Now,we examine what happens to the PL intensity as the PEG expands.For this purpose,we plot the function PL(λemiss,R F) for two different R F values corresponding to the diameters of water and ethanol(R F,water)3nm and R F,ethanol)4.9nm)(Figure 4a).For the thickness of the continuous Au shell,we take?Au shell

)R

2

-R

1

)3.25nm(2.9nm)in water(ethanol).We have chosen these thicknesses to conserve the total volume of gold in the shell as the shell expands.We see in Figure4a that both the position and amplitude of the plasmon peak strongly depend on R F,as does the plasmon enhancement of photon emission. This happens because electric?elds associated with the plasmon are very sensitive to the geometry and size of a nanostructure; indeed,multiple literature reports indicate a plasmon dependence on the properties of the medium in close vicinity to the metal surface.From the results shown in Figure4a,we conclude that the plasmon enhancement strongly depends on the shell radii,2,9,44,52-54which provides a mechanism for solvent depen-dence.We also note that the Au nanoshell is able to create signi?cant electric-?eld enhancement inside a NW through a strong collective plasmon resonance,as observed in ref15.An important development of this article,in comparison with ref 15,is in the ability to control the NP-NW distance through the introduction of different solvents.The chemically induced distance variations in our superstructures are recorded optically, as changes in the PL intensity.

For the FRET process,we obtained the estimatesγtransfer≈1/(1.3ns)and1/(3.9ns),taking into account that R F)3and 4.9nm.In other words,FRET becomes less ef?cient for the case of ethanol,as expected.The ratio of PL intensities for the NP-PEG-NW superstructure in water and ethanol is obtained as PL(λemiss,R F,ethanol)/PL(λemiss,R F,water)≈0.3for NWs with emission atλNW emiss)650nm(Figure4b).The PL intensity in ethanol is weaker because the plasmon enhancement is strongly reduced because of a longer R F.The corresponding experimental ratio is~0.5(Figure2).The theory thus qualita-tively reproduces the experiment.In conclusion to this discussion of theory,we again emphasize that our calculations should be taken as an appropriate but certainly not complete description of the actual complexity of plasmon-exciton interactions. Nevertheless,the qualitative understanding coming from our model is very helpful and can be used as a guide to synthetic chemists for the design of the nanoscale assemblies.Also,the description of exciton-plasmon interactions in the form of the two components described above can be applied to a variety of nanoscale systems and can certainly be useful as an intermediate

E tot,⊥/E

ext,⊥

)-8R

1

2R

2

m

γ

PEG

/{-R

2

2R

W

2(1+γ

m

m -γ

PEG

)(γ

PEG

W

)+R

1

4(-1+γ

m

)(γ

m

PEG

PEG +γ

W

)-R

1

2(γ

m

PEG

)[-R

W

2(-1+γ

m

PEG

W

)+R

2

2(1+γ

m

)(γ

PEG

W

)]}

P(ω))?E tot E tot*?θ

E

ext

2

)

(E

tot,⊥

E

tot,⊥

*)/E

ext,⊥

2+2

3

γ

1,transfer (ω

exc,d

)≈

4

p

e2d

exc

2

d6ε

eff

2

R

NP

3

2Imε

m

exc

)

|εm(ωexc)+2ε0|2

PL(λ

emiss

,R

F

)∝

γ

rad

P(λ

abs

)P(λ

emiss

)

γ

(1-Y)+γ

rad

0P(λ

emiss

)+γ

transfer

P(λ

emiss

)

1408J.Phys.Chem.C,Vol.114,No.3,2010Lee et al.

point for further theoretical understanding of the phenomena related to superstructures composed from metal and semicon-ductor NPs.

4.Conclusions

A strong solvent effect was observed for the PL of NP-PEG-NWs that has a completely different nature than other solvent effects observed for individual nanocolloids.The PL of the NP-PEG-NW superstructures was found to decrease in ethanol and2-propanol while remaining the same for water and methanol.This can be explained by the swelling of PEG bridges in different solvents,which affects the distance between the NPs and NWs.This effect,in turn,leads to a great change in the intensity of plasmon-exciton interaction.A theoretical model based on the description of exciton-plasmon interactions as two components,namely,?eld enhancement from the Au NPs in the CdTe NW and FRET from the CdTe NWs to the Au NPs,was used to explain the origin of the PL changes.The plasmon resonance and plasmon-enhanced PL were found to be quite sensitive to any nanomechanical movement/deformation in the system.The theoretical model presented can be used for a variety of superstructures made from metal and semiconductor NPs.

Acknowledgment.This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD,Basic Research Promotion Fund)(KRF-2007-331-C00140).A.O.G.and N.A.K.acknowledge?nancial support from NSF and AFOSR.

References and Notes

(1)Gandhi,D.D.;Lane,M.;Zhou,Y.;Singh,A.P.;Nayak,S.;Tisch, U.;Eizenberg,M.;Ramanath,G.Annealing-induced interfacial toughening using a molecular nanolayer.Nature2007,447(7142),299–302.

(2)Lee,J.;Hernandez,P.;Lee,J.;Govorov,A.O.;Kotov,N.A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection.Nat.Mater.2007,6(4),291–295.

(3)Roy,D.;Fendler,J.Re?ection and absorption techniques for optical characterization of chemically assembled nanomaterials.Ad V.Mater.2004, 16(6),479–508.

(4)Ishii,T.;Otsuka,H.;Kataoka,K.;Nagasaki,Y.Preparation of Functionally PEGylated Gold Nanoparticles with Narrow Distribution through Autoreduction of Auric Cation by R-Biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)].Langmuir2003,20(3),561–564.

(5)Willner,I.;Willner,B.Functional nanoparticle architectures for sensoric,optoelectronic,and bioelectronic applications.Pure Appl.Chem. 2002,74(9),1773–1783.

(6)Katz,E.;Willner,I.Integrated Nanoparticle.Biomolecule Hybrid Systems:Synthesis,Properties,and Applications.Angew.Chem.,Int.Ed. 2004,43(45),6042–6108.

(7)Bauer,L.A.;Birenbaum,N.S.;Meyer,G.J.Biological applications of high aspect ratio nanoparticles.J.Mater.Chem.2004,14(4),517–526.

(8)West,J.L.;Halas,N.J.Engineered Nanomaterials for Biophotonics Applications:Improving Sensing,Imaging,and Therapeutics.Annu.Re V. Biomed.Eng.2003,5(1),285–292.

(9)Lee,J.;Govorov,A.O.;Kotov,N.A.Nanoparticle Assemblies with Molecular Springs:A Nanoscale Thermometer.Angew.Chem.2005, 117(45),7605–7608.

(10)Mao,C.;Solis,D.J.;Reiss,B.D.;Kottmann,S.T.;Sweeney,R.Y.; Hayhurst,A.;Georgiou,G.;Iverson,B.;Belcher,A.M.Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science2004,303(5655),213–217.

(11)Beek,W.J.E.;Wienk,M.M.;Janssen,R.A.J.Ef?cient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer.Ad V. Mater.2004,16(12),1009–1013.

(12)Pagba,C.;Zordan,G.;Galoppini,E.;Piatnitski,E.L.;Hore,S.; Deshayes,K.;Piotrowiak,P.Hybrid Photoactive Assemblies:Electron Injection from Host-Guest Complexes into Semiconductor Nanoparticles. J.Am.Chem.Soc.2004,126(32),9888–9889.

(13)Tian,S.;Liu,J.;Zhu,T.;Knoll,W.Polyaniline/Gold Nanoparticle Multilayer Films:Assembly,Properties,and Biological Applications.Chem. Mater.2004,16(21),4103–4108.

(14)Du,J.;Chen,https://www.360docs.net/doc/755232296.html,anic-inorganic hybrid nanoparticles with a complex hollow structure.Angew.Chem.2004,43(38),5084–5087.

(15)Lee,J.;Govorov,A.O.;Dulka,J.;Kotov,N.A.Bioconjugates of CdTe Nanowires and Au Nanoparticles:Plasmon-Exciton Interactions, Luminescence Enhancement,and Collective Effects.Nano Lett.2004,4 (12),2323–2330.

(16)Bhat,R.R.;Genzer,J.;Chaney,B.N.;Sugg,H.W.;Liebmann-Vinson,A,.Controlling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients.Nanotechnology2003,14(10), 1145–1152.

(17)Gudiksen,M.S.;Lauhon,L.J.;Wang,J.;Smith,D.C.;Lieber,

C.M.Growth of nanowire superlattice structures for nanoscale photonics and electronics.Nature2002,415(6872),617–620.

(18)Jin,R.;Wu,G.;Li,Z.;Mirkin,C.A.;Schatz,G.C.What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies. J.Am.Chem.Soc.2003,125(6),1643–1654.

(19)Parak,W.J.;Pellegrino,T.;Micheel,C.M.;Gerion,D.;Williams, S.C.;Alivisatos,A.P.Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis.Nano Lett.2002,3(1),33–36.

(20)Storhoff,J.J.;Elghanian,R.;Mirkin,C.A.;Letsinger,R.L. Sequence-Dependent Stability of DNA-Modi?ed Gold Nanoparticles. Langmuir2002,18(17),6666–6670.

(21)Nam,J.M.;Stoeva,S.I.;Mirkin,C.A.Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity.J.Am.Chem.Soc.2004,126(19), 5932–5933.

(22)Kramer,S.;Xie,H.;Gaff,J.;Williamson,J.R.;Tkachenko,A.G.; Nouri,N.;Feldheim,D.A.;Feldheim,D.L.Preparation of Protein Gradients through the Controlled Deposition of Protein-Nanoparticle Conjugates onto Functionalized Surfaces.J.Am.Chem.Soc.2004,126(17),5388–5395.

(23)Harnack,O.;Ford,W.E.;Yasuda,A.;Wessels,J.M.Tris(hy-droxymethyl)phosphine-Capped Gold Particles Templated by DNA as Nanowire Precursors.Nano Lett.2002,2(9),919–923.

(24)Carrillo,A.;Swartz,J.A.;Gamba,J.M.;Kane,R.S.;Chakrapani, N.;Wei,B.;Ajayan,P.M.Noncovalent Functionalization of Graphite and Carbon Nanotubes with Polymer Multilayers and Gold Nanoparticles.Nano Lett.2003,3(10),1437–1440.

(25)Ravindran,S.;Bozhilov,K.N.;Ozkan,C.S.Self assembly of ordered arti?cial solids of semiconducting ZnS capped CdSe nanoparticles at carbon nanotube ends.Carbon2004,42(8-9),1537–1542.

(26)Liu,L.;Wang,T.;Li,J.;Guo,Z.X.;Dai,L.;Zhang,D.;Zhu,D. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker.Chem.Phys.Lett.2003,367(5-6),747–752.

(27)Larciprete,R.;Lizzit,S.;Botti,S.;Cepek,C.;Goldoni,A.Structural reorganization of carbon nanoparticles into single-wall nanotubes.Phys. Re V.B2002,66(12),121402-1121402-4.

(28)Homma,Y.;Yamashita,T.;Kobayashi,Y.;Ogino,T.Intercon-nection of nanostructures using carbon nanotubes.Physica B:Condensed Matter2002,323(1-4),122–123.

(29)Tang,Z.;Kotov,N.A.;Giersig,M.Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires.Science2002,297 (5579),237–240.

(30)Lee,J.;Javed,T.;Skeini,T.;Govorov,A.O.;Bryant,G.W.;Kotov, N.A.Bioconjugated Ag Nanoparticles and CdTe Nanowires:Metamaterials with Field-Enhanced Light Absorption.Angew.Chem.2006,118(29),4937–4941.

(31)Tan,S.;Tang,Z.;Liang,X.;Kotov,N.A.Resonance Tunneling Diode Structures on CdTe Nanowires Made by Conductive AFM.Nano Lett.2004,4(9),1637–1641.

(32)Lee,J.;Govorov,A.O.;Kotov,N.A.Bioconjugated Superstruc-tures of CdTe Nanowires and Nanoparticles:Multistep Cascade Forster Resonance Energy Transfer and Energy Channeling.Nano Lett.2005,5 (10),2063–2069.

(33)Liang,X.;Tan,S.;Tang,Z.;Kotov,N. A.Investigation of Transversal Conductance in Semiconductor CdTe Nanowires with and without a Coaxial Silica https://www.360docs.net/doc/755232296.html,ngmuir2004,20(4),1016–1020.

(34)Wang,Y.;Tang,Z.;Liang,X.;Liz-Marzan,L.M.;Kotov,N.A. SiO2-Coated CdTe Nanowires:Bristled Nano Centipedes.Nano Lett.2004, 4(2),225–231.

(35)Gaponik,N.;Talapin,D.V.;Rogach,A.L.;Hoppe,K.;Shevchen-ko,E.V.;Kornowski,A.;Eychmuller,A.;Weller,H.Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes.J. Phys.Chem.B2002,106(29),7177–7185.

(36)Jana,N.R.;Gearheart,L.;Murphy,C.J.Seeding Growth for Size Control of5-40nm Diameter Gold https://www.360docs.net/doc/755232296.html,ngmuir2001,17(22), 6782–6786.

(37)Westenhoff,S.;Kotov,N.A.Quantum Dot on a Rope.J.Am.Chem. Soc.2002,124(11),2448–2449.

(38)Hermanson,G.T.Bioconjugate Techniques;Academic Press:New York,1996.

(39)Kreibig,U.;Vollmer,M.Optical Properties of Metal Clusters; Springer:Berlin,1995.

Solvent Effect in Au NP-CdTe NW Superstructures J.Phys.Chem.C,Vol.114,No.3,20101409

(40)Munro,J.C.;Frank,C.W.Adsorption of Lipid-Functionalized Poly(ethylene glycol)to Gold Surfaces as a Cushion for Polymer-Supported Lipid https://www.360docs.net/doc/755232296.html,ngmuir2004,20(8),3339–3349.

(41)Branca,C.;Faraone,A.;Magazu,S.;Maisano,G.;Migliardo,P.; Villari,V.Swelling processes in aqueous polymer solutions by PCS and Raman scattering.J.Mol.Struct.1999,482-483,503–507.

(42)Govorov,A.O.;Bryant,G.W.;Zhang,W.;Skeini,T.;Lee,J.; Kotov,N.A.;Slocik,J.M.;Naik,R.R.Exciton-Plasmon Interaction and Hybrid Excitons in Semiconductor-Metal Nanoparticle Assemblies.Nano Lett.2006,6(5),984–994.

(43)Branca,C.;Magaz’u,S;Maisano,G.;Migliardo,P.;Villari,V J. Phys.:Condensed Matter1998,10(45),10141–10157,Conformational distribution of poly(ethylene oxide)in molten phase and in aqueous solution by quasi-elastic and inelastic light scattering.

(44)Govorov, A.O.;Carmeli,I.Hybrid Structures Composed of Photosynthetic System and Metal Nanoparticles:Plasmon Enhancement Effect.Nano Lett.2007,7(3),620–625.

(45)Kaper,H.J.;Busscher,H.J.;Norde,W.Characterization of poly(ethylene oxide)brushes on glass surfaces and adhesion of Staphylo-coccus epidermidis.J.Biomater.Sci.,Polym.Ed.2003,14(4),313–324.

(46)Huddleston,J.G.;Looney,T.K.;Broker,G.A.;Grif?n,S.T.; Spear,S.K.;Rogers,https://www.360docs.net/doc/755232296.html,parative Behavior of Poly(ethylene glycol) Hydrogels and Poly(ethylene glycol)Aqueous Biphasic Systems.Ind.Eng. Chem.Res.2003,42(24),6088–6095.

(47)Savas,H.;Guven,O.Investigation of active substance release from poly(ethylene oxide)hydrogels.Int.J.Pharm.2001,224(1),151–158.

(48)Jensen,T.;Kelly,L.;Lazarides,A.;Schatz,G.C.Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters.J.Cluster Sci. 1999,10(2),295–317.

(49)Palik,E.D.Handbook of Optical Constants of Solids;Academic Press:New York,1985.

(50)Landau,L.D.;Lifshitz,E.M.Electrodynamics of Continuous Media;Oxford University Press:New York,1960.

(51)To calculate this value,we?rst assume that an exciton is localized inside a small cylindrical fraction of NW of length2R NW.Then,the total rate of transfer is calculated as a sum:γtransfer(ωexc))∑iγ1,transfer(ωexc,d i), where d i is the distance between the exciton center and the center of i-Au-NP and i is the Au-NP number.

(52)Lakowicz,J.R.Principles of Fluorescence Spectroscopy,3rd ed.; Plenum Press:New York,2006.

(53)Fofang,N.T.;Park,T.H.;Neumann,O.;Mirin,N.A.;Nordlander, P.;Halas,N.J.Plexcitonic Nanoparticles:Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes.Nano Lett.2008,8(10),3481–3487.

(54)Baer,R.;Neuhauser,D.;Weiss,S.Enhanced Absorption Induced by a Metallic Nanoshell.Nano Lett.2003,4(1),85–88.

JP809780M

1410J.Phys.Chem.C,Vol.114,No.3,2010Lee et al.

2017山香教育理论基础整理笔记(教育学、心理学、教育心理学)

第一章教育与教育学 1、《学记》——“教也者,长善而救其失者也” 2、战国时荀子——“以善人者谓之教” 3、许慎在《说文解字》中认为“教,上所施,下所效也。”“育,养子使作善也。” 4、最早将“教育”一词连用的则是战国时期的孟子:“得天下英才而教育之,三乐也。” 5、分析教育哲学的代表人物谢弗勒在《教育的语言》中把教育定义区分为三种: 规定性定义:作者自己认为的定义,即不管他人使用的“教育”的定义是什么,我认为“教育”就是这个意思。运用规定性定义虽然有一定的自由度,但是,要求作业在后面的论述和讨论中,前后一贯地遵守自己的规定。 描述性定义:回答“教育实际上是什么”的定义。尽量不夹杂自己的主观看法,适当地对术语或者使用该术语的方法进行界定。 纲领性定义:回答“教育应该是什么”的定义。即通过明确或隐含的方式告诉人们教育应该是什么或者教育应该怎么样。 6、教育是一种活动。“教育”是以一种“事”的状态存在,而不是以一种“物”的状态出现。因而。我们就把“活动”作为界定教育的起点。 7、教育活动是人类社会独有的活动。 8、“生物起源论”代表人物: 利托尔诺在《各人种的教育演变》中指出教育是超出人类社会以外的,在动物界中就存在的。 沛西·能在《教育原理》中也认为教育是一个生物学过程,扎根于本能的不可避免的行为。 9、“终身教育”概念的提出,指明人在生理成熟后仍继续接受教育。 10、社会性是人的教育活动与动物所谓“教育”活动的本质区别。 11、教育的本质:教育活动是培养人的社会实践活动。 12、教育是人类通过有意识地影响人的身心发展从而影响自身发展的社会实践活动。 13、学校教育是一种专门的培养人的社会实践活动。 14、学校教育自出现以来就一直处于教育活动的核心。 15、学校教育是由专业人员承担的,在专门机构——学校中进行的目的明确、组织严密、系统完善、计划性强的以影响学生身心发展为直接目标的社会实践活动。 16、学校教育的特征:①可控性②专门性③稳定性 17、教育概念的扩展——大教育观的形成 18、1965年,法国教育家保罗·朗格朗在《终身教育引论》中指出,教科文组织应赞同“终身教育”的原则。 19、1972年,埃德加·富尔在《学会生存》中对“终身教育”加以确定,并提出未来社会是“学习化社会”。 20、“终身教育”概念以“生活、终身、教育”三个基本术语为基础。 从时间上看,终身教育要求保证每个人“从摇篮到坟墓”的一生连续性的教育过程; 从空间上看,终身教育要求利用学校、家庭、社会机构等一切可用于教育和学习的场所; 从方式上看,终身教育要求灵活运用集体教育、个别教育、面授或远距离教育; 从教育性质上看,终身教育即要求有正规的教育与训练,也要求有非正规的学习和提高,既要求人人当先生,也要求人人当学生。 21、教育的形态,是指教育的存在特征或组织形式。 22、在教育发展史上,教育的形态经历了从非形式化到形式化,再到制度化教育的演变。

教育学教育心理学理论及代表人物

教育学有关理论、代表人物 1、神话起源说—— 2、生物起源说——利托尔诺(法国) 3、心理起源说——孟禄(美国) 4、劳动起源说——马克思(前苏联) 5、中国史上第一部教育文献——《学记》——乐正克 6、西方较早讨论教育问题的着作——《论演说家的培养》(《雄辩术原理》)——昆体良(古罗马) 7、非制度化教育思潮——库姆斯、伊里奇 8、雄辩与问答法——苏格拉底(古希腊) 9、《理想国》——柏拉图(古希腊) 10、《政治学》——亚里士多德(古希腊) 11、教育学作为一门独立学科的萌芽——《大教学论》——夸美纽斯(捷克) 班级授课制,泛智教育。 12、首次提出把教育学作为一门独立的学科——培根(英国) 13、自然主义教育——《爱弥儿》——卢梭(法国) 14、教育学进入大学讲坛——康德(德国)、《林哈德与葛笃德》——裴斯泰洛齐(瑞士)

15、科学教育思潮的兴起,课程体系——《教育论》——斯宾塞(英国) 16、实验教育学——梅伊曼、拉伊(德国) 17、发展性教学理论——《教育与发展》——赞科夫(前苏联) 高难度进行教学的原则、高速度进行教学的原则、理论知识主导作用原则(重理性原则)、理解学习过程原则、对差等生要下功夫的原则 18、范例教学——瓦.根舍因(德国) 19、和谐教育思想——苏霍姆林斯基(前苏联) 20、《教育漫话》——洛克(英国) “白板说”、绅士教育、国民教育思想与民主教育思想。 22、规范教育学的建立——《普通教育学》——赫尔巴特(德国) 传统教育学代表、教师中心,教材中心,课堂中心、四段教学法、统觉观念。 23、实用主义教育学——《民本主义与教育》——杜威(美国) 现代教育学代表、教育即生长,教育即生活,教育即经验的改造或重组、在做中学、儿童中心主义。 24、第一部马克思主义的教育学着作——《教育学》——凯洛夫(前苏联) 25、我国第一部马克思主义的教育学着作——《新教育大纲》——杨贤江 26、设计教学法——克伯屈(美国)

教育心理学理论

教育心理学理论 一、学习分类理论 1、加涅 (1)学习八水平分类 按学习水平简繁程度分为:①信号学习;②刺激—反应学习;③连锁反应;④言语联想学习;⑤辨别学习;⑥概念学习;⑦规则学习;⑧解决问题学习 (2)学习六水平分类 ①连锁学习;②辨别学习;③具体概念学习;④定义概念学习;⑤规则学习;⑥解决问题学校 (3)学习结果分类 ①言语信息的学习;②智慧技能的学习;③认知策略的学习;④态度的学习;⑤运动技能的学习 2、奥苏贝尔学习性质分类(两个维度互不依赖、相互独立) (1)根据学习的方式:接受学习、发现学习 (2)根据学习材料与学习者原有知识结构的关系:有意义学习、机械学习 3、我国学习结果的分类 ①知识学习;②技能学习;③道德品质或行为习惯的学习 二、学习理论 1、联结理论 (1)经典条件反应论 ①巴甫洛夫:学习就是形成刺激与反应之间的联系 一级条件反射、二级条件反射 动力定型:大脑皮层对刺激的定型系统所形成的反应定型系统 外抑制、超限抑制、消退、泛化、分化 正诱导:一个部位发生抑制引起周围发生兴奋地过程。 负诱导:一个部位发生兴奋引起周围发生抑制的过程。 同时诱导、继时诱导 第一信号系统:能够引起条件反应的物理性的条件刺激。 第二信号系统:能够引起条件反应的以语言符号为中介的条件刺激。 ②华生:通过建立条件作用,形成刺激与反应间的联结的过程。遵循频因律、 近因律。(学习的实质在于形成习惯) (2)操作性条件说 ①桑代克(联结试误说):在一定的情景和一定的反应之间建立联结,这种联结 通过尝试错误的过程而自动形成。三条学习规律:效果率、练习律、准备率②斯金纳 正强化、负强化、消退 惩罚:惩罚Ⅰ呈现厌恶刺激;惩罚Ⅱ消除愉快刺激 普雷马克原理:用学生喜爱的活动去强化学生参与不喜爱的活动。 强化程式:连续强化程式(灯一开就亮); 间接强化程式:a 定时强化(按时发工资) b 定比强化(计件工作) c 变时强化(随堂测验)d 变比强化(买彩票) (3)社会学习理论(班杜拉) 学习分为参与性学习和替代性学习(通过观察别人而进行的学习。) 观察学习:注意——保持——复制——动机

教育心理学的各种理论

1.桑代克的尝试——错误说 刺激——反应联结 基本规律:效果律练习律准备律 2.巴普洛夫——经典性条件作用论俄国 没有食物,只有铃声产生的唾液是条件刺激 看到食物就产生唾液是无条件反应 基本规律:获得与消退刺激泛化(对事物相似性的反应)与分化(对事物差异性的反应) 3.斯金纳——操作性条件作用论 基本规律:强化(+-)逃避条件作用和回避条件作用(负强化)消退惩罚 4.加涅——信息加工学习理论 模式——信息流控制结构(期望执行控制) 5.1-4属于联结学习理论 6.7-10属于认知学习理论 7.苛勒——完形、顿悟说 德国基本内容:学习是通过顿悟过程实现的学习的实质是在主体内部构成完形 8.布鲁纳——认知、结构学习理论 美国学习的目的在于以发现学习的方式,使学科的基本结构转变为学生头脑中的认知结构。 学习观——实质是主动地形成认知结构过程包括获得转化评价教学观——目的在于理解学科的基本结构 教学原则——动机原则结构原则程序原则强化原则 9.奥苏泊尔——有意义的接受学习美国 学习方式分类:接受学习发现学习 学习材料与原有知识结构分类:机械学习意义学习 先行组织者:是先于学习任务本身呈现的一种引导性材料,他的抽象,概括和综合水平高于学习任务,并且与认知结构中原有的观念和新的学习任务相关联。 10.建构主义学习理论

学习动机 1.学习动机的两个基本成分:学习需要学习期待 2.奥苏泊尔学校情境中的成就动机: 认知内驱力(要求理解掌握事物内部动机) 自我提高内驱力(个人学业的成就“三好学生”) 附属内驱力(获得教师、家长的赞扬) 在儿童早期,附属内驱力最为突出 在青年期,认知内驱力和自我提高内驱力成为学习的主要动机 学习期待就其作用来说就是学习诱因 3.学习动机的种类: 社会意义:低级动机(个人、利己主义) 高尚动机(利他主义) 与学习活动的关系:近景的直接性动机(兴趣、爱好、求知欲) 远景的间接性动机(个人前途,父母期望)动力来源:内部动机(个体需要引起) 外部动机(由外部诱因引起) 4.学习动机理论 强化理论:外部强化自我强化 需要层次理论:美国马斯洛五需要(从低级到高级排列) 生理的需要安全的需要归属和爱的需要 尊重的需要自我实现的需要自我实现的需要包括:认知审美创造的需要(最高级的需要)成就动机理论:代表人:阿特金森 力求成功的动机避免失败的动机 成败归因理论:美国维纳三维度六因素 6因素:能力高低努力程度任务难度运气好坏身心状态外界环境3维度:稳定性可控性内在性 自我效能感理论:美国班杜拉 人的行为受行为的结构因素与先行因素的影响。 行为的结果因素就是通常所说的强化: A.直接强化:外部因素(惩罚奖励) B.替代性强化:通过一定的榜样 C.自我强化:自我评价自我监督 5.学习动机的激发:

3中学教育心理学考试测试题第三章 学习的基本理论

中学教育心理学考试测试题第三章学习的基本理论 一、单项选择题(下列各题所给选项中只有一个符合题意的正确答案,答错、不答或多答均不得分) 1.根据学习的定义,下列属于学习的现象是( D )。 A.吃了酸的食物流唾液 B.望梅止渴 C.蜘蛛织网 D.儿童模仿电影中人物的行为 2.对黑猩猩做“顿悟实验”的是( A )。 A.苛勒 B.托尔曼 C.桑代克 D.巴甫洛夫 3.加涅提出了( A )模式。 A.积累学习 B.发现学习 C.观察学习 D.接受学习 4.操作性条件反射学说的代表人物是( A )。 A.斯金纳 B.巴甫洛夫 C.桑代克 D.班杜拉 5.美国心理学家布鲁纳认为学习的实质在于( B )。 A.构造一种完形 B.主动地形成认知结构 C.形成刺激与反应间的联结 D.对环境条件的认知 6.( B )强调学习的主动性和认知结构的重要性,主张教学的最终目标是促进学生对学科结构的一般理解。A.斯金纳 B.布鲁纳 C.苛勒 D.加涅 D A D 10.下列不属于意义学习的条件的一项是( D ) A.材料本身必须具有逻辑意义 B.学习者认知结构必须具有能够同化新知识的适当的认知结构 C.学习者必须具有积极主动地将新知识与认知结构中的适当知识加以联系的倾向性,并使两者相互作用D.学习材料要高于学习者的能力范围 11.( A )学习理论认为学习是学生建构自己的知识的过程,学生是信息意义的主动建构者。 A.建构主义 B.认知一结构 C.信息加工 D.尝试一错误 12.“一朝被蛇咬,十年怕井绳”,这种现象指( C )。 A.消退 B.刺激比较 C.刺激泛化 D.刺激分化 13.根据经典条件反射作用理论,食物可以诱发狗的唾液分泌反应,则唾液是( C )。 A.中性刺激 B.无条件刺激 C.条件反应 D.无条件反应 14.看见路上的垃圾后绕道走开,这种行为是( C )。 A.强化 B.惩罚 C.逃避条件作用 D.消退 15.先行组织者教学技术的提出者是美国著名心理学家( C )。 A.斯金纳 B.布鲁纳 C.奥苏伯尔 D.桑代克 二、多项选择题(下列各题所给选项中有两个或两个以上符合题意的正确答案,不答、少答或多答均不得分) 1.学习的定义说明( ABD )。 A.学习是行为或行为潜能的变化 B.学习引起的变化是持久的 C.学习引起的变化是短暂的 D.学习是由反复经验引起的

教育心理学家的基本理论

教育心理学家的基本理论 1、行为学派(刺激——反应联结学习理论) 2、认知学派(认知结构学习理论) 3、掌握学习和指导学习理论 4、人本主义的学习理论 5、精神分析学派 一、行为学派(刺激——反应联结学习理论 1、桑代克 A:学习理论(三条基本学习规律)(P136) ①准备律 ②练习律——应用律、失用律 ③效果律 B:迁移 ①迁移一词的提出(P209) ②共同要素论(P215) C:1903年著《教育心理学》是教育学心理学成为独立学科的开始 D:1913年,将《教育心理学》扩展《教学心理学大纲》,共分为人的本性、学习心理、个别差异及原因。(P8) 2、巴甫洛夫——经典条件反射学习理论 A:消退(P140) B:恢复 C:类化(P140)——一朝被蛇咬,十年怕井绳 D:分化(P140) E:高级条件反射——刺激强化(P141) 3、斯金纳——操作条件反射学习理论 A:有机体行为分类(P142) ①应答性行为——经典条件反射 ②操作性行为——操作条件反射 B:操作条件反射主要规律(P142) ①假如一个操作发生后,接着给予强化刺激,那么这一类反应今后发生的概率就会增加。 ②由于行为效果的强化是使行为频率增加的根本原因,所以通过对有机体的有选择的强化,就可以使行为朝着所需要的方向发展。 C:程序教学(P157) ①小步子逻辑序列 ②要求学生作出积极反应 ③及时反馈 ④学生自定步调 ⑤低的错误率 4、班杜拉——社会学习理论(P143) A:观察式学习(模仿)(P143) “上行下效”、“耳濡目染”(P144)B:替代性强化(P143、149) “杀鸡儆猴”(P149)C:自我强化(P149)D:符号强化(P144) 二、认知学派(认知结构学习理论) 1、布鲁纳——发现学习理论(P158)1)、主动认知——认为学习是一个主动认知的过程。 2)、语言学习——语言学习是儿童心理发展的关键。 3)、学习过程——重视学习的过程。4)、学习结构——强调形成学习结构。5)、直觉思维——强调直觉思维的重要性。6)、内部激励——强调内部动机的重要性。7)、早期教育——强调基础学科的早期学习。 8)、信息提取——强调信息提取(记忆问题不是贮存,而是提取) 9)、发现学习——提倡发现学习。 ——以早期教育为起点,以开发智力为核心,以学科知识结构为基础,以发现学习为手段,以直觉思维为必备要素,以内部激励为动力的旨在培养科学精英的教学思想。

教育心理学章节习题 学习的基本理论

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,把所选选项前的字母填在题后的括号内。 1.首先打出行为主义心理学旗帜的是()。 A.巴甫洛夫 B.斯金纳 C.桑代克 D.华生 2.以下心理学家不属于认知心理学派的是()。 A.苛勒 B.斯金纳 C.布鲁纳 D.奥苏伯尔 3.布鲁纳认为,学生掌握学科的基本结构的最好方法是()。 A.建构法 B.发现法 C.顿悟法 D.接受法 4.程序性教学实际上是()理论在实践中的运用。 A.学习的操作性条件作用 B.观察学习

C.认知学习 D.认知同化 5.加涅的信息加工系统中的第二级是()。 A.感受器 B.感受登记 C.短时记忆 D.长时记忆 6.苛勒在研究黑猩猩的学习时采用的实验是()。 A.迷箱实验 B.迷津实验 C.叠箱实验 D.“三座山”实验 7.建构主义的理论流派中,在皮亚杰的思想之上发展起来的是()。A.社会建构主义 B.激进建构主义 C.信息加工建构主义 D.社会主义建构主义 8.建构主义强调,知识的特点具有()。 A.主观性 B.客观性 C.普遍适应性

D.永恒性 9.将符号所代表的新知识与学习者认知结构中已有的适当观念建立起非人为的和实质性的联系属于()。 A.机械学习 B.意义学习 C.接受学习 D.发现学习 10.在发现教学中,教师的角色是学生学习的()。 A.促进者和引导者 B.领导者和参谋 C.管理者 D.示范者 11.孩子哭闹着要买玩具,母亲对其不予理睬,这是()。 A.正强化 B.负强化 C.惩罚 D.消退 12.以下心理学家及其理论匹配不正确的一项是()。 A.奥苏伯尔——认知发现说 B.苛勒——完形一顿悟说 C.托尔曼——认知目的说 D.加涅——信息加工理论

山香2016年教育心理学第三章 学习的基本理论

第三章学习的基本理论 第一节学习概述 一、学习的含义 (一)广义的学习 1、广义学习的含义:人和动物在生活过程中,凭借经验而产生的行为/行为潜能的相对持久的变化。 2、产生广义学习的三个特征: (1)学习必须使个体产生行为或行为潜能的变化。 (2)这种变化是相对持久的。有些主体的变化,如疲劳,创伤等引起的变化是暂时的,经过一段时间或一旦条件改变就会自行消失,这种变化不能称作学习。 (3)这种变化是由反复经验而引起的。 (二)狭义的学习 1、狭义学习的含义:指人类的学习,指个体在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会、个体的经验的过程。 2、人类学习与动物学习的本质区别: (1)人的学习是掌握人类社会历史经验、科学文化知识,获得个体行为经验的过程。 (2)人的学习是在社会生活实践中,与他人的交往时,以语言的中介进行的。 (3 3 (1)学生学习的含义:在教师的指导下,有目的、有计划、有组织、有系统地进行的,是在较短的时间内接受前人所积累和科学文化知识,并以此来充实自己的过程。 (2)学生学习内容:①知识、技能和学习策略的掌握,②问题解决能力、创造性的发展,③道德品质和健康心理的培养。 (3)学生学习的特点:①以系统地掌握人类的间接经验为主;②在教师的指导下进行,有较强的计划性、目的性、组织性;③具有一定程度的被动性;④要促进学生全面发展:学生不但要学习知识技能,还要发展智能,培养行为习惯、道德品质和健康的心理。 二、学习的分类 (一)从学习的主体来说,学习可以分为:动物学习、人类学习和机器学习。 (二)按学习的意识水平,[美]心理学家阿瑟.雷伯将学习分为:内隐学习和外显学习。 (三)加涅的学习结果分类:认为学习结果就是各种习得的才能、本领。获得以下五种才能:言语信息、智慧技能、认知策略、态度、动作技能。 1、言语信息的学习:帮助学生解决“是什么”的问题。掌握以言语信息传递的内容,学习结果是以言语信息表现出来的。 2、智慧技能的学习:解决“怎么做”的问题,用以对外界的符号、信息进行处理加工。辨别技能是最基本的智慧技能,按不同的学习水平及其所包含的心理运算的复杂程度,依次为:辨别、概念、规则、高级规则 3、认知策略的学习:学习者用以支配自己的注意、学习、记忆和思维的有内在组织的才能,这种才能使得学习过程的执行控制成为可能。智慧技能指向外部环境,而认知策略指向学习者内部。 4、态度的学习:态度是通过学习获得的内部状态,这种状态影响着个人对某种事物、人物及事件所采取的行动。加涅提出三类态度:(1)儿童对家庭和其他社会关系的认识;(2)对某种活动所伴随的积极的喜爱情感;(3)有关个人品德的某些方面,如热爱国家等。 5、运动技能的学习:运动技能又称为动作技能,也是能力的一个组成部分。

教育心理学专题练习第三章学习的基本理论

第三章学习的基本理论 一、单选题 1.被誉为现代教育心理学奠基人的是()。 A桑代克 B.巴甫洛夫 C.斯金纳 D.布鲁纳 2.下列不属于学习引起的变化的是()。 A. 幼儿会喊爸爸、妈妈 B.青春期嗓音变化 C.骑车 D.会使用电脑 3学习对某种信号作出一般性和弥散性的反应是()学习。 A.刺激——反应 B.连锁 C.辨别 D.信号 4.属于巴甫洛夫的经典性条件反射的学习类型是( )学习。 A.刺激——反应 B.信号 C.概念 D.连锁 5.属于操作性条件反射的学习类型是( )学习。 A.信号 B.规则 C.解决问题 D.刺激——反应 6联合两个或两个以上的刺激——反应动作,以形成一系列动作联结的学习类型是()学习。 A. 连锁 B.概念 C.辨别 D. 刺激——反应 7.各类动作技能的形成都离不开()学习。 A.信号 B.规则 C.连锁 D.刺激——反应 8.对一系列类似的刺激分别作出适当的反应的学习是()学习。 A.连锁 B.概念 C.辨别 D.规则 9.()学习是指认识一类事物的共同属性,并对其抽象特征作出反应。 A.解决问题 B.概念 C.辨别 D.规则 10.把鲸鱼、象、狗等概括为“哺乳动物”,这属于()学习。 A.解决问题 B.概念 C.辨别 D.规则 11.理解“功=力×距离”这一公式,这是()学习。 A.信号 B.概念 C.辨别 D.原理 12.掌握教育学基本原理后,用之于解决教育中的实际问题,这是()学习。 A.解决问题 B.规则 C.概念 D.刺激——反应 13.()是调节和控制自己的注意、学习、记忆、思维和问题解决过程的内部组织起来的能力。 A.智慧技能 B.认知策略 C.动作技能 D.态度 14.()是使用符合与环境相互作用的能力。 A.智慧技能 B.认知策略 C.言语信息 D.态度 15.()表现为学会陈述观点的能力。 A.智慧技能 B.认知策略 C.言语信息 D.态度 16.()是对外的平稳而精确的操作能力。 A.智慧技能 B.认知策略 C.言语信息 D.动作技能 17.()表现为个体对人、对物或某些事件的意向。 A.智慧技能 B.认知策略 C.言语信息 D.态度 18.在试误学习的过程中,学习者对环境刺激作出反应后能获得满意的结果时,其联结就会增强,这是()。 A.效果律 B.练习律 C.准备律 D.强化律 19.在试误学习的过程中,刺激与反应的联结,如果练习运用,联结的力量逐渐增大,如果不运用,则逐渐减小,这是( ).。

教育心理学-第三章 学习的基本理论 - 副本

《教育心理学》学习的基本理论 一、不定项选择题 1.下列属于学习的现象是()。 A.吃了酸的食物流唾液B.了解低碳生活并付诸行动C.蜘蛛织网D.儿童模仿电影中人物的行为2.一名学生能够运用三角形的面积公式解决一个他从来没有见到过的三角形的面积,这表明他已经具备了()。 A.言语信息B.动作技能C.智慧技能D.认知策略E.态度 3.某位学生近一段及时完成作业,老师告诉他放学后不必再留在教室里完成作业了,此后该生继续按时完成作业,这时该生受到了()。 A.正强化B.负强化c.正惩罚D.负惩罚 4.奥苏贝尔提倡的一种学习类型是()。 A.有意义-发现学习B.有意义-接受学习C.机械-接收学习D.机械-发现学习 5.引导学生分辨勇敢和鲁莽、谦让和退缩属于刺激()。 A.获得B.消退C.分化D.泛化 6.“孟母三迁”终使孟子成才,能够有效解释该现象的理论是()。 A.认知学习理论B.社会学习理论C.人本主义理论D.建构主义理论 7.学生学习“功=力×距离”,这种学习属于()。 A.辨别学习B.符号学习C.概念学习D.规则或原理学习 8.()指教材被分成若干小步子,学生可自定学习步调,让学生对所学内容进行积极反应,并给予及时强化和反馈使错误率最低。 A.程序教学B.组织教学C.个别化教学D.指导教学 9.()强调学习的主动性和认知结构的重要性,主张教学的最终目标是促进学生对学科结构的一般理解。 A.布鲁纳B.班杜拉C.桑代克D.巴甫洛夫 10.布鲁纳认为任何知识结构都可以用适合形式呈现,以下不属于他提出的呈现方式的一项是()。A.动作表象B.图像表象C.符号表象D.情感表象 11.最初主张S-R联结存在意识中介的心理学家或心理学流派是()。 A.格式塔学派B.布鲁纳C.斯金纳D.托尔曼 12.人和动物一旦学会对某一特定的条件刺激作出条件反应以后,其他与该条件刺激相类似的刺激也能诱发其条件反应,称为()。 A.刺激分化B.消退C.刺激泛化D.获得 13.操作性条件作用论的提出者是()。 A.桑代克B.苛勒C.斯金纳D.巴甫洛夫 14.布鲁纳的学习论是()。 A.完形顿悟说B.有意义接受学习论C.认知结构学习论D.建构主义 15.观察者看到榜样受到强化而如同自己也受到强化一样,这称为()。 A.外部强化B.自我强化C.直接强化D.替代强化 16.“一朝被蛇咬,十年怕井绳”,这种现象是指()。

教育心理学考试重点第三章学习的基本理论+实战演练

教育心理学考试重点提示:第三章学习的基本理论 重点提示 统观近几年全国各省的教师资格认证教育心理学考试,本章的考查重点是: (1)学习的定义。 (2)学习的主要理论: 尝试一错误学习的基本规律。 经典性条件反射的基本规律。 布鲁纳的认识一结构学习论。 当今建构主义学习理论的基本观点。 考纲链接 1.学习的实质与特征: (1)学习的概念。广义的学习指人和动物在生活过程中,凭借经验而产生的行为或行为潜能的变化。狭义的学习指人类的学习,是在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会的和个体的经验的过程。 (2)人类学习与动物学习的区别。首先,人的学习除了要获得个体的行为经验外,还要掌握人类世世代代积累起来的社会历史经验和科学文化知识;其次,人的学习是在改造客观世界的生活实践中,在与其他人的交往过程中,通过语言的中介作用而进行的;此外,人的学习是一种有目的的、自觉的、积极主动的过程。 2.学生的学习:是在教师的指导下,有目的、有计划、有组织、有系统地进行,在较短时间内接受前人所积累的科学文化知识,并以此来充实自己的过程。 3.学习内容:一是知识、技能和学习策略的掌握;二是问题解决能力和创造性的发展;三是道德品质和健康心理的培养。 4.加涅关于学习层次和学习结果的分类: (1)加涅关于学习层次分类:信号学习、刺激-反应学习、连锁学习、语言联结学习、辨别学习、概念学习、规则或原理学习、解决问题学习。 8.认知学习理论: (1)完形-顿悟说:由苛勒提出,主要观点:学习是通过顿悟实现的;学习的实质在于构造完形。 (2)认知-结构学习论:由布鲁纳提出。他主张学习的目的在于以发现学习的方式,使学科的基本结构转变为学生头脑中的认知结构。 10.建构主义学习理论。基本观点: (1)知识观。知识并不是问题的最终答案;知识并不能精确地概括世界的法则;知识不可能以实体的形式存在于具

《教育心理学》分章强化题三:第三章学习的基本理论

《教育心理学》分章强化题三:第三章学习的基本理论 一、选择题 1.下列现象可以归入到学习中的现象有()。 A.事故后体会到交通法规的重要性 B.疲劳时记忆力下降 C.乳儿抓住碰到的东西 D.青春期少年的嗓音变化 2.新生渐渐知道铃声代表上课,这属于()。 A.信号学习 B.辨别学习 C.概念学习 D.言语联结学习 3.各种动作技能的学习,都离不开()。 A.连锁学习 B.言语联结学习 C.解决问题的学习 D.信号学习 4.使用符号与环境相互作用的能力属于()。 A.认知策略 B.言语信息 C.动作技能 D.智慧技能 5.在试误学习过程中,当刺激与反应之间的联结不准备实现时,实现则感到烦恼,这符合()。

A.练习律 B.准备律 C.效果律 D.联结律 6.家长对考试成绩好的孩子给予物质奖励是()。 A.正强化 B.负强化 C.消退 D.惩罚 7.一个学生上课讲话,老师要他写“我上课讲话,真丑”1000遍,这属于()。 A.正强化 B.负强化 C.惩罚 D.替代强化 8.认为学习是个体利用本身的智慧与理解力对情境及情境与自身关系的顿悟的学说为()。 A.认知-结构学习论 B.有意义接受学习论 C.完形-顿悟说 D.建构主义学习论 9.有意义接受学习论的提出者是()。 A.苛勒 B.布鲁纳 C.斯金纳 D.奥苏伯尔 10.将符号所代表的新知识与学习者认知结构中已有的适当观念建立起非人为和实质性的联系的学习是()。 A.接受学习 B.发现学习 C.机械学习 D.意义学习 11.认为知识并不是对现实的准确表征,它只是一种解释、一种假设的理论为(或认为学生的学习不仅是对新知识的理解,而且是对新知识的分析、检验和批判的力量是)()。

教育心理学第三章 学习的基本理论

第三章学习的基本理论 1)什么是学习?人类学习和动物学习有什么本质的区别? 广义的学习指人和动物在生活过程中,凭借经验而产生的行为或行为潜能的相对持久的变化。 定义说明:1、学习表现为行为或行为潜能的变化。2、学习所引起的行为或行为潜能的变化是相对持久的。3、学习是由反复经验而引起的。 狭义的学习指人类的学习,指个体在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会的和个体的经验的过程。 人类学习vs. 动物学习有本质的区别: 1. 人的学习除了要获得个体的行为经验外,还要掌握人类世世代代积累起来的社会历史经验和科学文化知识。 2. 人的学习是在改造客观世界的生活实践中,在与其他人的交往过程中,通过语言的中介作用而进行的。 3. 人类的学习是一种有目的、自觉的、积极主动的过程。 2)学生的学习的内容和特点什么?(人类学习和学生学习有什么区别) 含义:学生的学习是人类学习中的一种特殊形式,它是在老师的指导下,有目的、有计划、有组织、有系统的进行的,是在较短的时间内接受前人所积累的文化科学知识,并以此来充实自己的过程。 学习内容:一是知识、技能和学习策略的掌握;二是问题解决能力和创造性的发展;三是道德品质和健康心理的培养。 人类学习和学生学习之间是一般与特殊的关系,学生的学习既与人类的学习有共同之处,但又有其特点:①以间接经验的掌握为主线;②具有较强的计划性、目的性和组织性;③具有一定程度的被动性。 3)加涅按照学习结果的不同把学习分成那些类型? 1、言语信息, 2、智慧技能, 3、认知策略, 4、态度, 5、运动技能。 4)简述奥苏贝尔对学习的分类 根据两个维度对认知领域的学习分类:一个是学习进行的方式,分为接受学习和发现学习;另一个维度是学习材料与学习者原有知识的关系,可分为机械学习和有意义学习。这两个维度互不依赖,彼此独立。并且每一个维度都存在许多过渡形式。 5)我国心理学家对学习是怎样分类的? 分为知识的学习、技能的学习和行为规范的学习三类。 6)联结学习理论的基本观点有哪些?(行为主义) 联结学习理论认为:一切学习都是通过条件作用,在刺激(S)和反应(R)之间建立直接联结的过程。强化在刺激—反应之间的建立过程中起着重要作用。在刺激—反应联结之中,个体学到的是习惯,而习惯是反复练习和强化的结果。习惯一旦形成,只要原来的或类似的刺激情境出现,习得的习惯性反应就会自动出现。 7 桑代克是美国著名心理学家,他采用实证主义的取向,使教育心理学研究走向了科学化的道路,是科学教育心理学的开创者,是第一个系统论述教育心理学的心理学家,被称为“现代教育心理学之父”。是最早用动物实验来研究学习规律的心理学家。 (一)经典实验:猫开笼取食的实验。 (二)学习的联结说(又叫试误说):通过这类实验,桑代克提出学习不是建立观念之间的联结,而是建立刺激—反应(S—R)联结,即在一定的刺激情境与某种正确反应之间形成联结,其中不需要观念或思维的参与。这种刺激—反应联结主要是通过尝试错误、

教育学心理学主要理论及代表人物

昆体良古罗 马 1.《雄辩术原理》世上第一部研究系统的教学方法论著,被公认为是西方教育史上的伟大 教育家,是第一位教学理论家和教学法专家。 2. 最早提出分班教学的思想 杜威美国1.提出实用主义教育学,杜威出版《民主主义与教育》《经验与教育》,克伯屈出版《设计教学法》,提倡活动课。 思想:强调儿童的主体地位:①教育即生活,教育即生长②教育社会化③做中学④教育即经验的不断改造。以儿童为中心,反对教师中心论 2.现代教育代言人现代教育的主要特点是民主 3.教育无目的论“教育是一个社会过程。” 4.问题的解决杜威的五步模式①困惑②诊断③假设④推断⑤验证 5.问题解决步骤的五步模式⑴疑难⑵分析⑶假设⑷检验和评价⑸结论 桑代克 美 国 1.1903年出版西方第一本《教育心理学》,是教育心理学体系的创始,标志着教育心理学 称为一门独立的学科。 2.学习理论之联结派的学习理论——联结学习:尝试-错误说(小猫“迷箱”试验) 试误成功条件:练习律、准备律、效果律 3.教育心理学体系(现代教育心理学)和联结主义学习心理学创始人,被誉为教育心理学 之父 4. 学习迁移理论之联结主义的相同要素说(代表人物:桑代克、伍德沃斯) 桑代克:相同要素说,即学习上的迁移是相同联结的转移。 伍德沃斯:共同成分说,即两种学习活动含有共同成分,则发生迁移,学习也就更容易。 以刺激——反应联结理论为基础。只有当学习情景和迁移情景存在共同成分时,才能产生迁移。即材料相似性是决定迁移的条件 5.现代教育测验之父 6.智力水平越高,迁移越大。 7.问题解决理论之试误说,又称联结说——(猫“迷箱”实验) 问题的解决过程是刺激情境与适当反应之间的联结完成的,联结的建立是通过尝试错误完成的。 贾德美国1.学习迁移理论之机能心理学的经验泛化说—“水下击靶”实验 他认为一个人对他的经验进行了概括,就可以完成从一个情境到另一个情境的迁移。概括就等于迁移,原理、法则等概括化的理论知识对迁移作用很大。 沃尔夫德国 1.学习迁移理论之官能心理学的形式训练说 他把迁移的实质理解为新的官能经训练而发展,认为促进迁移的条件与学习内容无大关系而偏重于形式。 魏特海默 苛勒德国 1.学习理论之认知派学习理论——格式塔的顿悟学习理论(黑猩猩取香蕉实验):学习是 一个顿悟的过程,是突然察觉到解决问题的办法。主要代表人物:魏特海墨、科夫卡和克勒 2.学习迁移理论之格式塔学派的关系转换说(代表人物:苛勒)—“小鸡啄米实验” 强调“顿悟”是迁移的一个决定因素。强调个体的作用,愈能加以概括化,愈易产生迁移。 3.问题解决理论之顿悟说(苛勒)——黑猩猩取香蕉实验 4.格式塔心理学(完形心理学)创始人魏特海墨、科夫卡和克勒研究内容是意识体验, 论点“整体大于部分之和” 解决问题时从整体把握全部问题情境和认知结构的豁然改组,而不是一次次经验的积累。 反对元素分析认为每一个心理现象都是一个整体是一个格式塔是一个完形 学习的实质在于构造完型,刺激与反应之间的联系而需要意识作为中介 布鲁美国1.结构化教材和发现学习模式(明确结构,掌握课题,提供资料→建立假说,推测答案→验证→做出结论) 2.领导美国20C60y的结构主义课程改革,主张突出学科基本结构,让学生通过发现法学习,重视智力发展(动机原则、结构原则、程序原则、反馈原则) 3.学习理论之现代认知学习理论——认知发现理论 强调认知学习和认知发展,提倡发现学习。学习的核心内容是各门学科的基本知识结构。3教学方法:发现学习,新课标中也叫“探究学习”。即教师提出课题和一定的材料,引导学生自己进行分析、综合、抽象、概括等一系列活动,最后得到学习结果。 4.提出假设考验说,研究人工概念的形成(人需要利用已有的知识主动提出一些可能的假设,即猜想这个概念是什么)——人工概念是认为的、在程序上模拟的概念,这种方法最早是赫尔于1920年首创的。 5.强调非特殊成分的迁移,也叫普遍迁移。即学习了基本的普遍的概念或原理,可作为学

教育心理学主要理论知识

第一章做合格教师 第一部分主要理论知识 1.合格教师心理素质 教师心理素质是教师在专业发展过程中,在心理过程和个性心理特征两方面所表现出来的本质特征。 教师的心理素质包括如下方面,即教师的智力素质、教师的情感素质、教师意志素质、教师的教育教学素质、教师的人格素质、教师的信念。 2、教师的智力素质 教师的智力是从事教育工作应具备的基本心理素质,是教师从事教育教学工作的心理基础。教师的智力素质表现在以下方面: (1)敏锐的观察力(2)良好的记忆力(3)丰富的想象力⑷多方位的立体思维能力 ⑸注意分配的能力 3、教师的情感素质特点 教育过程是师生情感交流的过程,教育工作最大的特点就是以情感人。 (1)成熟而稳定的情感(2)爱的情感:对教育事业的热爱、对学生的热爱、对所教学科的热爱 4、教师的意志特点 (1)实现教育目的的自觉性(2)克服困难的坚韧性(3)选择教育决策的果断性(4)解决矛盾的沉着自制性 4.教师的教育能力素质 因材施教的教育能力、获取信息的能力、独创能力、教育科研能力、心理教育能力、教育机智 5.教师的教学素质:包括教师的知识结构与教学能力。 6.教师的知识结构 教师的知识水平是其从事教学工作的前提条件。根据有关专家的研究,教师的知识结构可由三方面组成,分别为本体性知识、实践性知识和条件性知识。 7.本体性知识。 教师职业的本体性知识是教师所具有的特定的学科知识,如语文知识、数学

知识等,也即人们所熟知的科目知识。 林崇德等人的研究表明,教师的本体性知识与学生成绩之间几乎不存在统计上的关系。 由于学科不同,本体性知识的具体内容是不同的。仅仅从一般意义上说,教师的本体性知识应包括四个方面:教师应对学科的基础知识有广泛而准确的理解,熟练掌握相关的技能、技巧;教师要基本了解与所教学科相关的知识点、相关性质以及逻辑关系;教师需要了解该学科的发展历史和趋势,对于社会、人类发展的价值以及在人类生活实践中的多种表现形态;教师需要掌握每一门学科所提供的独特的认识世界的视角、域界、层次及思维的工具与方法等。 8.实践性知识 教师的实践性知识是教师在开展有目的的教育教学活动过程中解决具体问题的知识,是教师教育教学经验的积累和提炼,它主要来源于课堂教育教学情景之中和课堂内外的师生互动行为,带有明显的情景性、个体性,体现出教师个人的教育智慧和教学风格。研究表明,教龄对教师的实践性知识存在着显著影响,教师的实践性知识水平随着教龄的增加而逐步上升。 9.条件性知识 教师的条件性知识是指教师所具有的教育学与心理学知识。条件性知识是:个教师成功教学的重要保障,而这种知识是目前广大的一般教师所普遍缺乏的。教师的条件性知识分为三个方面,即学生身心发展的知识、教与学的知识和学生成绩评价的知识。 正如杜威指出的那样,科学家的学科知识与教师的学科知识是不一样的,教师必须把学科知识“心理学化”,以便学生能理解。 10.教师的教学能力 教师的教学能力是教师从事教学活动,完成教学任务的能力,是教师专业能力的重要方面。 ⑴教学认知能力⑵教学设计的能力 ⑶教学操作能力:①表达能力②课堂组织管理能力③运用现代教育技术的能力

相关文档
最新文档