Mapping single-locus and epistatic quantitative trait loci for plant

Mapping single-locus and epistatic quantitative trait loci for plant
Mapping single-locus and epistatic quantitative trait loci for plant

Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum

Fei Zhang ?Jiafu Jiang ?Sumei Chen ?

Fadi Chen ?Weimin Fang

Received:28April 2011/Accepted:3December 2011/Published online:22December 2011óSpringer Science+Business Media B.V.2011

Abstract Plant architecture is important for chry-santhemum cultivation and breeding.To determine the genetic basis of plant architectural traits in chrysan-themum,a population of 142F1plants derived from a cross between the creeping ground-cover chrysanthe-mum cultivar Yuhualuoying and the erect potted cultivar Aoyunhanxiao was used to detect quantitative trait loci (QTL)associated with plant height,plant width,inter-node length and ?ower neck length.The broad-sense heritability h B 2for the four plant architec-tural traits ranged from 0.33to 0.83,and transgressive segregation was observed.Single-locus QTL analysis revealed a total of ?ve QTL,accounting for 6.0–16.1%of the phenotypic variation.Additionally,11pairs of epistatic QTL were identi?ed,explaining 3.5–14.5%of the phenotypic variations.The majority of the interactions detected occurred between background loci.These results indicate that both additive and epistatic effects contribute to phenotypic variation in

the plant architecture of chrysanthemum.It is expected that the identi?ed markers associated with the additive QTL and epistatic QTL detected in this study will be of importance in future breeding programs to develop chrysanthemum cultivars exhib-iting desirable plant architecture.

Keywords Chrysanthemum áPlant architecture áQTL mapping áEpistatic QTL

Introduction

Chrysanthemum (Dendranthema morifolium )is an important perennial ornamental crop typically grown as an annual in chrysanthemum production world-wide.The demand for different chrysanthemums,including cut-?ower,garden,potted and ground-cover types,is increasing year by year.One of the most important breeding targets for the diverse types of chrysanthemum is plant architecture.Desirable plant architecture contributes much to plant cultivation,which strongly in?uences the yield level and eco-nomic coef?cient.Hence,an enhanced understanding of the genetic basis for differing plant architecture is vital for breeding favorable chrysanthemum cultivars adapted to diverse environments and different culti-vation systems.

To date,there have been several studies attempting to dissect the genetic basis of plant architecture of chrysan-themum.Jiang et al.(2003)found that transgressive

Electronic supplementary material The online version of this article (doi:10.1007/s11032-011-9686-3)contains

supplementary material,which is available to authorized users.F.Zhang áJ.Jiang áS.Chen áF.Chen (&)áW.Fang College of Horticulture,Nanjing Agricultural University,Nanjing 210095,China e-mail:chenfd@https://www.360docs.net/doc/7e5265626.html,

F.Zhang

Flower Research and Development Centre,Zhejiang Academy of Agricultural Sciences,Hangzhou 311202,China

Mol Breeding (2012)30:1027–1036DOI 10.1007/s11032-011-9686-3

segregation predominated in plant architectural traits in chrysanthemum.Zhao et al.(2009)proved that the creeping/erect habit in ground-cover chrysanthemum was mainly controlled by a pair of major genes with incompletely dominant effect,and identi?ed a rapid ampli?cation of polymorphic DNA(RAPD)marker tightly linked to the creeping gene.Zhang et al.(2010a) reported that plant height was mainly controlled by non-additive genes by combining ability analysis using a394incomplete diallel cross design.Recently, based on a marker–trait association analysis,Zhang et al.(2010b)identi?ed a number of RAPD and inter-simple sequence repeat(ISSR)loci having small individual effects on plant architectural traits in a F1 segregating population derived from a cross between a creeping ground-cover chrysanthemum cultivar Yuhualuoying and an erect potted Aoyunhanxiao. The same authors found that one or two major genes controlled inheritance of plant width,inter-node length and?ower neck length(Zhang et al.2011a).These results demonstrated that plant architecture of chry-santhemum was quantitative in nature.

Regarding this quantitative nature of plant archi-tecture,it is dif?cult to attain ideal plant architecture through conventional arti?cial selection.The recent advances in molecular marker technology and the development of high-density genetic maps are power-ful tools for elucidating the genetic basis of quantita-tively inherited traits,and quantitative trait locus (QTL)mapping analysis has been widely used in Rhododendron(Dunemann et al.1999),lily(Abe et al. 2002),carnation(Yagi et al.2006),rose(Dugo et al. 2005;Yan et al.2007;Hibrand-Saint Oyant et al.2008; Kawamura et al.2011)and many other ornamental species.Moreover,several previous researchers suc-cessfully addressed the genetic basis of plant architec-ture of many other crops such as rice(Kobayashi et al. 2003;Onishi et al.2007;Kanbe et al.2008),maize (Xu et al.2009),cotton(Wang et al.2006;Song and Zhang2009),apple(Kenis and Keulemans2007; Segura et al.2007,2009),cassava(Okogbenin and Fregene2003),coffee(Cilas et al.2006)and cucumber (Li et al.2008a).

Epistasis,the interaction between alleles from two to more loci,may have an important role in evolu-tionary and quantitative variation in crops(Malmberg et al.2005;Xu and Jia2007;Lou et al.2009),and QTL mapping is becoming an experimental approach to exploring the role of epistasis in the genetic basis of complex quantitative traits(Carlborg and Haley2004; Mohan et al.2009;Li et al.2009).So far,some statistical programs have been developed that enable genome-wide scans for epistatic effects(Sen and Churchill2001;Borevitz et al.2002;Yang et al.2007, 2008;Li et al.2008b;He et al.2011).The mixed linear model presented in QTLNetwork(Yang et al.2008) can integrate multiple QTL,epistasis,QTL-by-envi-ronment interactions and epistasis-by-environment interactions into one mapping https://www.360docs.net/doc/7e5265626.html,ing this software,epistatic effects contributing to the genetic variation of quantitative traits have been identi?ed in many crops(Imtiaz et al.2008;Song and Zhang2009; Zhang et al.2009;Yang et al.2010).In chrysanthe-mum,only a few QTL with additive effect have been reported on in?orescence-related traits(Zhang et al. 2011a).However,no information is available regard-ing the role of epistasis in important horticultural traits in chrysanthemum,including plant architecture.

The purpose of the present study was to(1)map single-locus QTL with additive effect and epistatic QTL for plant architectural traits;(2)identify markers that can be used in marker-assisted selection in chrysanthemum breeding programs;and(3)investi-gate the genetic basis of plant architectural traits in chrysanthemum.This is the?rst QTL analysis for plant architectural traits in chrysanthemum. Materials and methods

Mapping population

One hundred and forty-two F1hybrids derived from a cross between two chrysanthemum cultivars, Yuhualuoying and Aoyunhanxiao,were used as the mapping population.The molecular marker-based map was described in Zhang et al.(2011a).Yuhualuoying is a creeping ground-cover chrysanthemum cultivar and Aoyunhanxiao an erect potted one which performed signi?cantly on plant architectural traits.Both cultivars were bred by the Chrysanthemum Germplasm Resource Preserving Centre of Nanjing Agricultural University (CGRPCNAU),Nanjing,China.

Field experiment and trait assessment

The trial was conducted at CGRPCNAU in2008and 2009under?eld conditions.The142F1hybrids and

the two parental accessions were vegetatively propa-gated in April of both2008and2009,and a month later the rooted cuttings were transplanted to a nursery ?eld in three fully randomized block replications.The size of the plot was 1.0m960m and the plant spacing was35cm935cm.Field management was carried out following standard commercial practices. At the end of the vegetative growth stage,four plant architecture traits,plant height(PH,cm),plant width (PW,cm),inter-node length(INL,cm)of the main stem and?ower neck length(FNL,cm),were measured for all lines in2008and2009.

Statistical and QTL mapping analysis

Descriptive statistical analysis of the phenotypic data, variance(ANOVA)and Pearson correlation analysis were carried out using SPSS version13.0(SPSS, Chicago,IL,USA)program.The broad-sense herita-bility(h B2)for each trait was calculated by the method of Knapp et al.(1985)as follows:h B2=r g2/(r g2?r ge2/ n?r e2/nr),where r g2is the genotypic variance,r ge2is the genotype-by-environment interaction variance,r e2 is the error variance,n is the number of environments and r is the number of replications.The estimates of r g2,r ge2and r e2were obtained based on an analysis of variance(ANOVA)using the general linear model procedure.

QTL mapping was conducted based on the genetic maps of Zhang et al.(2011a).These maps were mainly composed of sequence-related ampli?ed polymor-phisms(SRAPs),covering[1,900cM with a mean inter-marker distance of\7.0cM.In this paper,we present only some of the linkage groups associated with the detected QTL.QTL analyses were carried out with QTLNetwork v2.0(https://www.360docs.net/doc/7e5265626.html,/software/ qtlnetwork),using the mixed-model-based composite interval mapping(CIM)method(Zeng1994)with a 10-cM window size and a1-cM walking speed. A10-cM?ltration window was used to distinguish whether two adjacent test statistic peaks indicated two QTL.One thousand permutations were performed on all traits in the combined data from the2years to calculate a critical F-value at the5%level of probability.Markov Chain Monte Carlo(MCMC)-implemented Bayesian analysis was applied to estimate QTL effects. Results

Statistical analysis of the phenotypic evaluation

The plant architectural traits for the F1population and the parents during2008and2009were described in Table1and Electronic Supplementary Material1.On average,Aoyunhanxiao exhibited higher values of PH, INL and FNL,but a lower value of PW than Yuhualuoying in the2years(environments).Trans-gressive segregants were observed in both directions for all traits in the F1population.All the plant architectural traits in the F1population segregated continuously and generally followed a normal distri-bution,indicating that all the traits were controlled by polygenes and were suitable for QTL analysis

Table1Descriptive statistics for plant architectural traits of chrysanthemum cultivars Yuhualuoying(P1)and Aoyunhanxiao(P2)and their F1mapping population in

2years,2008and2009Trait Parent F1mapping population

P1P2Maximum Minimum Average SD Skewness Kurtosis

Plant height(PH,cm)

200819.036.879.514.336.0 1.00.7 1.4 200920.035.678.213.635.0 1.00.7 1.2 Plant width(PW,cm)

200885.034.0127.442.280.3 1.60.1-0.2 200987.637.0123.738.777.2 1.60.1-0.2 Inter-node length(INL,cm)

2008 1.2 3.7 3.90.8 1.70.0 1.1 3.0 2009 1.3 3.8 3.80.7 1.60.0 1.2 3.4 Flower neck length(FNL,cm)

2008 1.2 2.3 3.30.3 1.60.10.0-0.4 2009 1.3 2.1 3.20.3 1.40.10.2-0.1

(Table1;Electronic Supplementary Material1), which was consistent with data(Zhang et al.2011b). Broad-sense heritability h B2for PH,PW,INL and FNL reached0.69,0.83,0.41and0.33,respectively (Table2).

Each phenotypic trait between the2years was signi?cantly correlated with correlation coef?cient [0.9(P\0.01).Pearson correlation coef?cients between phenotypic traits are shown as averages in Table3.FNL displayed a signi?cant positive correla-tion with PH,PW and INL.A signi?cant positive correlation was also detected between PH and PW.

Single-locus QTL for plant architectural traits

Using SRAP-based linkage maps of Yuhualuoying and Aoyunhanxiao previously published by Zhang et al.(2011a),a total of?ve additive QTL for PH,PW and FNL,but not INL,were detected at a signi?cance level of0.005by joint analysis with QTLNetwork v2.0 (Table4;Fig.1).These QTL corresponded to four genomic regions across four linkage groups(LGs), since some QTL for different traits clustered in the same regions and shared the same molecular markers (Table4;Fig.1).Individual QTL for the given traits explained 6.0–16.1%of the phenotypic variation (Table4).

For PH,two QTL were identi?ed on LGs Y3and Y5of the Yuhualuoying map,and explained6.0and 13.2%of the phenotypic variation,respectively.The parent Yuhualuoying alleles at the QTL qPH-Y3 reduced PH by7.1cm due to additive effects,but increased PH by8.8cm at qPH-Y5.A total of two QTL controlling PW explained29.0%of the total phenotypic variation.One major QTL,qPW-Y5, accounted for12.9%of the phenotypic variation and had an additive effect of28.3cm.Another major QTL, qPW-A5,explained16.1%of the phenotypic variation with an additive effect of–15.8cm.This suggested that the parent Yuhualuoying contributed to increasing PW,while Aoyunhanxiao decreased PW.Addition-ally,qPW-Y5was located at the same marker interval as qPH-Y5on LG Y5of the Yuhualuoying map,which re?ected the signi?cant correlation between PH and PW.Only one minor QTL(qPW-Y2)for FNL was detected on LG Y2of the Yuhualuoying map,and explained6.8%of the phenotypic variation(Table4; Fig.1).

Epistatic QTL for plant architecture traits

A total of11pairs of digenic epistatic QTL were detected for all measured traits(Table5;Fig.1).The number of epistatic QTL pairs for each trait varied from one to?ve.The proportion of total phenotypic variation explained by all epistatic QTL ranged from 10.0to39.9%for individual traits.Based on the genetic effects,there were two kinds of QTL epistatic interactions involved in the epistatic QTL mapped here:interaction between an additive QTL and background loci,and between complementary loci. The majority of interactions occurred between com-plete background loci,indicating that these loci play important roles in trait expression.

Three pairs of epistatic QTL were signi?cantly associated with PH.These QTL contributed PH from 7.9cm to44.1cm,explaining phenotypic variation from3.5to11.8%.The general contribution of digenic epistatic interactions to PH was25.5%.Additionally,a major QTL(qPH-Y5)with additive effect was involved in epistasis.Two pairs of digenic epistatic QTL were detected for PW,located on LGs Y13-Y56

Table2Components of variance r g2,r ge2and r e2for genotype, genotype9environment interaction and residual variation and broad-sense heritability h B2of the four measured plant archi-tectural traits of chrysanthemum in the F1population

Trait a r g2r ge2r e2h B2

PH 2.709 2.3700.160.69 PW7.323 2.9640.250.83 INL0.0040.0090.010.41 FNL0.0080.0290.010.33 a Abbreviations are the same as in Table1

Table3Pearson correlation coef?cients between plant architectural traits in an F1segregating population of chry-santhemum cross Yuhualuoying9Aoyunhanxiao

Trait a PH PW INL

PW0.73**

INL0.130.03

FNL0.33**0.22**0.24**

**Signi?cant difference at P=0.01level,two-tailed

a Abbreviations are the same as in Table1

and A1-A25,which increased PW by62.6cm and 15.6cm with phenotypic variation explained of10.0 and9.8%,respectively.There was only one epistatic QTL identi?ed for INL,which accounted for10.0%of phenotypic variation with an increased epistasis coming from the parent Aoyunhanxiao.For FNL,a total of?ve pairs of epistatic QTL were detected, accounting for3.8–14.5%of the phenotypic variation in the F1population.All of these epistatic QTL,except the two pairs located on A9-A16and Y2-Y17,were in the direction of decreasing FNL,and the epistatic effects came from different parents.

Discussion

Plant architecture,de?ned by the nature and relative arrangement of each of its vegetative and reproductive organs,is an important breeding target in chrysanthe-mum because of its implications in chrysanthemum cultivation and sale.In chrysanthemum,besides the typical features of PH and PW,there are many other architecture traits such as INL,FNL,inter-node number,main-stem leaves,number of branches, branching angles,etc.In this study,four plant architecture traits,PH,PW,INL and FNL,were phenotyped.The broad-sense heritability h B2for these traits ranged from0.33to0.83.Zhang et al.(2010a) reported h B2of0.71for PH using a394incomplete diallel cross design,and h B2of0.69was estimated for PH in this study,which con?rmed the relatively high heritability for PH.Recently,several studies have shown the quantitative nature of plant architecture in chrysanthemum(Jiang et al.2003;Zhao et al.2009; Zhang et al.2010a,b),which makes it dif?cult to breed ideal plant architectures for different cultivation systems.However,QTL mapping provides an ef?cient tool for identifying the genetic basis of plant archi-tectural traits(Wang and Li2005;Blas et al.2011).In the present study,on the basis of the mixed-linear model approach,single-locus and epistatic QTL for plant architecture traits were detected using a F1 progeny(pseudo-F2)derived from two chrysanthe-mum cultivars with different typical plant architec-tures,a creeping ground-cover Yuhualuoying and an erect potted Aoyunhanxiao.

The genetic basis of plant architectural traits

in chrysanthemum

According to Falconer and Machay(1996),QTL explaining more than10%of phenotypic variation should be considered major QTL.Among the?ve QTL detected for PH,PW and FNL in this study,two major QTL(qPH-Y5and qPW-Y5)explaining13.2 and12.9%for PH and PW,respectively,overlapped on LG Y5of the Yuhualuoying map.This observation also re?ects the signi?cant phenotypic correlation between PH and PW.Generally,the cluster of overlapped QTL for different target traits could be explained by pleiotropic effects of single genes or by close physical linkage of genes controlling different traits(Yamamoto et al.2009;Thumma et al.2010; Yang et al.2010).

Table4Single-locus QTL with additive effect for plant architectural traits of chrysanthemum in2years(environments),detected by QTLNetwork v2.0(joint analysis)

Traits a QTL Marker interval Position Range b A c SE P h a2(%)d

PH(cm)qPH-Y3Y-Me23Em18-1–Y-Me24Em5-221.520.5–24.6-7.1 2.20.001 6.0 qPH-Y5Y-Me20Em1-3–**Y-Me3Em10-249.648.9–59.68.8 2.10.00013.2 PW(cm)qPW-Y5Y-Me20Em1-3–**Y-Me3Em10-259.648.9–59.628.3 3.70.00012.9 qPW-A7**A-Me19Em14-2–A-Me25Em17-151.650.5–52.6-15.8 1.70.00016.1 FNL(cm)qFNL-Y2*Y-Me1Em10-3–Y-Me23Em10-172.371.3–72.9-0.50.20.001 6.8

a Abbreviations are the same as in Table1

b Range means the support interval of QTL position

c A is the additive genetic effects estimate

d at th

e testing points.Positive values mean that the corresponding parent has a positive effect on the trait,and negative values a negative effect

d h

a

2represents the phenotypic variations explained by the A value

Several studies have reported that epistatic QTL as well as main-effect QTL play an important part in the genetic basis of yield traits,?owering time,plant architectural traits and many other traits of crops (Song and Zhang2009;Zhang et al.2009;Yang et al. 2010;Ravi et al.2011).Epistasis was also suggested to be of great importance as the genetic basis of some ornamental traits in chrysanthemum(Zhang et al.

2010a,2011b,c)through traditional quantitative genetic analysis.In the present research,11pairs of epistatic QTL were identi?ed for four plant architec-tural traits(PH,PW,INL and FNL).There are three types of digenic epistatic interaction:interaction between additive QTL,between additive QTL and background loci,or between complete background loci(Li1998).In cotton,the epistatic QTL controlling plant architecture mainly occurred between additive QTL(Song and Zhang2009).In this study,however, the majority of epistatic QTL were derived from loci without signi?cant additive effects,with the exception of one epistatic interaction between one additive QTL and background loci.This indicated that loci without detectable additive effects play important roles in epistatic interactions that indirectly in?uence plant architecture in chrysanthemum.The average percent-ages of total phenotypic variation explained by individual QTL and epistatic QTL for plant architec-ture traits were13.0and9.6%,respectively,suggest-ing that additive effects predominated in contributing to variation in plant architecture in this study.On the other hand,the effects of some single-locus(such as qPW-Y5)and epistatic QTL were relatively large.The large transgressive segregation could be attributed to this cause.In conclusion,epistatic QTL as well as a few major QTL with large additive effects contribute to the genetic control of plant architecture in chrysanthemum.

Implications for breeding favorable plant architecture in chrysanthemum

Yuhualuoying is a typical ground-cover chrysanthe-mum cultivar exhibiting lower PH and wider PW and Aoyunhanxiao is an elite potted chrysanthemum with adequate PH and PW.Additionally,they differ signi?cantly in?owering time and many other in?o-rescence-related traits(Zhang et al.2011a,c).The two cultivars were therefore valuable breeding parents in genetic and breeding studies for chrysanthemum.The results of the present study suggested that Aoyunhan-xiao and Yuhualuoying both contributed plus and minus QTL alleles for plant architectural traits, indicating the possibility of breeding chrysanthemum cultivars with an improved plant architecture.Our results also underlined the value of the two parents for chrysanthemum breeding programs.

Plant architecture is one of the most complex traits in chrysanthemum,and selecting for a desirable plant architecture in breeding populations remains a chal-lenging task.The major additive QTL(qPH-Y5,qPW-Y5and qPW-A7)and the four major epistatic QTL observed for plant architectural traits provide an opportunity for the application of molecular-marker-based breeding.In addition,only a few single-locus additive QTL were identi?ed for the plant architec-tural QTL in this study due to the rigorousness of QTLNetwork(Ravi et al.2011),QTL analysis by some other mapping software should also be con-ducted in a later study to detect some useful QTL for plant architecture in chrysanthemum.

In conclusion,?ve single-locus QTL with additive effects and11epistatic QTL were detected for plant architectural traits,indicating both epistasis and additivity as the genetic basis of the plant architectural traits investigated here.The majority of epistatic QTL originated from loci without signi?cant additive effects.The major QTL detected here could be a starting point for the application of marker-assisted selection-based breeding for favorable plant architec-tural traits in chrysanthemum.Because QTL based on phenotyping over only2years were reported here,it is vital to validate these putative QTL in more environ-ments and genetic backgrounds.

Fig.1Graphic presentation of signi?cant additive and epistatic QTL for chrysanthemum plant architectural traits detected by QTLNetwork v2.0using joint analysis.A line between linkage groups indicates the epistatic QTL.Only segments of linkage groups related to QTL detected in this study are shown;for detailed information of the maps see Zhang et al.(2011a). Abbreviations are the same as in Table1

c

Table5Epistatic QTL detected by QTLNetwork v2.0for plant architectural traits in chrysanthemum

2c Trait a LG Marker interval Position Range b AA SE P h(aa) PH(cm)Y5Y-Me20Em1-3–**Y-Me3Em10-249.648.6–59.635.58.80.000 3.5 Y21Y-Me19Em14-6–Y-Me24Em7-216.015.0–20.3

Y13Y-Me24Em1-2–Y-Me12Em12-116.915.9–21.544.1 5.60.00011.8

Y23Y-Me14Em6-1–Y-Me18Em14-112.611.6–17.1

A13A-Me4Em10-3–A-Me19Em6-228.920.9–36.47.9 1.10.00010.2

A34**A-Me14Em19-1–A-Me13Em11-10.00.0–4.0

PW(cm)Y13Y-Me24Em1-2–Y-Me12Em12-116.915.9–21.562.69.30.00010.0 Y56Y-Me19Em4-2–Y-Me20Em3-3 6.00.0–6.0

A1A-Me13Em1-4–A-Me25Em19-368.667.5–69.615.6 2.30.0009.8

A25A-Me11Em19-2–A-Me12Em16-132.112.3–43.8

INL(cm)A2A-Me23Em6-1–A-Me17Em19-245.641.0–47.90.30.10.00010.0 A13A-Me23Em12-1–A-Me15Em1-30.00.0–3.0

FNL(cm)A5A-Me10Em20-1–**A-Me10Em19-455.738.7–61.3-0.50.10.00014.5 A7A-Me20Em1-2–*A-Me21Em10-116.511.7–23.5

A9A-Me24Em10-1–A-Me20Em14-69.2 6.5–11.20.40.10.0009.5

A16A-Me18Em16-1–A-Me24Em16-117.815.7–19.8

Y2Y-Me17Em1-1–Y-Me16Em10-19.28.2–9.9 1.40.30.000 4.6

Y17Y-Me18Em7-2–Y-Me24Em14-353.552.5–60.5

Y2Y-Me11Em15-2–Y-Me20Em14-155.954.9–60.3-2.40.40.0007.5

Y14**Y-Me20Em2-5–*Y-Me13Em1-2 6.00.0–6.1

Y3*Y-Me21Em4-1–Y-Me21Em9-511.1 6.1–11.6-1.90.40.000 3.8

Y36Y-Me23Em5-9–Y-Me19Em14-8 1.00.0–7.0

a Abbreviations are the same as in Table1

b Ranges are the position support intervals of the two QTL

c h

2indicates the phenotypic variations explained by AA

(aa)

Acknowledgments We are grateful to Prof.Qingshan Chen (Northeast Agricultural University,China),Prof.Yu Li (Chinese Academy of Agricultural Sciences),and anonymous reviewers for their constructive comments and suggestions that signi?cantly improved the presentation of this manuscript.This project was supported by the National Nature Science Foundation of China(Grant No.30871724)and Non-pro?t Industry Financial Program of the Ministry of Science and Technology of the People’s Republic of China(200903020). References

Abe H,Nakano M,Nakatsuka A,Nakayama M,Koshioka M, Yamagishi M(2002)Genetic analysis of?oral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps.Theor Appl Genet105:1175–1182

Blas AL,Yu Q,Veatch QJ,Paull RE,Moore PH,Ming R(2011) Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya.Mol Breed.doi:10.1007/s11032-011-9562-1

Borevitz JO,Maloof JN,Lutes J,Dabi T,Redfem JL,Trainer GT,Werner JD,Asami T,Berry CC,Weigei D,Chory J (2002)Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana.

Genetics160:683–696

Carlborg O,Haley CS(2004)Epistasis:too often neglected in complex trait studies.Nat Rev Genet5:618–625

Cilas C,Bar-Hen A,Montagnon C,Godin C(2006)De?nition of architectural ideotypes for good yield capacity in coffee Canephor.Ann Bot97:405–411

Dugo ML,Satovic Z,Millan T,Cubero JI(2005)Genetic mapping of QTLs controlling horticultural traits in diploid roses.Theor Appl Genet111:511–520

Dunemann F,Kahnau R,Stange I(1999)Analysis of complex leaf and?ower characters in Rhododendron using a molecular linkage map.Theor Appl Genet98:1146–1155 Falconer DS,Machay TFC(1996)Introduction to quantitative genetics,4th edn.Longmans Green,Harlow,pp1–90

He XH,Qin HD,Hu ZL,Zhang TZ,Zhang YM(2011)Mapping of epistatic quantitative traits loci in four-way crosses.

Theor Appl Genet122:33–48

Hibrand-Saint Oyant L,Crespel L,Rajapakse S,Zhang L, Foucher F(2008)Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL con-trolling?owering traits.Tree Genet Genomes4:11–23 Imtiaz M,Ogbonnaya FC,Oman J,Ginkel M(2008)Charac-terization of quantitative trait loci controlling genetic variation for preharvest spouting in synthetic backcross-derived wheat lines.Genetics178:1725–1736

Jiang J,Chen F,Guo W(2003)Heredity of several characters in Dendranthema grandi?ora with small in?orescences.

J Nanjing Agric Univ26(2):11–15

Kanbe T,Sasaki H,Aoki N,Yanagishi T,Ebitani T,Yano M, Ohsugi R(2008)Identi?cation of QTLs for improvement of plant type in rice(Oryza sativa L.)using Koshihikari/ Kasalath chromosome segment substitution lines and backcross progeny F2population.Plant Prod Sci 11:447–456Kawamura K,Hibrand-Saint Oyant L,Crespel L,Thouroude T, Lalanne D,Foucher F(2011)Quantitative trait loci for ?owering time and in?orescence architecture in rose.

Theor Appl Genet122:661–675

Kenis K,Keulemans J(2007)Study of tree architecture of apple (Malus9domestica Borkh.)by QTL analysis of growth traits.Mol Breed19:193–208

Knapp SJ,Stroup WW,Ross WM(1985)Exact con?dence intervals for heritability on a progeny mean basis.Crop Sci 25:192–194

Kobayashi S,Fukuta Y,Sato T,Osaki M,Khush GS(2003) Molecular marker dissection of rice(Oryza sativa L.)plant architecture under temperate and tropical climates.Theor Appl Genet107:1350–1356

Li Z(1998)Molecular analysis of epistasis affecting complex traits.In:Paterson AH(ed)Molecular dissection of com-plex traits.CRC Press,Boca Raton,pp119–130

Li XZ,Yuan XJ,Jiang S,Pan JS,Deng SL,Wang G,He HL,Wu AZ,Zhu LH,Koba T,Cai R(2008a)Detecting QTLs for plant architecture traits in cucumber(Cucumis sativus L.).

Breed Sci58:453–600

Li H,Ribaut JM,Li Z,Wang J(2008b)Inclusive composite interval mapping(ICIM)for digenic epistasis of quantita-tive traits in biparental populations.Theor Appl Genet 116:243–260

Li JZ,Fu CY,Zhang HL,Liu LF,Mu P,Li ZC(2009)QTL mapping and QTL9environment interactions of appear-ance quality in upland rice introgression lines under upland and lowland environments.J Agric Biotechnol17:651–658 Lou J,Chen L,Yue G,Lou Q,Mei H,Xiong L,Luo L(2009) QTL mapping of grain quality traits in rice.J Cereal Sci 50:145–151

Malmberg RL,Held S,Waits A,Mauricio R(2005)Epistasis for ?tness-related quantitative traits in Arabidopsis thaliana grown in the?eld.Genetica171:2013–2027

Mohan A,Kulwal P,Singh R,Kumar V,Mir RR,Kumar J, Prasad M,Balyan HS,Gupta PK(2009)Genome-wide QTL analysis for pre-harvest spouting tolerance in bread wheat.Euphytica168:319–329

Okogbenin E,Fregene M(2003)Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in cassava(Manihot escu-lenta Crantz).Theor Appl Genet107:1452–1462

Onishi K,Horiuchi Y,Ishigoh ON,Takagi K,Ichikawa N, Maruoka M,Sano Y(2007)A QTL cluster for plant architecture and its ecological signi?cance in Asian wild rice[Oryza sativa].Breed Sci57:7–16

Ravi K,Vadez V,Isobe S,Mir RR,Guo Y,Nigam SN,Gowda MVC,Radhakrishnan T,Bertioli DJ,Knapp SJ,Varshney RK(2011)Identi?cation of several small main-effect QTL and a large number of epistatic QTLs for drought tolerance related traits in groundnut(Arachis hypogaea L.).Theor Appl Genet122:1119–1132

Segura V,Denance C,Durel CE,Costes E(2007)Wide range QTL analysis for complex architectural traits in a1-year-old apple progeny.Genome50:159–171

Segura V,Durel CE,Costes E(2009)Dissecting apple tree architecture into genetic,ontogenetic and environmental effects:QTL mapping.Tree Genet Genomes5:165–179 Sen S,Churchill GA(2001)A statistical framework for quan-titative trait mapping.Genetics159:371–387

Song X,Zhang T(2009)Quantitative trait loci controlling plant architectural traits in cotton.Plant Sci177:317–323 Thumma BR,Southerton SG,Bell JC,Owen JV,Henery ML, Moran GF(2010)Quantitative trait locus(QTL)analysis of wood quality traits in Eucalyptus nitens.Tree Genet Genomes6:305–317

Wang Y,Li J(2005)The plant architecture of rice(Oryza sativa).Plant Mol Biol59:75–84

Wang B,Wu Y,Huang N,Zhu X,Guo W,Zhang T(2006)QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers.Acta Genet Sin33:161–170

Xu SZ,Jia ZY(2007)Genome-wide analysis of epistatic effects for quantitative traits in barley.Genetics175:1955–1963 Xu D,Cai Y,Lv X,Dai G,Wang G,Wang J,Sun H,Tan H (2009)QTL mapping for plant-tape traits in maize.J Maize Sci17(6):27–31

Yagi M,Onozaki T,Taneya M,Watanabe H,Yoshimura T, Yoshinari T,Ochiai Y,Shibata H(2006)Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci(QTL)for resistance to bacterial wilt caused by Burkholderia caryo-phylli.J Jpn Soc Hort Sci75:166–172

Yamamoto T,Yonemaru J,Yano M(2009)Towards the understanding of complex trait in rice:substantially or super?cially?DNA Res16:141–154

Yan Z,Visser PB,Hendriks T,Prins TW,Stam P,Dolstra O (2007)QTL analysis of variation for vigour in rose.

Euphytica154:53–62

Yang J,Zhu J,Williams RW(2007)Mapping the genetic architecture of complex traits in experimental population.

Bioinformatics23:1527–1536

Yang J,Hu CC,Hu H,Yu RD,Xia Z,Ye XZ,Zhu J(2008) QTLNetwork:mapping and visualizing genetic

architecture of complex traits in experimental population.

Bioinformatics24:721–723

Yang X,Guo Y,Yan J,Zhang J,Song T,Rocheford T,Li J (2010)Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize.Theor Appl Genet120:665–678

Zeng ZB(1994)Precision mapping of quantitative trait loci.

Genetics136:1457–1468

Zhang K,Tian J,Zhao L,Liu B,Chen G(2009)Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars.

Genetica135:257–265

Zhang F,Fang W,Chen F,Chen S(2010a)Combining ability analysis on ornamental characters of chrysanthemum.Acta Hort Sin37:589–596

Zhang F,Chen F,Fang W,Chen S(2010b)Detection of RAPD and ISSR markers associated with ornamental traits of chrysanthemum in vegetative stage.Acta Hort Sin 37:1345–1350

Zhang F,Chen S,Chen F,Fang W,Chen Y,Li F(2011a)SRAP-based mapping and QTL detection for in?orescence-rela-ted traits in chrysanthemum(Dendranthema morifolium).

Mol Breed27:11–23

Zhang F,Chen F,Fang W,Chen S,Li F(2011b)Heterosis and major gene plus polygene mixed genetic analysis for veg-etative traits in chrysanthemum.Sci Silvae Sin47:46–52 Zhang F,Chen S,Chen F,Fang W,Deng Y,Chang Q,Liu P (2011c)Genetic analysis and associated SRAP markers for ?owering traits of chrysanthemum(Chrysanthemum mor-ifolium).Euphytica177:15–24

Zhao J,Chen F,Teng N,Chen S(2009)Genetic analysis and RAPD marker of creeping habits in ground-cover chry-santhemum.Sci Agric Sin42:734–741

猎头服务合同书

编号:_______________ 本资料为word版本,可以直接编辑和打印,感谢您的下载 猎头服务合同书 甲方:___________________ 乙方:___________________ 日期:___________________

委托方____________________以下简称甲方代理方_________人才服务部以下简称乙方甲方因业务发展需要,委托乙方搜索所需人才。 经双方友好协商,达成以下合作条款第一条 主旨本合同目的在于确定乙方代表甲方搜索候选人时双方的权利及义务。 第二条 搜索服务的基本方式1甲方需提供与所需搜索职位有关的详细资料给乙方,其中主要包括--工作环境,如公司背景、现状规模、发展状况、目前和将来的投资等;--职务名称、职位职责,个人发展前景、直属上司情况及汇报路线;--所须具备的条件包括年龄、性别、教育程度、英文程度、专业经验以及个人品性;--工作中所需要的独立性、工作氛围,流动性出差需要和上班地点等;--福利待遇包括基本工资、奖金和津贴、工作时数、生活条件以及合同保险。 2乙方工作程序--搜索可能达到该标准的候选人,对这些候选人进行初次面试筛选并确证其资料的真实性;--将候选人资料提交甲方参考,包括对其经验的评价及对其性格,能力和潜质的看法;--为双方安排面谈时间、地点,并参与其中一些条款的协商,协助聘用合同的最终签署;--协助甲方督促被录用候选人与原工作单位按正常的程序办好离职手续。 3乙方在合同签定之日起天内完成对甲方所需人才的寻访、测评及背景调查,将完整、真实的候选人资料提交甲方,并安排候选人面试。 4甲方应在收到乙方提供的候选人资料后两日内,做出是否与己有人才资料重复的判断,否则视为乙方推荐;甲方应在收到乙方提供的候选人才资料后一周内,做出是否需要复试的判断,甲方应在候选取人面试后两周内将面试意见及审核结果反馈给乙方,在复试后四周内做出是否录用的判断。 第三条 保证期1推荐的候选人被甲方录用,并最终到甲方工作,视为猎头服务成功。 2雇员在保证期三个月内无论因任何原因离职,甲方应五天内向乙方提出书面报告,乙方将免费为甲方推荐另一合适候选人到职;乙方收到甲方书面报告后二个月内没有推荐合格人选到职,乙方应退还该项服务费的_______。

声律启蒙十五删

xīnɡduìfèi,fùduìpān 兴对废,附对攀 lùcǎo duìshuānɡjiān 露草对霜菅 ɡēlián duìjièkòu 歌廉对借寇 xíkǒnɡduìxīyán 习孔对希颜 shān lěi lěi,shuǐchán chán 山垒垒,水潺潺 fènɡbìduìtàn huán 奉璧对探镮 lǐyóu ɡōnɡ dàn zuò 礼由公旦作 shīběn zhònɡníshān 诗本仲尼删lǘkùn kèfānɡjīnɡbàshu ǐ 驴困客方经灞水 jīmínɡrén yǐchūhánɡuān 鸡鸣人已出函关 jǐyèshuānɡfēi 几夜霜飞 yǐyǒu cānɡhónɡcíběi sài 已有苍鸿辞北塞 shùzhāo wùàn 数朝雾暗 qǐwúxuán bào yǐn nán shān 岂无玄豹隐南山 【解析】 兴对废,附对攀,露草对霜菅 兴废,兴盛和衰废。 [南朝梁] 刘勰《文心雕龙.史传》云:”表微盛衰,殷鉴兴废。” 《大宋宣和遗事.元集》云:”上下三千余年,兴废百千万事。” 攀,向上爬;附,靠近,依从。有成语“攀龙附凤”比喻依附权贵以成就功业。亦比喻依附有声望的人以立名。 [汉] 扬雄《法言·渊骞》:“攀龙鳞,附凤翼,巽以扬之,勃勃乎其不可及也。”唐·杜甫《洗兵马》:攀龙附凤势莫当,天下尽化为侯王。 露草:沾露的草。 [唐] 李华《木兰赋》:“露草白兮山凄凄,鹤既唳兮猿復啼。”[清] 谭嗣同《武昌夜泊》诗之二:“露草逼蛩语,霜花凋雁翎。”

霜菅:霜后枯萎的菅草。用以比喻白发。[宋] 苏轼《再用前韵(追饯正辅表兄至博罗赋诗为别)》:“乐天双鬢如霜菅,始知谢遣素与蛮。” [宋] 陆游《怀昔》诗:“岂知堕老境,槁木蒙霜菅。” 歌廉对借寇,习孔对希颜 歌廉歌颂廉范。 《后汉书》记载,东汉名臣廉范,字叔度,任蜀郡太守时为官清廉,更改禁民夜作旧令,让百姓储水以防火,百姓掌灯夜作,日渐丰裕。百姓歌曰:“廉叔度,来何暮,不禁火,民安作,昔无襦,今五衿”。 借寇挽留寇恂。 汉名臣寇恂,字子翼,历任河内、颍川、汝南太守。治理颍川期间颇有政绩,升迁离任后,次年随光武帝再至颍川平寇,所到之处群寇望风而降,百姓们纷纷于帝驾之前拦道,请求再借寇恂在颍川任职一年。后就用“借寇”表示挽留地方官,含有对政绩的称美之意。 习孔希颜:学习孔子,效仿颜回。习、希:都是学习和效仿的意思。 山垒垒,水潺潺 山垒垒垒垒:重叠的样子。《文选·曹丕·善哉行》:“还望故乡,鬱何垒垒。”[明]何景明《雁门太守行》诗云:“垒垒高山,莽莽代谷。” 水潺潺溪水徐徐流动。[三国]曹丕《丹霞蔽日行》云:“谷水潺潺,木落翩翩。” [唐] 杜牧《中秋日拜起居表晨渡天津桥即事十六韵献》诗云:“楼齐云漠漠,桥束水潺潺”。[唐] 李涉《竹枝词》诗云:“荆门滩急水潺潺,两岸猿啼烟满山”。 奉壁对探镮 奉璧即蔺相如“完璧归赵”典故。(参见本系列第十六讲:《作赋观书双雄事,回文锦字几华章?》中“奉璧蔺相如”一句之详解。) 探镮亦作“探环”。《晋书·羊祜传》载,西晋大臣羊祜(此前“羊公德大,邑人竖堕泪之碑”以及“叔子带”都曾讲到他)五岁时,叫乳母把他玩过的金环取来,乳母说:“你没有这种玩具呀!”羊祜就自己爬到邻居李家的树上,

内分泌科考试试题及答案解析

内分泌科出科临床考试试题(一) 姓名毕业学校分数 一、单选题:每题2分 1.糖尿病是一组病因不明的内分泌代谢病,其共同主要标志是() A 多饮、多尿、多食 B 乏力 C 消瘦 D 高血糖 E 尿糖阳性 2.下述哪一项符合淡漠型甲亢() A.突眼征明显 B.心悸、多食、多汗、无力明显 C.甲状腺肿大明显 D.T4不增高,而只有T3增高 E.常见于老年人,易发生甲亢危象 3.内分泌系统的反馈调节是指: ( ) A.神经系统对内分泌系统的调节. B.内分泌系统对神经系统的调节 C.免疫系统对内分泌系统的调节; D.免疫系统对神经系统的调节; E.下丘脑一垂体一靶腺之间的相互调节 4.常用于内分泌功能减退的动态功能试验是: ( ) A.兴奋试验 B.抑制试验; C.激发试验 D.拮抗试验; E.负荷试验 5.1型糖尿病与2型糖尿病,最主要的区别在于() A 症状轻重不同 B 发生酮症酸中毒的倾向不同 C 对胰岛素的敏感性不同 D 胰岛素的基础水平与释放曲线不同 E 血糖稳定性不同 6.引起ACTH升高的疾病是: ( ) A.Sheehan综合征 B.肾上腺皮质腺瘤 C.Addison病 D.原发性醛固酮增多症 E.PRI 瘤 7.血中直接调节胰岛素分泌而且经常起调节作用的重要因素是 A 游离脂肪酸 B 血糖浓度 C 肾上腺素 D 胃肠道激素 E 血酮体浓度 8.Sheehan综合征患者各靶腺功能减退替代治疗应先补充: ( ) A.性激素 B.甲状腺激素 C.糖皮质激素 D.ACTH E.GnRH 9.对于慢性淋巴细胞性甲状腺炎的描述,以下哪项是错误的() A.可合并恶性贫血 B.多见于中年妇女 C.可伴有甲状腺功能亢进 D.可合并1型糖尿病 E.诊断明确,宜手术治疗 10.糖尿病性血管病变,最具有特征性的是()

猎头协议(标准范本)

猎头协议 In accordance with the relevant provisions and clear responsibilities and obligations of both parties, the following terms are reached on the principle of voluntariness, equality and mutual benefit. 甲方:__________________ 乙方:__________________ 签订日期:__________________ 本协议书下载后可随意修改

协议编号:YH-FS-825220 猎头协议 说明:本服务协议书根据有关规定,及明确双方责任与义务,同时对当事人进行法律约束,本着 自愿及平等互利的原则达成以下条款。文档格式为docx可任意编辑使用时请仔细阅读。 甲方:_________ 乙方:_________ 1.公司指定 根据本合同协议和条款,乙方委托并指定甲方为乙方提供本合同规定的各项咨询服务。 2.双方关系 甲方和乙方均为独立法人。本合同的签订在甲方和乙方之间并不产生任何雇用、代理、合资或业务伙伴关系。甲方绝非乙方的法律代表,无论是任何目的,甲方均不能以书面或其它明示或隐含方式,以乙方的名义享受权利或承担义务。 3.服务 甲方将根据乙方提供的职位要求向乙方推荐合适的人选。具体职位描述、要求及人数由乙方提供,详细的书面材料作为本协议的附件一,具有同等法律效力;

甲方应确保每一个推荐给乙方的候选人首先经过甲方的面试筛选。若乙方要求,甲方应对候选人简历中包含的信息或候选人提供的其它信息的准确和真实性及在面试过程中发现的问题进行核实。 凡经甲方推荐的人才,从推荐之日起12个月内,如果乙方未通过甲方暗地或通过第三方录用该人才,无论长期或短期,均视为甲方推荐成功,乙方按照本合同相关条例支付咨询费用。如果乙方把甲方推荐的人才中转推荐给第三方,甲方亦按照本合同相关条例向乙方要求支付咨询费用; 4.机密 甲方承诺: 1)对获知的乙方及其分支机构的商业和技术信息保守秘密; 2)对获知的乙方或分支机构的雇员或候选人相关信息保守秘密。 3)甲方推荐的候选人及其身份和职业相关信息只可提供乙方使用,不得向乙方以外的第三方泄露候选人的信息。 乙方接受本合同后,也将承诺所有由甲方推荐的候选人

(完整版)声律启蒙十四寒(详细注解及典故来历)

duō duìshǎo,yì duì nán 多对少,易对难 hǔ jù duì lónɡ pán 虎踞对龙蟠 lónɡzhōu duìfènɡniǎn 龙舟对凤辇 bái hè duìqīnɡ luán 白鹤对青鸾 fēnɡxīxī,lù tuán tuán 风淅淅,露漙漙 xiùɡǔ duìdiāoān 绣毂对雕鞍 yú yóu hé yèzhǎo 鱼游荷叶沼lù lìliǎo huātān 鹭立蓼花滩 yǒu jiǔruǎn diāo xī yònɡjiě 有酒阮貂奚用解 wú yú fénɡ jiá bìxū tán 无鱼冯铗必须弹 dīnɡɡùmènɡsōnɡ 丁固梦松 kē yèhū rán shēnɡ fùshànɡ 柯叶忽然生腹上 wén lánɡ huà zhú 文郎画竹 zhīshāo shūěr zhǎnɡ háo duān 枝梢倏尔长毫端

hán duìshǔ,shī duìgān 寒对暑,湿对干 lǔyǐn duì qí huán 鲁隐对齐桓 hán zhān duìnuǎn xí 寒毡对暖席 yèyǐn duì chén cān 夜饮对晨餐 shūzǐ dài,zhònɡ yóu ɡuān 叔子带,仲由冠 jiárǔ duì hán dān 郏鄏对邯郸 jiā héyōu xià hàn 嘉禾忧夏旱shuāi liǔ nài qiū hán 衰柳耐秋寒 yánɡliǔlǜzhē yuán liànɡ zhái 杨柳绿遮元亮宅 xìnɡhuāhónɡyìnɡzhònɡ ní tán 杏花红映仲尼坛 jiānɡshuǐ liúchánɡ 江水流长 huán rào sìqīnɡ luó dài 环绕似青罗带 hǎi chán lún mǎn 海蟾轮满 chénɡmínɡ rú bái yù pán 澄明如白玉盘 【解析】 寒对暑,湿对干,鲁隐对齐桓。 鲁隐:春秋鲁国第十四代君主,隐公姬息姑。孔子所作之《春秋》就起于鲁隐公元年(前722)。由于春秋以鲁国国史为基础而编,故当时的国际大事都是以鲁国纪年来记录。鲁隐公也因为其纪年年号常被提及而出名。 齐桓:春秋齐国桓公姜小白,是春秋五霸之首。是历史上第一个代替周天子充当盟主的诸侯。齐桓公晚年昏庸,管仲去世后,任用易牙、竖刁等小人,最终在内乱中饿死。 寒毡对暖席 寒毡:唐代画家郑虔,享有“诗书画三绝”之誉,与李白、杜甫为诗酒朋友,却生活清贫。杜甫曾经赠以诗曰:‘才名四十年,坐客寒无毡’云。”后以“寒毡”形容寒士清苦的生活。

内分泌系统讲解

内分泌系统 概述 内分泌系统endocrine system 是神经系统以外主导支配人体的另一套调节系统,由内分泌腺和内分泌组织构成。主要功能是与神经系统一起共同调节人体的新陈代谢、生长发育和生殖过程等生理功能的活动,以保持机体内环境的平衡与稳定。 内分泌腺属于无管腺,分泌物称激素hormone,直接进入血液或淋巴,随血循环运输至全身各处,调节各器官的活动。内分泌腺还有丰富的血液供应和植物神经分布,其结构和功能活动有显著的年龄变化。体内主要内分泌腺有脑垂体、松果体、甲状腺、甲状旁腺、肾上腺、性腺等。内分泌腺的体积和重量都很小,最大的甲状腺仅几十克;有的内分泌组织是一些细胞团,分散于某些器官内,如:胰岛、卵泡、黄体等。一种类型的激素只作用于特定的器官、组织或细胞,又称为靶器官、靶组织或靶细胞。 内分泌激素在通过细胞膜时,因细胞膜能感受细胞表面刺激作用,在穿越细胞膜过程中,激素同样以二种方式进行,一种方式被限制在蛋白质性质通道中(每一通道只允许一种分子或离子通过,如葡萄糖、氨基酸、钾、钠、钙、氯等受扩散梯度影响的被动运输以及依靠能耗的主动运输)经通道开关被穿膜运输;另一种方式是脂溶性物质如甾体激素等,直接穿越膜的脂类部分,不必通过蛋白质通道进入细胞内,靠细胞膜内陷形成的液泡“内吞泡”又叫胞吞泡方式进入细胞和“外排泡”又叫胞吐泡方式将内涵物释放到细胞外。细胞膜上带有多种多样的受体分子,只对某种刺激发生反应,如胰岛素、乙酰胆碱和低密度脂蛋白的受体;另一些受体则可被普通因子所激活,如与其它细胞或无机物表面接触,细胞表面受到刺激可造成跨膜电位的改变。激素在运动员生理代谢过程中为保证最大限度地动员体能、控制能量代谢、运动后体能恢复等均具有极大作用。血液中激素应维持正常水平,过多过少均会导致机体功能紊乱,甚至产生严重后果。各种激素分泌水平还受血液中代谢产物含量或其它激素浓度的影响与调节。 一、甲状腺 甲状腺thyroid gland是人体内最大的内分泌腺。位于第5颈椎至第1胸椎水平,既甲状软骨的中部和气管上段前面和两侧,分左、右两个侧叶,中间以峡部相连,呈粉红色“H”形,重约20—40克。少数人甲状腺峡缺如,半数人自峡部向上伸出一个细长的锥体叶,可延伸至舌骨处。 甲状腺富含血管,外包颈深筋膜,深入腺内将甲状腺实质分若干大小不同的团块或小叶。甲状腺实质有两类细胞组成,一类细胞为大小、形状不规则的甲状腺滤泡,滤泡表面围以单层立方上皮,每一滤泡中央为胶体(被伊红染成粉红色,含碘化球蛋白),即甲状腺球蛋白储存地。甲状腺滤泡位于细蜜的结缔组织之间,内含丰富的毛细血管和毛细淋巴管和交感神经纤维。甲状腺滤泡上皮细胞通过吐胞作用,入滤泡腔后形成甲状腺球蛋白,以此构成甲状腺激素三碘甲腺原氨酸(T3)和四碘甲腺原氨酸(T4)的前体。甲状腺滤泡细胞具有合成和胞吐甲状腺球蛋白(入滤泡腔)并释放甲状腺素(T3和T4)入毛细血管的作用。另一类细胞为滤泡旁细胞,靠近滤泡细胞外缘,比滤泡细胞大,形似卵圆或多边形,单个或小群分散出现在滤泡细胞之间,但不入滤泡腔。根据免疫化学研究泡内可能储存有甲状腺降钙素,用以调节血钙代谢。控制甲状腺降钙素释放的主要因子是血清钙浓度,血钙浓度升高可刺激降钙素的分泌,而低钙血症可抑制其分泌。 甲状腺的主要功能具有增进机体物质代谢,维持人体正常生长发育,尤其对骨骼和神经系统正常发育起着重要作用。甲状腺素分泌过旺,可引起功能亢进,造成眼突眼性甲状腺肿,简称为“甲亢”。表现为心跳加速、神经过敏、体重减轻、眼球突出等。儿童甲状腺素分泌不足

猎头服务合作协议书

猎头服务合作协议书 甲方(委托方): 地址: 乙方(受托方): 地址: 甲、乙双方本着互利互惠、平等自愿、有偿服务的原则,就甲方委托乙方代为搜索、甄选、推荐各类种人才等事宜,经充分协商,达成如下协议,以资共同遵守: 一.合同有效期:从______ 年—月—日至__________ 年—月—日。 二.甲方的权利与义务 1. 甲方必须向乙方提供本企业营业执照复印件、公司简介、委托招聘的相关信息。 2. 甲方应按乙方要求提供所需的职位需求信息,并保证寻猎职位信息的真实性,所提要求及待遇 标准,必须按标额执行。如在委托期内,寻猎需求有任何更改应及时通知乙方。 3. 甲方负责对乙方提供的候选人资料进行筛选,对符合初选条件的人,乙方负责协调候选人到甲 方进行面试。 4?如甲方发现乙方提供的人选资料与其他招聘渠道所提供的资料重合时,且甲方从乙 方处获得候选人姓名、联系信息之前,或要求乙方安排候选人面试之前,应在收到乙方人选资 料后5个工作日内提出申明,并出具相关的资料证明,否则即视为认可。 5. 甲方按照公司 的相关面试流程对乙方推荐的候选人进行面试,在面试流程结束后,5 个工作日内告知乙方面试结果。 6. 甲方按时向乙方支付服务费。 7. 在本协议有效期内或本协议终止后十二个月内,甲方聘用乙方推荐的人才的,甲方应于聘用前通知乙方,并按 照本协议第3条规定向乙方支付服务费。甲方聘用乙方推荐的人才但未按前述规定履行通知义务的,甲方除应向乙方一次性支付全额服务费外,应向乙方支付服务费的两倍作为违约金,且甲方聘用的 乙方推荐人才的年薪视为30万元,甲方不得对此提出任何异议。若乙方发现其推荐的人才的年薪高于30 三.乙方的权利与义务 1. 乙方在双方签订委托招聘服务合同后,明确招聘岗位后,寻访和物色工作全面正

猎头合同协议书律师审核版

猎头合同协议书律师审 核版 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

人才服务协议书 合同编号:XXXXXX 甲方(委托方): 地址: 联系人及电话:传真: 乙方(受托方):XXXX 地址:XXXX 联系人及电话:传真: 甲乙双方经协商一致,就甲方委托乙方在全国范围内代为招聘、甄选、推 荐人才事宜,经充分协商,达成如下协议,以资共同恪守。 一、服务内容 1.甲方委托乙方寻访的职位要求、数量、寻访期、签约年薪(用以约定 寻访委托金)、寻访委托金、寻访服务费等事项,可在由甲方不定时 发出的推荐要求中载明。该推荐要求应以书面形式发出,并作为本协 议的附件。 2.乙方根据甲方提出的人才需求,按甲方要求在约定的时间内为甲方寻 访候选人。经乙方评估认为符合甲方岗位要求后,向甲方推荐,经甲 方面试合格、候选人上岗后,甲方按本合同的规定向乙方支付约定的 服务费用。 二、服务流程 1.在双方签订本协议后,乙方正式启动为甲方提供的猎头服务。 2.在向乙方开放猎头职位的2个工作日内,甲方应当用电子邮件形式向 乙方所需猎头职务的详细职位说明(含工作职责、任职资格、薪金范 围、基本要求、特别需求等),以便乙方搜寻、筛选和向候选人说明

情况等,甲方保证寻访职位信息的真实性;如在委托期内,寻访需求有任何更改均应及时通知乙方。 3.乙方在收到甲方提供的书面职位说明后,应在2个工作日内以电子邮 件形式予以确认,并与甲方进行沟通确认;经双方对职位需求确认一致后,乙方开始进行人才访寻及推荐。 4.自对职位说明书确认后之1个工作日内,乙方指派专人或小组负责为 甲方提供人才寻访推荐服务,以保证按时完成甲方的招聘需求,并在10个工作日内提供第一批候选人至少2-3名,甲方应在收到推荐报告资料3个工作日内向乙方提供对所推荐候选人的反馈意见(如安排面试、暂缓、拒绝),并将同意面试的候选人名单以电子邮件形式提供给乙方,对于需要安排面试的候选人,甲方须在15个工作日内予以面试;乙方根据甲方要求及名单约见面试,甲方在面试后的10个工作日内将面试结果以电子邮件形式通知乙方,如甲方对参加面试的候选人不满意,应以电子邮件形式反馈明确的原因给乙方,乙方应重新搜寻合适的人选,具体工作程序同上。 5.如果乙方向甲方提供的简历已被甲方从其它渠道获取,甲方应当在3 个工作日内以电子邮件形式通知乙方,如乙方提出要求,甲方应提供相应的书面证明。如在上述期限内甲方未提出任何异议的,则该候选人将被视为乙方提供的资源。 6.如甲方对乙方提供的候选人有聘用意向的,应甲方要求及候选人同意 的情况下,乙方应提供候选人背景核查,核查应从公开途径且不侵害候选人隐私。

声律启蒙全文详解

《声律启蒙》全文详解 一东1 ————————注释———————— 1一东:“东”指“东韵”,是宋金时期的“平水韵”(也叫“诗韵”)中的一个韵部。“东”叫韵目,即这个韵部的代表字。东韵中包含有许多字,它们的共同点便是韵母相同(当然是指隋唐五代两宋时期的读音),像下面的三段文字中,每个句号之前的那个字,即风、空、虫、弓、东、宫、红、翁、同、童、穷、铜、通、融、虹等15字,尽管在现代汉语中的韵母并不完全相同,但都同属于东韵,如果是作格律诗,这些字就可以互相押韵。“一”,是指东韵在平水韵中的次序。平水韵按照平、上、去、人四个声调分为106个韵部,其中因为平声的字较多,故分为上下两个部分,东韵是上平声中的第一个韵部。后面的“二冬”、“三江”等情况也相同,不再一一说明。 云对雨,雪对风。晚照对晴空。来鸿对去燕,宿鸟对鸣虫。 三尺剑,六钧弓1。岭北对江东。人间清暑殿,天上广寒宫2。 两岸晓烟杨柳绿,一园春雨杏花红。 两鬓风霜,途次早行之客;一蓑烟雨,溪边晚钓之翁3。 ————————注释———————— 1这一联是两个典故。上联出自《史记·高祖本纪》。汉朝的开国君主刘邦曾经说:我以普通百姓的身份提着三尺长的宝剑而夺取了天下。下联出自《左传》,鲁国有个勇士叫颜高,他使用的弓为六钧(钧为古代重量单位,一钧三十斤),要用180斤的力气才能拉开。2清暑殿:洛阳的一座宫殿。广寒宫:《明皇杂录》说,唐明皇于中秋之夜游月宫,看见大门上悬挂着“广寒清虚之府”的匾额,后代便以广寒宫代指月宫。3次:军队临时驻扎,引申为一

般的短暂停留。途次,旅途的意思。 沿对革,异对同1。白吏对黄童2。江风对海雾,牧子对渔翁。 颜巷陋,阮途穷3。冀北对辽东。池中濯足水,门外打头风4。 梁帝讲经同泰寺,汉皇置酒未央宫5。 尘虑萦心,懒抚七弦绿绮;霜华满鬓,羞看百炼青铜6 ————————注释———————— 1沿:沿袭、遵照原样去做。革:变化、变革。2黄童:黄口之童,即儿童。黄,黄口,雏鸟的喙边有一圈黄色的边,长大就消失,故以黄口喻指年龄幼小的。3这是两个典故。上联出自《论语·雍也》,颜指颜回(字子渊),孔子的学生。孔子称赞他说:“一箪食、一瓢饮、在陋巷,人不堪其忧,回也不改其乐。贤哉,回也!”(吃一竹筐饭食,喝一瓢凉水,住在偏僻的巷子里,别人忍受不了这种贫穷,颜回不改变他快乐的心情。颜回呀,真是个贤人!)下联出自《晋书·阮籍传》。阮指阮籍(字嗣宗),魏晋时代人,博览群书,好老庄之学,为竹林七贤之一。《晋书》记载,阮籍经常驾车信马由缰地乱走,走到无路可走的时候便大哭而返。穷,到……的尽头,此处指无路可走之处。4濯(音zhuó)足水:屈原《渔父》中有“沧浪之水清兮,可以濯我缨;沧浪之水浊兮,可以濯我足”的句子,故濯足水指污水。打头风:行船时所遇到的逆风。5梁帝:南朝的梁武帝萧衍。他笃信佛教,经常和高僧们在同泰寺研讨佛经。汉皇:汉朝的开国之君刘邦。他曾宴请群臣于长安的未央宫,接受群臣的朝贺。6尘虑:对尘世间琐碎小事的忧虑。萦:缠绕。绿绮:琴名,据说汉代的司马相如曾弹琴向卓文君求爱,卓文君就用绿绮琴应和他。霜华:即霜花(“华”为“花”的古字),借指白发。百炼青铜:借指镜子,古人用青铜镜照面。 贫对富,塞对通。野叟对溪童。鬓皤对眉绿,齿皓对唇红1。 天浩浩,日融融2。佩剑对弯弓3。半溪流水绿,千树落花红。

高中生物知识点解析:内分泌系统

2019年高中生物知识点解析:内分泌系统【】2019年高中生物知识点解析:内分泌系统是查字典生物网为您整理的最新学习资料,请您详细阅读! 1、甲状腺: 位于咽下方。可分泌甲状腺激素。 2、肾上腺: 分皮质和髓质。皮质可分泌激素约50种,都属于固醇类物质,大体可为三类: ①糖皮质激素如可的松、皮质酮、氢化可的松等。他们的作用是使蛋白质和氨基酸转化为葡萄糖;使肝脏将氨基酸转化为糖原;并使血糖增加。此外还有抗感染和加强免疫功能的作用。 ②盐皮质激素如醛固酮、脱氧皮质酮等。此类激素的作用是促进肾小管对钠的重吸收,抑制对钾的重吸收,因而也促进对钠和水的重吸收。 ③髓质可分泌两种激素即肾上腺素和甲肾上腺素,两者都是氨基酸的衍生物,功能也相似,主要是引起人或动物兴奋、激动,如引起血压上升、心跳加快、代谢率提高,同时抑制消化管蠕动,减少消化管的血流,其作用在于动员全身的潜力应付紧急情况。 3、脑垂体: 分前叶(腺性垂体)和后叶(神经性垂体),后叶与下丘脑相连。前叶可分泌生长激素(191氨基酸)、促激素(促甲状腺激素、促肾上腺皮质激素、促性腺激素)、催乳素(199氨基酸)。后叶的激素有催产素(OXT)

和抗利尿激素(ADH)(升压素)(都为含9个氨基酸的短肽),是由下丘脑分泌后运至垂体后叶的。 4、下丘脑: 是机体内分泌系统的总枢纽。可分泌激素如促肾上腺皮质激素释放因子、促甲状腺激素释放激素、促性腺激素释放激素、生长激素释放激素、生长激素释放抑制激素、催乳素释放因子、催乳素释放制因子等。 5、性腺: 主要是精巢和卵巢。可分泌雄性激素、雌性激素、孕酮(黄体酮)。6、胰岛: a细胞可分泌胰高血糖素(29个氨基酸的短肽), b细胞可分泌胰岛素(51个氨基酸的蛋白质),两者相互拮抗。 7、胸腺: 分泌胸腺素,有促进淋巴细胞的生长与成熟的作用,因而和机体的免疫功能有关。 查字典生物网的编辑为大家带来的2019年高中生物知识点解析:内分泌系统,希望能为大家提供帮助。

(完整版)《声律启蒙》最全注解与译文(五微)

上:五微 来对往,密对稀,燕舞对莺飞。风清对月朗①,露重对烟微。 霜菊瘦,雨梅肥,客路对渔矶②。晚霞舒锦绣,朝露缀珠玑③。 夏暑客思欹石枕,秋寒妇念寄边衣④。 春水才深,青草岸边渔父去;夕阳半落,绿莎原上牧童归⑤。 【注释】 ①朗:月光明亮。 ②(jī)矶:水边的石滩或突出的大石头。 【原文】来对往,密对稀,燕舞对莺飞。风清对月朗,露重对烟微。霜菊瘦,雨梅肥,客路对渔矶。 【译文】来和往相对,密集和稀疏相对,春燕轻舞和黄莺翻飞相对。清风和明月相对,浓重的露水和轻轻的炊烟相对,经霜的菊花冷峻清逸,经雨的梅子果繁叶茂。他乡的曲折小路和水边突出的岩石相对。 ③朝:早晨。珠玑:珍珠的统称。圆者为珠,不圆者为玑。 ④(qī)欹:不正、倾斜,这里是斜靠着、斜倚着的意思。念:想着。边衣:供戍守边防的战士穿的衣裳。古代军队战士的衣服(特别是寒衣)要由家中的妻子寄送。 【原文】晚霞舒锦绣,朝露缀珠玑。夏暑客思欹石枕,秋寒妇念寄边衣。 【译文】七彩的晚霞,犹如锦绣铺满天空;早晨的露珠晶莹剔透,犹如大大小小的珍珠。盛夏的时候,身在他乡作客的人躺在石板上纳凉思念家乡,秋天转寒时,妻子为戍守边疆的丈夫捎寄棉衣。 ⑤莎:草名,即香附。其块茎叫香附子,呈细长的纺锤形,可入药。 【原文】春水才深,青草岸边渔父去;夕阳半落,绿莎原上牧童归。 【译文】春天的水面,天色刚刚暗下来,青草岸边的渔夫就回家去了;夕阳还在半山腰,绿绿的草原上已有牧童归来。 宽对猛,是对非①,服美对乘肥②。珊瑚对玳瑁,锦绣对珠玑③。 桃灼灼,柳依依④,绿暗对红稀⑤。窗前莺并语,帘外燕双飞。 汉致太平三尺剑,周臻大定一戎衣⑥。 吟成赏月之诗,只愁月堕;斟满送春之酒,惟憾春归。 【注释】 ①宽对猛:宽指政策宽缓,猛指政策严厉,《左传》昭公二十年说:“宽以济猛,猛以济宽,政是以和。”(宽缓的政令和严厉的政令互相补充调剂,国家的政局就能上下和谐。) ②乘:乘坐。此处动词做名词用,指乘坐的马匹。是一种借代的修辞手法。也可能出自《论语?雍也》:“乘肥马,衣轻裘。”如此,则“服”和“乘”都应该是动词,而“美”和“肥”才应该看做借代,分别指“美丽的衣服”和“肥壮的马匹”。 ③珊瑚:海洋中一种腔肠动物的骨髓形成的树枝状的东西,颜色多样,可作装饰品。玳瑁:海洋中的一种动物,形状似大龟,背壳有花纹,四肢为鳍足状,甲片可作装饰,亦可入药。 ④此联两句均出自《诗经》。 上联出自《国风?周南?桃夭》,原文为:“桃之夭夭,灼灼其华。”(桃树长得多么茂盛呀,它的花开得像火焰一样。)。夭:盛貌;灼:鲜明,灼灼:鲜明兴盛状。 下联出自《小雅?采薇》,原文为:“昔我往矣,杨柳依依。”(以前我动身去打仗的时候,杨柳随风飘动)。 ⑤“绿暗”指绿叶颜色变深,“红稀”指红花凋谢变少,这都是晚春到初夏的景色。绿和红分别代指绿树和红花,是修辞中的借代手法。 【原文】宽对猛,是对非,服美对乘肥。珊瑚对玳瑁,锦绣对珠玑。桃灼灼,柳依依,绿暗对红稀。窗前莺并语,帘外燕双飞。 【译文】宽容和严厉相对,是和非相对,穿着华丽的衣裳和骑着高头大马相对,形状如花如树,珊瑚和玳瑁相对,精美鲜艳的丝织品和晶莹剔透的珍珠相对。桃花鲜艳夺目,柳树柔弱、随风摇摆,枝叶繁密茂盛和红花零星稀落相对。窗前两只黄营相对鸣叫,帘外一对燕子往来飞舞。 ⑥这是两个典故。 上联出自《史记?高祖本纪》,见一东注。 下联出自《尚书?武成》,书中说周朝“一戎衣,天下大定”,传统的解释是:周武王一穿上打仗的服装(戎衣),就消灭了商纣王,建立周朝,天下安定。(zhēn)臻:至、到。 【原文】汉致太平三尺剑,周臻大定一戎衣。吟成赏月之诗,只愁月堕;斟满送春之酒,惟憾春归。

猎头服务协议书模板

编号:猎头服务协议书模板 甲方 乙方 签订日期年月日 (本协议书为Word格式,下载后可根据您的需要调整内容及格式,欢迎下载。)

甲方:____________服务有限公司 ____________人才服务中心 乙方:________________________ 甲乙双方就甲方向乙方提供人才猎头服务,达成如下协议: 一、根据中华人民共和国的法律和法规,甲方确认本方有完全的从事本协议所述服务的资格;乙方确认本方是依法成立的组织,符合法律规定的面向社会公开招聘的各项条件和手续,并且向甲方提交的各种书面文件及陈述都是真实有效的。甲乙双方就各自的确认承担相应的法律责任。 二、甲方服务的收费标准是,每成功提供一人,收取________元人民币作为本方的服务佣金。佣金分两次支付,双方签定协议之日,甲方支付________元/人为预付佣金;推荐人选上岗三个月或转正后一个星期内付清余款。 三、甲方收到乙方预付的预付服务佣金后,应按照本协议附件 1的要求为乙方提供人才,并保证所提供人才情况的真实性,同时协助乙方安排有关面试考核的事宜。面试考核应本着方便应聘者及乙方的原则进行。 四、乙方应按照本协议附件1规定的条件考核验收甲方提供的人才。并应于考核之日起________天内将是否聘用(含试用,下同)的意见及理由书面通知甲方。否则,视为同意聘用。 五、甲方应于收到预付服务佣金之日起两个星期至一个月内完

成委托事项,经双方协商同意,上述期限可以改变,但应另以书面文件规定之。 六、乙方同意聘用(接纳为乙方正式员工)甲方提供的人才,甲方服务即告完成。乙方若于聘用后三个月内辞退甲方提供的人才,应于辞退之前通知甲方,并有权要求甲方重新提供服务,甲方应免费为乙方再推荐人选,并得到乙方聘用为止。 七、非因不可抗力,或乙方认可的其他正当理由,甲方在协议规定的期限内未能向乙方提供候选人才的,应全额返还乙方预付佣金;虽提供候选人才而乙方最终未能聘用的,预付佣金应退还甲方。 八、乙方以超出本协议附件1以外的条件拒绝甲方提供的人才,或在本协议规定的有效期限内自行招聘协议附件1规定的人才,从而无需甲方的服务,甲方有权留置乙方全部预付佣金,折抵甲方服务收入。 九、乙方拒绝甲方提供的人才,从而导致甲方服务失败,但在甲方服务终止后的十二个月内聘用曾被乙方拒绝的人才,应于聘用前通知甲方,并向甲方支付全额服务佣金。否则视为违约,乙方应就此向甲方支付________至________倍的服务佣金作为违约金。 十、本协议在乙方委托寻猎的人数超过一人时,对每一个人才的服务分别有效,彼此无法律上的连带责任关系。 十一、本协议的附件作为协议的组成部分,与本协议有同等法

猎头服务合同模板

编号: HT-20214765 甲 方:______________________________ 乙 方:______________________________ 日 期:_________年________月_______日 猎头服务合同模板 The parties may dissolve the contract upon consensus through consultation.

[标签:titlecontent] 甲方(劳务用工单位): 工商登记号:联系地址:邮政编码:联系电话:传真:联系人:开户行:帐号: 乙方(劳务招聘单位): 工商登记号:联系地址:邮政编码:联系电话:传真:联系人:开户行:帐号: 甲、乙双方就乙方向甲方提供需求职位人才的寻访推荐服务达成如下合同(以下称“本合同”): 前言: 甲乙双方保证各自为依据中华人民共和国的相关法律法规合法成立的组织。乙方应确认有从事该项服务的资格,甲方应确认向乙方提供的各种资料的真实性,双方就各自的确认承担各自的法律责任。 甲、乙双方本着自愿和互惠互利的原则,合作签署“本合同”,并愿意自觉遵守“本合同”的各项条款。 第一条服务内容 1、甲方聘请乙方作为其中、高级人才推荐的供应商。

2、甲方如有招聘需求,应向乙方提供委托招聘职位信息,内容包括需求岗位职责描述、胜任条件、薪资福利条件、需求人数和日期等。 3、自甲方正式委托职位寻访之日起,乙方正式启动寻访推荐工作。15个工作日内向甲方推荐每个职位2—3名经过甄选基本符合甲方职位需求的候选人,直到甲方录用乙方所推荐的候选人为止。 4、乙方在推荐候选人时,需要向甲方提供人选的详细简历,说明其以往的工作经历、主要职责、成就以及能说明其工作胜任能力的任何其它必要资料。 5、甲方聘用乙方推荐的人员,在个月(保证期),自推荐人开始在甲方工作之日起,如发生聘用终止,乙方应为甲方免费提供一次相同职位的人才服务,乙方应保证在甲方通知乙方的15个工作日内为甲方再次提供候选人。 第二条限制 1、甲方不得提供虚假职位需求信息和做出虚假承诺。 2、合作期间甲方不得直接聘用乙方猎头顾问和工作人员,如有发生甲方应付乙方该职位应付猎头佣金的双倍的服务费用。 第三条保密原则 1、乙方应对甲方提供的任何商业、技术资料及员工信息进行保密。 2、甲方应对乙方提供的人选资料、服务费用保密,不得将乙方提供的人选资料用于任何非自己聘用内部员工的目的和提供给甲方

《声律启蒙》最全注解与译文(三江)知识讲解.docx

《声律启蒙》最全注解与译文 ( 三江 )

上:三江 楼对阁,户对窗,巨海对长江。蓉裳对蕙帐①,玉斝对银釭②。 青布幔,碧油幢③,宝剑对金缸④。忠心安社稷,利口覆家邦⑤。 世祖中兴延马武,桀王失道杀龙逄⑥。 秋雨潇潇,漫烂黄花都满径;春风袅袅,扶疏绿竹正盈窗⑦。 【注释】 ① 蓉裳:绣有芙蓉花的衣裳,这里指绣有荷花的衣裳,比喻高洁; 蕙帐:用惠草做的帷帐, 比喻芳美 . ②(ji ǎ)斝:古代一种铜制的饮酒的器具。( gāng)釭:灯。意思为镶嵌在车( gǔ)毂之中的用来插车轴的铁制套环。 ③ 幢:古代一种用羽毛作装饰的用于仪仗的旗帜。又指佛教用物经幢。经幢有两种:在圆形的长筒状的绸伞上书写 佛经叫经幢,在圆形石柱上雕刻佛经叫石幢。此字还另有一个意思,指张挂于车或船上的帷幕,属于去声绛韵。这里 是用前者的读音、后者的意思来构成对仗,是“借对”的一种。 ④ 釭:原文作“缸”,疑误。东汉刘熙的《释名》说,函谷关以西的方言,称箭簇为“釭”。金釭,金属铸成的箭睐,只有此义方能与“宝剑”构成对仗。 【原文】楼对阁,户对窗,巨海对长江。蓉裳对蕙帐,玉斝对银釭。青布幔,碧油幢,宝剑对金缸。 【译文】楼和阁相对,户和窗相对,浩瀚的大海和滾滾的长江相对。蓉裳和蕙帐相对,玉制的酒器和银制的灯盏相 对。青色的布幔 ,碧绿的油幢,青绿色的油布帷幕,锋利的宝剑和金色的酒缸相对。⑤社稷:国家。社和稷分别指祭 祀土神和谷神的庙,是国家最重要的神庙,故用以代指国家。利口:能言善辩的嘴,代指只说不做的清谈家。家邦: 国家。邦:国。 【原文】忠心安社稷,利口覆家邦. 【译文】忠诚之心能使江山安定,尖利的嘴使国家毁灭。 ⑥这是两个典故。 上联出自《后汉书 ?马武传》。世祖,指光武帝刘秀,因其为首推翻了王莽建立的新朝,建立东汉,恢复了刘姓的 天下,故被称为中兴之主。马武字子张,骁勇善战,刘秀在一次宴会后,曾独自与马武一起登上丛台,延请马武为将 军,率领其精锐部队渔阳上谷突骑。马武十分感激刘秀的知遇之恩,所以忠心不二,在战争中功勋卓著。刘秀称帝后, 马武被封为捕虏将军扬虚侯,为云台二十八将之一。延:请。 下联出自《庄子 ?人间世》。(ji é)桀王指夏朝的亡国之君夏桀,据说他十分残暴。龙逄指夏朝的贤臣关龙逢(“逄”:为“逢”的俗字,音páng)。夏桀荒淫,关龙逢屡次直言进谏,后被囚杀。 ⑦ 黄花:此处特指菊花。扶疏:植物错落有致的样子。 【原文】秋雨潇潇,漫烂黄花都满径;春风袅袅,扶疏绿竹正盈窗 【译文】秋风冷雨,黄花飘落,铺满山路,微微的春风,茂盛的绿竹正遮挡住窗户。 旌对旆,盖对幢①,故国对他邦。千山对万水,九泽对三江②。 山岌岌,水淙淙,鼓振对钟撞③。清风生酒舍,皓月照书窗④。 阵上倒戈辛纣战,道旁系剑子婴降⑤。 夏日池塘,出沿浴波鸥对对;春风帘幕,往来营垒燕双双⑥。 【注释】 ①(pèi)旆:一种旗帜。盖:车盖,古代竖立在车上用来遮阳蔽雨的器具,形状类似现在的雨伞。 幢:张挂于车或船上的帷幕,此处是借对,参考前注。 ② 九泽:指占代分处于九州的九个湖泊,各书记载的名称小有差异,较为通行的说法是:具区(吴)、云梦(楚)、阳 华(秦)、大陆(晋)、圃田(梁)、孟诸(宋)、海隅(齐)、钜鹿(赵)、大沼(燕)。(见于《吕氏春秋? 有始》)三江:古代的三条江,其名称各书记载大不相同。《尚书 ?禹贡》中的“三江”,据唐陆德明《经典择文》的 说法,是指松江、委江、东江。 【原文】旌对旆,盖对幢,故国对他邦。千山对万水,九泽对三江。 【译文】旌和旆相对,车盖和帷幔相对,故国和他邦相对。千山和万水相对,众多湖泽和许多大江相对。

猎头合同模板

合同编号: 高级人才寻访服务合同 甲方: 地址: 电话: 邮箱: 乙方: 地址: 电话: 传真: 甲、乙双方在平等自愿、协商一致的基础上,就甲方委托乙方寻访和推荐优质人才等事宜,达成如下条款,以共同遵守: 一、服务内容 1.1甲方委托乙方按照甲方提供的职位描述要求寻访人才,接受乙方的推荐,并安排面试。 1.2乙方通过各种渠道搜寻符合甲方职位要求的合适候选人,并推荐给甲方,以满足甲方人 力资源方面的需求。 1.3当乙方所推荐的候选人通过甲方面试,并在甲方所指定的岗位上报到后,该服务主体结 束。但是乙方有义务提供合同所承诺的人员更换服务义务。 二、服务期限 本合同自双方签字起生效,合同有效期为年,自年月日至年月日。 三、甲方的权利和义务 3.1 该职位委托合同甲方委托乙方为其代理招聘服务,。 3.2 甲方须尽可能详细明确的填写《委托猎头登记表》,以及提供委托职位的职位描述。甲方应根据项目进度及乙方服务规程要求,给予乙方项目顾问尽可能详尽的信息支持与配合,以便乙方寻访适合甲方的候选人; 3.3甲方应在乙方推荐人员到职后三个工作日内书面通知乙方。如在聘用通知书约定的上班之日,乙方推荐的人员未能到甲方上班的,甲方应将该情况发生后当日内书面通知乙方;3.4甲方应在与乙方推荐人员签订聘用通知书后五个工作日内将所聘人员职位、到职日期、薪酬、试用期等情况以书面形式通知乙方; 3.5甲方应对乙方提供的人员资料保密,并严格控制内部人员知情范围,不得向外泄露人才资料,或向任何第三方提供人才资料(包括个人和法人)。如有上述情况,一经核实,甲方需无条件给予乙方相应的经济赔偿;

3.6甲方对乙方的任何投诉和建议均可通过发送邮件到邮箱,甲方的投诉和建议将反馈给乙方相关部门。 四、乙方的权利和义务 4.1 甲方填写委托登记表、签订委托招聘服务合同后,乙方开始正式提供合同约定服务; 4.2 乙方应在签订合同后的10个工作日内,向甲方提供书面或电子邮件形式的,与委托职位相适合的有关候选人资料报告; 4.3 乙方自签订本合同起,不得将甲方内的工作人员、商业信息,推荐或泄露给其他可能获得利益的第三方;在本协议到期或终止后,以上保密责任依然存在。 4.4 乙方不得将其推荐给甲方并被成功聘用的人选再次推荐给其它任何客户; 4.5 乙方承诺提供人员更换服务如下:如乙方推荐的候选人在正式报到日起3个月内离职,甲方在被推荐人选离开之日起10个工作天日内以书面形式将该情况通知乙方,乙方应就此职位按甲方要求无偿提供另外人选。新人选入职后,乙方将重新计算保证期并继续承担人员更换服务义务。如果被录用者的工资福利、岗位职位等未能按甲方与候选人事先约定之标准实施,或者遇甲方因办公场所搬迁、重大人事调整所导致的非人选自身原因而导致被录取者离职的,由甲方承担对该被录取者的相关责任,乙方不承担人员更换服务义务; 4.6 任何乙方向甲方所推荐的人员,自被推荐之日起十二个月内,均被视为“乙方推荐人员”,在此期间内,如乙方证实甲方或其子公司与被推荐人发生聘用与被聘用关系,视为乙方已成功推荐,甲方须按本合同支付全额费用; 4.7 自“乙方推荐人员”被推荐予甲方之日起十二个月内,甲方不得就聘用事宜向任何第三方(不包括甲方各分支机构)推荐。 4.8 在合同期内,乙方不得向甲方在职员工推荐任何职位机会。 五、服务费用及付款方式 5.1 成功聘用乙方推荐的候选人后,甲方须向乙方按每人每一职位支付服务费用标准为被雇佣者第一年税前年薪总收入的。被雇佣者年薪总收入包括基本工资、奖金、提成及其他各类现金支付的福利和补贴; 5.2 本合同所称的成功聘用有下述两种情况: 1)甲方与乙方推荐的候选人签订了《劳动合同》或者该候选人员已实际在甲方工作 (含试用期); 2)包括但不限于甲方与乙方推荐的候选人以顾问或者兼职的形式产生合作关系。 5.3 服务费支付方式如下:乙方推荐的候选人被甲方成功聘用后乙方应向甲方发出付款通知书,甲方应在收到付款通知核实无误后的十个工作日内支付服务费用的。候选人通过三个月试用期之后,乙方应向甲方发出付款通知书,甲方应在收到付款通知核实无误后的十个工作日内支付服务费用的30%。如金额有误,甲方应在收到付款通知后两个工作日内通知乙方;乙方未收到甲方书面的异议通知的,视为甲方确认该付款通知书。 5.4 乙方在提供本合同约定的服务时实际发生的所有费用,如广告费,差旅费等须经甲方事先书面同意,方可由乙方向甲方收取。如甲方延期付款超过天,乙方有权要求甲方及时付清服务费,每天按服务费的加收滞纳金。

猎头合同范本

人才猎头服务协议 甲方: 乙方:尚才荟猎头 甲方因业务发展需要,特委托乙方以猎头服务方式招聘 _____________ 职位人选,甲乙双方 本着“平等合作,互惠互利”的原则,经友好协商达成如下协议: 一、甲方权利与义务 1.甲方应向乙方提供详细、真实的公司背景资料,包括但不限于公司背景、经营状况、发展战略、企业文化等。 2.甲方须负责提供所需招聘岗位的详细资料,真实填写《企业职务需求表》(附件1),并对薪酬、福利、休假等与应聘者利益相关一切信息之真实性负责。 3.收到乙方提交的候选人报告资料后,甲方应在三个工作日内通知乙方是否要求候选人面 试。如果面试,应提前告知时间和地点。面试结束后,甲方应在三个工作日内告知乙方面试结 果。对不合适的候选人,应给出说明。如果不面试,应给出具体的不面试原因。 4.甲方应在面试后积极与乙方沟通、协调,三天内做出上一轮面试的决议(包括安排下一 轮复试或录用)。特殊情况外,每个候选人面试次数最多为四次。 5.甲方对候选人信息、候选人报告、候选人面试过程等一切可能有损于候选人正当利益或 本合同正当履行的信息,负有保密义务。 二、乙方权利与义务 1.乙方对甲方提供的企业、职位等信息负有保密义务。除为完成本合同所必须外,其余未 经甲方授权,不得公开。 2.乙方需在寻访服务期(自—年—月—日至—年—月—日)内利用各种渠道为甲 方寻访、招聘所需人才。乙方在了解候选人的情况,分析其背景资料,并在此基础上进行筛选 后,向甲方提交合适候选人的个人资料。如果在寻访期内,甲方未能对乙方提供的候选人给出明确答

复,乙方有权终止合作。 3.若出现以下任何一种情况,均视为乙方已完成猎头服务全部工作,乙方有权要求甲方按本合同所列的“全职服务费用”,按约定支付周期与方式支付费用。如逾期支付,乙方将保留诉诸法律解决的权利: (1)甲方面试乙方所推荐的候选人后录用其作为甲方员工以全职合作; (2)甲方面试乙方所推荐的候选人后因某种原因不能提供所聘用岗位,但录取该候选人为其他岗位职员。 4.若出现以下任何一种情况,均视为乙方已完成猎头服务全部工作,乙方有权要求甲方按本合同所列的“全职服务费用”,在五个工作日内支付全额猎头服务费。如逾期支付,乙方将保留诉诸法律解决的权利: (1)甲方将乙方所推荐的候选人转荐给其他雇主,并且候选人被他雇主其聘用的; (2)甲方面试乙方所推荐的候选人后表示拒绝聘用,却在面试后一年内聘用乙方曾推荐的人选。 5.若出现以下任何一种情况,均视为乙方已完成猎头服务全部工作,乙方有权要求甲方按本合同所列的“兼职服务费用”,在五个工作日内支付全额猎头服务费。如逾期支付,乙方将保留诉诸法律解决的权利: (1)甲方面试乙方所推荐的候选人后因某种原因不能聘用该候选人,而聘用该候选人做兼职或其他短期服务; (2)甲方面试乙方所推荐的候选人后并没有聘用,而采用咨询、承包等方式与候选人保持合作关系。 三、服务费标准及支付方式 1.全职服务费用标准: □人民币 ____ 万元(大写:________ )(岗位年薪标准)X ____ % (年薪的百分比)□约定固定金额服务费用人民币 ______ 万元。 说明:支付方式按双方协商约定,二选一。 若甲方提出的岗位薪酬是某一区间的,岗位年薪标准以区间上限为标准。

相关文档
最新文档