函数解析式求法总结及练习题

函数解析式求法总结及练习题
函数解析式求法总结及练习题

第 1 页 共 3 页

2[()]()()f f x af x b a ax b b a x ab b

=+=++=++函 数 解 析 式 的 七 种 求 法

一、 待定系数法:在已知函数解析式的构造时,可用待定系数法.

它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .

解:设

b ax x f +=)()0(≠a ,则 ∴??

?=+=3

42

b ab a , ∴??????=-===3212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 .

二、配凑法:已知复合函数

[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式

时,常用配凑法.但要注意所求函数

()f x 的定义域不是原复合函数的定义域,而是()g x 的值域.

例2 已知

221

)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式.

解:2)1()1(2-+=+x

x x x f , 21≥+x x , 2)(2

-=∴x x f )2(≥x .

三、换元法:已知复合函数

[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.用来处理不知道所求函数的类

型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例3 已知x x x f 2)1(+=+,求)1(+x f .

解:令1+=x t

,则1≥t ,2)1(-=t x .

x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f

1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x .

四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数

)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式.

解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点.

?????=+'-=+'3

2

22y

y x

x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2

. 把??

?-='--='y

y x x 64代入得:)4()4(62

--+--=-x x y .

整理得

672---=x x y , ∴67)(2---=x x x g .

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得

函数解析式.

例5 设,)1

(2)()(x x

f x f x f =-满足求)(x f .

解 x x

f x f =-)1(2)( ① 显然,0≠x 将x 换成

x 1

,得:

x

x f x f 1

)(2)1(=- ② 解① ②联立的方程组,得:x

x x f 32

3)(--=.

例6 设

)(x f 为偶函数,)(x g 为奇函数,又,11

)()(-=

+x x g x f 试求)()(x g x f 和的解析式 解 )()(),()(x g x g x f x f -=-=-∴,又1

1

)()(-=+x x g x f ① ,用x -替换x 得:

11)()(+-=-+-x x g x f ,即11)()(+-=-x x g x f ② ,解① ②联立的方程组,得1

1)(2-=x x f ,x x x g -=2

1)( 小结:消元法适用于自变量的对称规律。互为倒数,如f(x)、1

()f x

;互为相反数,如f(x)、f(-x),通过对称代换

构造一个对称方程组,解方程组即得f(x)的解析式。

六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题

具体化、简单化,从而求得解析式.

例7 已知:

1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f .

对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,

不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f .

再令

x y =- 得函数解析式为:1)(2++=x x x f .

例5:已知

(0)1,()()(21),f f a b f a b a b =-=--+求()f x 。

解析:令0,a

=则2()(0)(1)1f b f b b b b -=--=-+ 令b x -= 则2()1f x x x =++

小结:①所给函数方程含有2个变量时,可对这2个变量交替用特殊值代入,或使这2个变量相等代入,再用已知条

第 2 页 共 3 页

件,可求出未知的函数,至于取什么特殊值,根据题目特征而定。②通过取某些特殊值代入题设中等式,可使问题具体化、简单化,从而顺利地找出规律,求出函数的解析式。

七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算

求得函数解析式. 例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的N b a , 都有ab b a f b f a f -+=+)()()(,

)(x f

+

∈-+=+N b a ab b a f b f a f ,)()()(,,

不妨令

1

,==b x a ,得:

x x f f x f -+=+)1()1()(,

1)()1(,1)1(+=-+=x x f x f f 故 ①

令①式中的x =1,2,…,n -1得:(2)(1)2(3)(2)3()(1)f f f f f n f n n -=-=--=,,,

将上述各式相加得:n f n f ++=-32)1()(,2

)

1(321)(+=

+++=∴n n n n f , +∈+=

∴N x x x x f ,2

1

21)(2

三、练习

(一)换元法1.已知f(3x+1)=4x+3, 求f(x)的解析式. 2.若x

x

x f -=

1)1(,求

)(x f .

(二).配变量法3.已知2

21

)1(x

x x x f +=-, 求

)(x f 的解析式. 4.若x x x f 2)1(+=+,求)(x f .

(三).待定系数法5.设

)(x f 是一元二次函数, )(2)(x f x g x ?=,且212)()1(x x g x g x ?=-++,

求)(x f 与)(x g .

6.设二次函数

)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求

)(x f 的表达式.

(四).解方程组法 7.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x x

f x f 4)1

(2)(3=+,

)(x f 的解析式.

8.(1)若x x

x f x f +=-+1)1

(

)(,求)(x f . (2)若f(x)+f(1-x)=1+x,求f(x).

(五).特殊值代入法

9.若

)

()()(y f x f y x f ?=+,且

2

)1(=f ,求值

)

2004()

2005()3()4()2()3()1()2(f f f f f f f f ++++ .

10.已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f

(六).利用给定的特性求解析式. 11.设)(x f 是偶函数,当x >0时, x e x e x f +?=2)(,求当x <0时,)(x f 的表达式.

12.对x ∈R,

)(x f 满足)1()(+-=x f x f ,且当x ∈[-1,0]时, x x x f 2)(2+=求当x ∈[9,10]时)(x f 的表

达式.

例6、已知函数

)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。(1)求)

0(f 的值;(2)求

)(x f 的解析式。

第 3 页 共 3 页

练 习

求函数的解析式

例1.已知f (x )= 2

2x x -,求f (1x -)的解析式. ( 代入法 / 拼凑法 )

变式1.已知f (x )= 21x -, 求f (2

x )的解析式.

变式2.已知f (x +1)=2

23x x ++,求f (x )的解析式.

例2.若f [ f (x )]=4x +3,求一次函数f (x )的解析式. ( 待定系数法 )

变式1.已知f (x )是二次函数,且()()211244f x f x x x ++-=-+,求f (x ).

例3.已知f (x )-2 f (-x )=x ,求函数f (x )的解析式. ( 消去法/ 方程组法 )

变式1.已知2 f (x )- f (-x )=x +1 ,求函数f (x )的解析式.

变式2.已知2 f (x )-f 1x ??

???

=3x ,求函数f (x )的解析式.

例4.设对任意数x ,y 均有()()2

2

2233f x y f y x xy y x y +=++-++,

求f (x )的解析式. ( 赋值法 / 特殊值法)

变式1.已知对一切x ,y ∈R ,()()()21f x y f x x y y -=--+都成立,且f (0)=1, 求f (x )的解析式.

高一基本函数综合测试题及答案解析

温馨提醒:成功不是凭梦想和希望,而是凭努力和实践 过关检测 一、选择题 1.函数y= 2-x + 1 (x>0) 的反函数是( A.y = log2 x 1, x €( 1, B.y =—1og2 x 1 , x €( 1 ,2) C.y = log2 x f(x) 2.已知 (A)(0,1)(3a 1)x 2 】 4a, x log a x, x D.y = —1og2 x 2 】 )上的减函数,那么a的取值范围是 1 (B) (0, 3) (C) [7,3) (D) [7,1) 3?在下列四个函数中,满足性质: “对于区 间 (1,2)上的任意X1,X2(X1 X2) |f(X1) f(X2)| |X2 x1 | 恒成立”的 只有 (A) 1 f (x) X (B) x |x| (C)f(x) 2 x (D)f(x) x 2 4.已知f (x)是周期为2的奇函数,当01 时, f (x) |g x.设 6 f( ),b 5 (A)(B)(C)(D) c a 5?函数 A. 6 、A. f(x) 3x2 1 x lg(3x 1) 的定义域是 (1,) F列函数中, 3 y x ,x ( B. ( C. 1 1 3‘3 D. 在其定义域内既是奇函数又是减函数的是 B y sinx , x R C y x , x 1 7、函数y f(x)的反函数y f (x)的图像与y轴交于点 P(°,2)(如右图所示),则方程f(x) 0在[1,4]上的根是X A.4 B.3 C. 2 D. 1 8设f(x)是R上的任意函数,则下列叙述正确的是 (A) f(X)f( X)是奇函数(B)f (x)|f ( x)| 3 5 I 9,则 1 D. 是奇函数

八年级数学一次函数 解析式求法专题练习及答案详解

一次函数 解析式求法专题练习 1.已知52)2(--+=m m x m y 是正比例函数,若A(a,10)在此直线上,求a 的值. 2.已知直线经过原点及另一点A(-2,4),求此直线解析式。 3.已知y 与2x-1成正比例,当x=-1时,y=9,求y 与x 的函数关系式. 4.已知2y-1与3-4x 成正比例,当x=2时,y=-7,求y 与x 的函数关系式.

5.已知y=y1+y2,y1与x2成正比例,y2与x-3成正比例,当x=1时,y=-4;当x=-3时,y= 6.求y与x的函数关系式. 6.如图,已知菱形ABCD在平面直角坐标系中,B(6,2),C(12,6). (1)求D点坐标及菱形ABCD的面积; (2)若直线y=kx始终与线段CD有交点,求k的取值范围. 7.已知直线与坐标轴交于A、B两点,A(-4,0),已知△OAB的面积为12,求直线AB的解析式.

8.已知直线AB,当-2≤x≤4时,函数值y的取值范围为-1≤x≤8,求直线AB的解析式. 9.如图,已知矩形OABC在坐标系中,A(10,0),C(0,6),E在AB上,连接CE,将△BCE沿CE折叠,使B点落在OA的F点处. (1)求F点及E点坐标; (2)求直线CE解析式.

10.已知直线经过点)2 321(, A 和点B(1,6). (1)求直线AB 的解析式; (2)求直线AB 与x 轴、y 轴的交点坐标C 和D,并求CD 的长; (3)若点E 在y 轴上,当C 、D 、E 三点围成的三角形是等腰三角形,求满足条件的E 点坐标. 11.如图,直线y=kx+6与x 轴、y 轴分别交于点E,F.点E 的坐标为(-8,0),点A 的坐标为(-6,0). (1)求k 的值; (2)若点P(x,y)是第二象限内的直线上的一个动点.当点P 运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,△OPA 的面积为8 27,并说明理由.

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

待定系数法求函数的解析式练习题集

用待定系数法求函数解析式 姓名 一、填空: 1、抛物线832 +-=x y 的开口 ,对称轴方程..... 是 ,顶点坐标为 。 2、已知()1222---=n n x n y 是二次函数,且它的开口向上,则n = ,解析式为 , 此抛物线顶点坐标是 。 3、把抛物线23x y -=向左平移2个单位,再向下平移4个单位,得到的解析式是 , 此函数图象的顶点坐标是: 。 4、与抛物线22 1x y =的形状和开口方向相同,顶点为(3,1)的二次函数解析式为 。 5、把函数253212--- =x x y 配方成()k h x a y +-=2的形式为 , 当x = 时,函数y 有最 值,为 ;当x 时,y 随x 增大而减小。 6、抛物线652--=x x y 与x 轴交点坐标是 ,与y 轴交点坐标为 。 7、二次函数()4122 ++-=x k x y 顶点在y 轴上,则k = ;若顶点在x 轴上,则k = 。 8、抛物线c bx x y ++=2的顶点是(2,4),则b = ,c = 。 9、二次函数c bx ax y ++=2图象如图所示,则a 0,b 0,c 0,b 2-4ac 0, a + b + c 0,a -b +c 0。 10、已知二次函数c bx ax y ++=2 中,a <0,b >0,c <0,则此函数图象不经过第 象限。 二、解答下列各题: 1、已知抛物线c bx ax y ++=2经过三点A(0,2)、B(1,3)、C(-1,-1), 求抛物线解析式以及图象与x 轴的交点坐标。 2、已知抛物线c bx ax y ++=2中,21=a ,最高点的坐标是??? ? ?-251,,求此函数解析式。 3、已知抛物线经过以下三点(-1,0),(3,0),(1,-5)。 求该抛物线的解析式。

函数综合练习题及解析

1.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( ) (A)f(x)+|g(x)|是偶函数 (B)f(x)-|g(x)|是奇函数 (C)|f(x)|+g(x)是偶函数 (D)|f(x)|-g(x)是奇函数 2.已知函数f(x)=2|x-2|+ax(x∈R)有最小值. (1)求实数a的取值范围. (2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式. 3.函数y=f(x)(x∈R)有下列命题: ①在同一坐标系中,y=f(x+1)与y=f(-x+1)的图像关于直线x=1对称; ②若f(2-x)=f(x),则函数y=f(x)的图像关于直线x=1对称; ③若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期; ④若f(2-x)=-f(x),则函数y=f(x)的图像关于(1,0)对称,其中正确命题的序号是. 4.已知f(x)=(x≠a). (1)若a=-2,试证f(x)在(-∞,-2)上是增加的. (2)若a>0且f(x)在(1,+∞)上是减少的,求a的取值范围. 5.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y)(x€R,y€R),且f(0) ≠0,试证f(x)是偶函数 6.判断函数y=x2-2|x|+1的奇偶性,并指出它的单调区间 7.f(x)=的图像和g(x)=log2x的图像的交点个数是( ) (A)4 (B)3 (C)2 (D)1

8. 已知函数f(x)=|x+1|+|x-a|的图像关于直线x=1对称,则a 的值是 . 9. 若直线y=2a 与函数y=|a x -1|(a>0且a ≠1)的图像有两个公共点,a 的取值范围为______ 10. 求函数2()23f x x ax =-+在[0,4]x ∈上的最值 11. 求函数2()23f x x x =-+在x ∈[a,a+2]上的最值。 12. 已知函数22()96106f x x ax a a =-+--在1 [,]3 b -上恒大于或等于0,其中实数[3,)a ∈+∞,求实数b 的范围. 13. 函数f(x)= 的定义域是 ( ) (A)(-∞,-3) (B)(- ,1) (C)(- ,3) (D)[3,+∞) 14. 已知a=log 23.6,b=log 43.2,c=log 43.6,则( ) (A)a>b>c (B)a>c>b (C)b>a>c (D)c>a>b 15. 函数y=log a (|x|+1)(a>1)的图像大致是( )

(完整)初中求一次函数的解析式专项练习30题(有答案)

求一次函数解析式专项练习 1.已知A(2,﹣1),B(3,﹣2),C(a,a)三点在同一条直线上. (1)求a的值; (2)求直线AB与坐标轴围成的三角形的面积. 2.如图,直线l与x轴交于点A(﹣1.5,0),与y轴交于点B(0,3) (1)求直线l的解析式; (2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积. 3.已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x轴交点的坐标. 4.如图所示,直线l是一次函数y=kx+b的图象. (1)求k、b的值; (2)当x=2时,求y的值; (3)当y=4时,求x的值. 5.已知一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B.若△AOB的面积为12,求一次函数的表达式. 6.已知一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.

7.已知y与x+2成正比例,且x=0时,y=2,求: (1)y与x的函数关系式; (2)其图象与坐标轴的交点坐标. 8.如果y+3与x+2成正比例,且x=3时,y=7. (1)写出y与x之间的函数关系式; (2)画出该函数图象;并观察当x取什么值时,y<0? 9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A(﹣2,6),且与x轴交于点B. (1)求这条直线的解析式; (2)直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集. 10.已知y与x+2成正比例,且x=1时,y=﹣6. (1)求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象; (2)结合图象求,当﹣1<y≤0时x的取值范围. 11.已知y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式. 12.已知y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式. 13.已知一次函数的图象经过点A(,m)和B(,﹣1),其中常量m≠﹣1,求一次函数的解析式,并指出图象特征. 14.已知一次函数y=(k﹣1)x+5的图象经过点(1,3). (1)求出k的值; (2)求当y=1时,x的值.

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

求二次函数解析式 综合题 练习+答案

求二次函数解析式:综合题 例1 已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 分析:本题可以利用抛物线的一般式来求解,但因 A(-1,0)、B(1,0)是抛物线与x轴的交点,因此有更简捷的解法. 如果抛物线y=ax2+bx+c与x轴(即y=0)有交点(x1,0),(x2,0).那么显然有 ∴x1、x2是一元二次方程ax2+bx+c=0的两个根.因此,有 ax2+bx+c=a(x-x1)(x-x2) ∴抛物线的解析式为 y=a(x-x1)(x-x2) (*) (其中x1、x2是抛物线与x轴交点的横坐标) 我们将(*)称为抛物线的两根式.

对于本例利用两根式来解则更为方便. 解:∵抛物线与x轴交于A(-1,0)、B(1,0) ∴设抛物线的解析式为 y=a(x+1)(x-1) 又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-1 ∴函数解析式为y=-x2+1. 说明:一般地,对于求二次函数解析式的问题,可以小结如下: ①三项条件确定二次函数; ②求二次函数解析式的一般方法是待定系数法; ③二次函数的解析式有三种形式: 究竟选用哪种形式,要根据具体条件来决定. 例2 由右边图象写出二次函数的解析式.

分析:看图时要注意特殊点.例如顶点,图象与坐标轴的交点. 解:由图象知抛物线对称轴x=-1,顶点坐标(-1,2),过原点(0,0)或过点(-2,0). 设解析式为y=a(x+1)2+2 ∵过原点(0,0),∴a+2=0,a=-2.故解析式为 y=-2(x+1)2+2,即y=-2x2-4x. 说明:已知顶点坐标可以设顶点式. 本题也可设成一般式y=ax2+bx+c,∵过顶点(-1,2)和过原点(0,0),

求函数解析式的六种常用方法

求函数解析式的九种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式, 把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。 例1 已知f (x x 1 +)= x x x 112 2++,求f (x )的解析式. 解: 设 x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1 )11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2 -x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2x ,求f (x )的解析式. 解: f (x +1)= 2 )(x +2x +1-1=2)1(+x -1, ∴ f (x +1)= 2 )1(+x -1 (x +1≥1),将x +1视为自变量x ,则有 f (x )= x 2 -1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2 +bx+c ,则 f (0)= c= 0 ①

f (x+1)= a 2)1(+x +b (x+1)= ax 2 +(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ?? ?==. 7,1b a 故f (x )= x 2 +7x. 评注: 已知函数类型,常用待定系数法求函数解析式. 四、消去法(方程组法) 例4 设函数f (x )满足f (x )+2 f ( x 1 )= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x 1 去代替已知中x ,便可得到另一个方程,联立方 程组求解即可. 解:∵ f (x )+2 f ( x 1 )= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x 1 (x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32 -3 x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足 ,求 的解析式。 五、特殊值法 例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y ,有 f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式. 分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到 f (x )函数解析式,只有令x = y. 解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得 f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

综合题:高一数学函数经典习题及答案

函 数 练 习 题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

求函数解析式(知识点+例题+习题)精编word版

求函数的解析式 (1)配凑法:已知某区间上的解析式,求其他区间上的解析式,将待求变量转化到已知区间上,利用函数满足等量关系间接获得其解析式. (2)换元法:已知(())()f h x g x =求()f x 时,往往可设()h x t =,从中解出x ,带入()g x 进行换元,求出()f t 的解析式,再将t 替换为x 即可,注意新元t 的取值范围.

(3)待定系数法:若已知函数类型(如一次函数、二次函数等),根据函数类型设出函数解析式,根据题设条件,列出方程组,解出待定系数即可. (4)解方程组法:已知关于()f x 与1()f x (或()f x -)的表达式,可根据已知条件再构造出另一个方程,构成方程组求出()f x .

练习题:

答案解析:

6 解析:设2 ()(0) f x ax bx c a =++≠,则 22 (1)()(1)(1)()2 f x f x a x b x c ax bx c ax a b +-=++++-++=++由题意可知 (0)1 22 f c a a b == ? ? = ? ?+= ? ,解得 1 1 1 a b c = ? ? =- ? ?= ? 2 ()1 f x x x ∴=-+. 答案:21 x x =-+ 7 解析: 1 3()5()21 f x f x x +=+…………① 用 1 x 替换x得 12 3()5()1 f f x x x +=+……② 35 ①-② ??得 10 16()62 f x x x -=-- 即 153 () 888 x f x x =+-. 答案: 153 () 888 x f x x =+- 8 解析:()2()31 f x f x x --=-…………① 用x -替换x得()2()31 f x f x x --=--……② 两式联立解得()1 f x x =+. 答案:A 数学浪子整理制作,侵权必究

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

函数的概念练习题及答案解析

1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数 D .定义域和值域都相同的两个函数是同一个函数 解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同. 2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2 x D .f (x )=x 2-9x -3 ,g (x )=x +3 解析:选、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1} 解析:选D.由? ???? 1-x ≥0x ≥0,得0≤x ≤1. 4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________. 解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3). 答案:(2)(3) 1.函数y =1x 的定义域是( ) A .R B .{0} C .{x |x ∈R ,且x ≠0} D .{x |x ≠1} 解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}. 2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y 解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( ) A .函数值域中每一个数在定义域中一定只有一个数与之对应 B .函数的定义域和值域可以是空集 C .函数的定义域和值域一定是数集 D .函数的定义域和值域确定后,函数的对应关系也就确定了 解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,

二次函数解析式的8种求法

二次函数解析式的8种求法 河北 高顺利 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2 中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.

例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的. 解: 253212++= χχy = ()232 12-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的. 这两类题目多出现在选择题或是填空题目中 四、一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2 ,转化成一个三元一次方程组,以求得a ,b ,c 的值; 五、顶点式 若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数; 六、两根式 已知图像与 x 轴交于不同的两点()()1200x x ,,, ,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 例4、根据下面的条件,求二次函数的解析式: 1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5) 3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,- 29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得: 40542a b c a b c a b c -=++??=-+??=-+? 解得:?? ???-=-==321c b a

求函数解析式,的四种常用方法

求函数解析式的四种常用方法 1.待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可. 2.换元法:设t =g(x ),解出x ,代入f (g(x )),求f (t)的解析式即可. 3.配凑法:对f (g(x ))的解析式进行配凑变形,使它能用g(x )表示出来,再用x 代替两边所有的“g(x )”即可. 4.方程组法:当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解. [再练一题] 3.已知函数f (x )是二次函数,且f (0)=1,f (x +1)-f (x )=2x ,则f (x )=________. 【解析】 设f (x )=ax 2+bx +c ,由f (0)=1得c =1. 又f (x +1)=a (x +1)2+b (x +1)+1, ∴f (x +1)-f (x )=2ax +a +b . 由2ax +a +b =2x ,得????? 2a =2a +b =0, 即a =1,b =-1, ∴f (x )=x 2-x +1. 【答案】 x 2-x +1 1.下列表示函数y =f (x ),则f (11)=( ) A .2

C .4 D .5 【解析】 由表可知f (11)=4. 【答案】 C 2.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( ) A .f (x )=x 2+6x B .f (x )=x 2+8x +7 C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10 【解析】 法一 设t =x -1,则x =t +1. ∵f (x -1)=x 2+4x -5, ∴f (t )=(t +1)2+4(t +1)-5=t 2+6t , 即f (x )的表达式是f (x )=x 2+6x . 法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x . ∴f (x )的表达式是f (x )=x 2+6x , 故选A . 【答案】 A 3.f (x )=|x -1|的图象是( ) 【解析】 ∵f (x )=|x -1|=????? x -1,x ≥1,1-x ,x <1, 当x =1时,f (1)=0,可排除A ,C.又x =-1时,f (-1)=2,排除D. 【答案】 B 4.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm )之间的表达式是________.

相关文档
最新文档