单管共射极分压式放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告
单管共射极分压式放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告

班级:电气工程及自动化二班

学号:141600194

姓名:辛军奎

单管共射极分压式放大电路仿真实验报告

一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的

测量法。

3.熟悉简单放大电路的计算及电路调试。

4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。

二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直

流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。

三、实验原理:

(一)双极型三极管放大电路的三种基本组态。

1.单管共射极放大电路。

(1)基本电路组成。如下图所示:

(2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1))

I CQ =βI BQ

U CEQ=V CC-I CQ R C

(3)动态分析。A U=-β(R C//R L)/r be

R i =r be// R B

R o=Rc

2.单管共集电极放大电路(射极跟随器)。

(1)基本电路组成。如下图所示:

(2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C))

I CQ=βI BQ

U CEQ=V CC-I EQ R e≈V CC-I CQ R e

(3)动态分析。A U=(1+β)(R e//RL)/(r be+(1+β)(R e//R L))

电压放大倍数恒小于1,而且接近于1。

Ai=-(1+β)

电流放大倍数恒大于1。

R i =(r be+(1+β)(R e//R L)//R B

R O≈R e

3.单管共基极放大电路。

(1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2))

I BQ=I EQ/(1+β)

U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e)

(3)动态分析。AU=β(R C//R L)/r be

R i=(r be/(1+β))// R e

R o≈Rc

(二)由题目,根据Ri较大和稳定要求:要用分压式直流负反馈共射极放大电路。

1.三极管将输入信号放大。

2.两电阻给三极管基极提供一个不受温度影响的偏置电流。

3.采用单管分压式共射极电流负反馈式工作点稳定电路。

四、实验步骤:

1.选用2N1711型三极管,测出其β值。

(1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是1000kΩ,又R1=3 kΩ。

图〈一〉

其中测i b电流的电流表为微安级,测i c电流的电流表为毫安级。

(2)首先把滑动变阻器的阻值调到最大,求出最小电流i bmin=5.36uA,再连续调小滑动变阻器Rv1的阻值从而引起i b与i c的连续变化,当i c不在随i b呈线性变化时记下此时的i b

值为i bmax=17.8uA。

i b =(i bmin+i bmax)/2

≈11.6 uA

(3)调整滑动变阻器Rv1使得微安表的示数为i b= 11.6 uA。记录下毫安表的示数i c=1.39mA,如图〈一〉所示。

β=i c/i b

=120

(4)计算Au =-β(R c//R L)/R be=60

R be=300+26(mA)/i b=5.2 kΩ

i b=5.3uA

(5)验证放大倍数仿真。接入输入信号和负载,如图〈二〉、〈三〉所示:调整滑动变阻器Rv1使得微安表的示数为5.3uA。看示波器上的波形是否满足Au=60,若不满足,则轻微调试滑动变阻器,使其在示波器中看见两条彩带刚刚重合为止。

图〈二〉

图〈三〉

(6)接出基本放大电路的。如图〈四〉所示:工程条件:忽略i b,流过R B1和R B2的电流I b ≈10i b,V b≈2V be。

图〈四〉

(7)计算R B1=(V cc-V be)/i b =100 kΩ,

R B2=(2V be)/10i b=28kΩ,

R E = (V b-V be)/(1+β)i b=1 kΩ,在电路上设置电阻值。

(8)接上示波器仿真,黄色、红色波分别为输与输出入波。在示波器上调好60倍放大倍数,看而至波形幅度是否相同相位相反。如不符合,微调R B2(31kΩ左右)使得两波形符合条件即可,最终确定R B2为30 kΩ左右时符合条件。

如图所示:

图〈五〉

(9)电路验证。通常情况下该电路要求Rbe>R i(输入电阻),经计算Rbe=5.2k满足要求。

(10)如图〈五〉所示:得到放大60倍的波形,实验成功!

五、误差分析:

(1)由于电路中各阻值均是估算,所以存在一定误差。

(2)β值的确定取估算值,存在误差。

(3)图〈四〉的等效电路如下图所示

〈六〉

此时由并联可得输入电阻R i=R B1∥R B1∥R be= R5∥R4∥R=100k∥30k∥5.2k≈4.3k

输出电阻R o=R C∥R L=R1∥R2=3k∥20k≈2.6k

如图〈七〉所示

〈七〉

经测定U1=3.54mV,U2=1.74mV

△U=1.8mV,Ii=△U/R6=1.8mV/4.3K≈4.2uA

R i= U2/ Ii=1.74mV/4.2uA≈4.1k

经实验与计算可得,在误差允许的范围内,输入电阻的计算值与实验值相等。如图〈八〉所示

当断开RL时,U0 =245mV。

如图〈九〉所示

当连接RL是,U=214mV。

由公式可知,R0=(U0/ U-1)RL=(245/214-1)*20=2.9K

经实验与计算可得,在误差允许的范围内,输出电阻的计算值与实验值相等。

六、实验总结:

(1)掌握单管分压式共射极电流负反馈式工作点稳定电路原理。

(2)掌握放大电路中静态工作点以及动态工作点的分析。

(3)掌握β值,R B1,R B2,R E的计算。

(4)接好电路微调出预定结果。

(5)最终电路图如图〈四〉所示,实验结果如图〈五〉所示。

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩: .

. 一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图3.2.1 共射极单管放大器

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真 姓名: 学号: 班级:

仿真电路图介绍及简单理论分析 电路图: 电路图介绍及分析: 上图为电阻分压式共射极单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。 元件的取值如图所示。 静态工作点分析(bias point): 显示节点: 仿真结果:

静态工作点分析: VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ? 电路的主要性能指标: 理论分析: 设?=80,VBQ =2.8v VEQ=VBQ-VBEQ=2.1v rbe≈2.2kΩ Ri=1.12kΩ,Ro≈8.3 kΩ Au=-βRL’/rbe=56.7 仿真分析: 输入电阻:输出电阻:

Ri=0.86kΩRo≈9.56 kΩ输入电压:输出电压:

则A u=51.2 在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。 失真现象: 1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真

当Re大于等于25 kΩ时,会出现较为明显的截止失真 2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真 3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真

模电共射放大电路实验报告

实验一BJT单管共射电压放大电路 实验报告 自动化一班 李振昌 一、实验目的 (1)掌握共射放大电路的基本调试方法。 (2)掌握放大电路电压放大倍数、输入电阻、输出电阻的基本分析方法。(3)进一步熟练电子仪器的使用。 二、实验内容和原理 仿真电路图

静态工作点变化而引起的饱和失真与截止失真 静态工作点的调整和测量 : 调节RW1,使Q 点满足要求(ICQ =。测量个点的静 态电压值 RL =∞及RL =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。 装 订 线

RL=∞时,最大不失真输出电压Vomax(有效值)≥3V : 增大输入信号幅度与调节RW1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压Vomax 。输入电阻和输出电阻的测量 : 采用分压法或半压法测量输入、输出电阻。 放大电路上限频率fH、下限频率fL的测量 : 改变输入信号频率,下降到中频段输出电压的倍。 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。 三、主要仪器设备 示波器、函数信号发生器、12V稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等 四、操作方法和实验步骤 准备工作: 修改实验电路 将K1用连接线短路(短接R7); RW2用连接线短路; 在V1处插入NPN型三极管(9013); 将RL接入到A为RL=2k,不接入为RL=∞(开路) 。 开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。 确认输出电压为12V后,关闭直流稳压电源。 用导线将电路板的工作电源与12V直流稳压电源连接。

单管放大器实验报告实验总结

竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结 篇一:单管放大电路实验报告 单管放大电路 一、实验目的 1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。 二、实验电路 实验电路如图2.1所示。图中可变电阻Rw是为调节晶体管静态工作点而设置的。 三、实验原理1.静态工作点的估算 将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。 开路电压Vbb? Rb2 Vcc,内阻

Rb1?Rb2 Rb?Rb1//Rb2 则IbQ? Vbb?VbeQ Rb?(??1)(Re1?Re2) ,IcQ??IbQ VceQ?Vcc?(Rc?Re1?Re2)IcQ 可见,静态工作点与电路元件参数及晶体管β均有关。 在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。 一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。 2.放大电路的电压增益与输入、输出电阻 ?u? ??(Rc//RL) Ri?Rb1//Rb2//rbeRo?Rc rbe 式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。 3.放大电路电压增益的幅频特性 放大电路一般含有电抗元件,使得电路对不同频率的信

号具有不同的放大能力,即电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。一般用逐点法进行测量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。 需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。 三、预习计算1.当??????=??????时 由实验原理知计算结果如下: IeQ=IbQ= β+1β1β IcQ=1mA IcQ=4.878μA ucQ=Vcc?IcQ×Rc=8.7VueQ=IeQ×Re=1× 1.2=1.2VuceQ=ucQ?ueQ=8.7?1.2=7.5V rbe=rbb′+1+β uT26 =650+206×=6.006kΩeQubQ=ueQ+0.7=1.9VVcc?ubQubQ =IbQ+wb1b2 可以解出Rw=40.78kΩ

单管分压式稳定共射极放大电路设计方案报告

单管分压式稳定共射极放大电路设计 设计题目:输入信号v i=5mv,f=10kHz,输出信号v o=500mv,工作电压Vcc=6v,输入电阻R i>1k,输出电阻Ro<2k用分压式稳 定单管共射极放大路进行设计。R L=10k。 一、设计思考题。 ①如何正确选择放大电路的静态工作点,在调试中应注意什 么? ②负载电阻RL变化对放大电路静态工作点Q有无影响?对放 大倍数AU有无影响? ③放大电路中,那些元件是决定电路的静态工作点的? ④试分析输入电阻Ri的测量原理(两种方法分别做简述)。 二、设计目的 a)掌握单管放大电路的静态工作点和电压放大倍数的测量方 法。 b)三极管在不同工作电压下的共基放大系数的测定。 c)了解电路中元件的参数改变对静态工作点及电压放大倍数的 影响。 d)掌握放大电路的输入和输出电阻的测量方法。 三、所需仪器设备 a)示波器 b)低频模拟电路实验箱 c)低频信号发生器

d) 数字式万用表 e) PROTUES 仿真 四、 设计原理 a) 设计原理图如图1所示分压式稳定共射极放大电路 图1 分压式稳定共射极放大电路 b) 对电路原理图进行静态分析与反馈分析说明分压式对电路稳定性的作用。 静态分析:当外加输入信号为零时,在直流电源CC V 的作用下,三极管的基极回路和集电极回路均存在着直流电流和直流电压,这些直流电流和直流电压在三极管的输入、输出特性上各自对应一个点,称为静态工作点。静态工作点的基极电流、基极与发射极之间的电压分别用符号BQ I 和BEQ U 表示,集电极电流、集电极与发射极之间的电压则用和表示。 为了保证的基本稳定,要求流过分压电阻的电流I I ,为此要求电阻21,R R 小些,但若21,R R 太小,则电阻上消耗的功率将增

实验一 单级交流放大电路 实验报告

实验一单级交流放大电路 一、实验目的 1.熟悉电子元器件和模拟电路实验箱, 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。 3.学习测量放大电路Q点,A V ,r i ,r o 的方法,了解共射极电路特性。 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、实验原理 1.三极管及单管放大电路工作原理。 以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 2.放大电路静态和动态测量方法。 放大电路良好工作的基础是设置正确的静态工作点。因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。 放大电路的动态特性指对交流小信号的放大能力。因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。 四、实验内容及步骤 1.装接电路与简单测量 图1.1 工作点稳定的放大电路

(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。 测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。 三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。 (2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。 2.静态测量与调整 接线完毕仔细检查,确定无误后接通电源。改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。 注意:I b 和I c 一般用间接测量法,即通过测V c 和V b ,R c 和R b 计算出I b 和I c 。此法虽不直观,但操作较简单,建议采用。以避免直接测量法中,若操作不当容易损坏器件和仪表的情况。 (2)按图1.1接线,调整R P 使V E =1.8V ,计算并填表1.1。 为稳定工作点,在电路中引入负反馈电阻Re ,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流ICQ 和管压降UCEQ 基本不变。 依靠于下列反馈关系: T ↑—β↑—ICQ ↑—UE ↑—UBE ↓—IBQ ↓—ICQ ↓,反过程也一样。其中Rb2的引入是为了稳定Ub 。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻ri 变大了,输出电阻ro 不变。 e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数约等于e L c R R R ,不受β值变化的 影响。 表1.1 注意:图1.1中b 为支路电流。 3.动态研究 (1)按图1.2所示电路接线。 (2)将信号发生器的输出信号调到f=1KHz ,幅值为500mV ,接至放大电路的A 点,经过R 1、R 2衰减(100倍),V i 点得到5mV 的小信号,观察V i 和V O 端波形,并比较相位。 图中所示电路中,R1、R2为分压衰减电路,除R1、R2以外的电路为放大电路。由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R1、R2衰减形式。此外,观察输出波形时要调节Rb1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。

共射极单管放大电路(一)

电路分析实验报告 共射极单管放大电路(一) 一 、实验摘要 通过单管放大电路,认识三极管放大电路的性能参数。静态参数有:三极管的静态工作点Ib、Ic和Vce;了解三极管放大电路的线性放大,饱和失真、截止失真;动态参数有:电压放大倍数Av、最大不失真输出电压Uomax。 2、 实验环境 模拟电路试验箱 函数信号发生器 示波器 万用表 3、 实验原理 ui直接加在三极管V的基极和发射极之间,引起基极电流iB作相应的变化 。 通过三极管VT的电流放大作用,VT的集电极电流iC也将变化 。 iC的变化引起V的集电极和发射极之间的电压uCE变化。 uCE中的交流分量uce经过电容C2畅通地传送给负载RL,成为输出交流电压uo,,实现了电压放大作用。 4、 实验步骤 在模电试验箱对应模块上连 接电路 调节信号发生器调节频率、峰峰值,观察波形 调节电位器调节电位器,观察波形 分别在饱和失真、截止失计算得出放大倍数,Ib、Ic和Vce,最

真、不失真时观察波形,记 大不失真输出电压 录数据 5、 实验数据 截止失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 8.380.000890.0008-0.000098.89 饱和失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 2.610.00220.0023-0.000111.23 不失真

Vce/V Ic/A Ie/A Ib/A放大倍数Av 4.820.00170.001780.0000812.63 最大不失真输出电压Uomax=500mVPP 上下半波均失真,形成矩形波 相移:140.5° 6、 实验总结 在本次实验中了解到了三极管的放大特性。通过单管放大电路,认识了三极管放大电路的性能参数。

晶体管共射极单管交流放大电路实验报告

晶体管共射极单管交流放大电路 班别:_________ 学号:_________ 姓名:___________ 成绩:______________ 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; 2、掌握放大器电压放大倍数的测试方法; 3 、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验内容及步骤 1 ?实验电路 实验电路如图1所示。各电子仪器连接时,为防止干扰,各仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接在公共接地端上。 图1共射极单管放大器实验电路 2.调试静态工作点 (20分) (1)暂不接入交流信号,把一直流电源调到 12V; (2)将R調至最大,接入12V直流电源; (3)调节R W使1尸后,用直流电压表测量三极管B极、E极和C极对地电压U B、 U E、U C值,记入表1。 表1C 3?测量电压放大倍数(20分) (1)调节函数信号发生器,使其输出有效值为10mV频率为1KHz的正弦信号; (2)把上述调节好的的正弦信号加在放大器输入端(B与地),作为U i;

(3)用示波器观察放大器输出电压u o波形,在波形不失真的条件下用交流毫伏表测

量下述三种情况下的 U O 值,并用双踪示波器观察 u 。和U i 的相位关系,记入表 2,并计算电 路的相应电压放大倍数 A 。 表 i 4.观察静态工作点对电压放大倍数的影响 (20 分) (1) 置 F C =Q, R-=^, U=10mV (2) 用示波器监视输出电压波形, 在u 。不失真的条件下, 调节R ,使I C 分别为表3中 之值,用交流毫伏表 分别测出U 。值,计算电压放大倍数 A V ,记入表3。 表3实验数据表三 (条件: Ft =Q R L U i = 10 mV ) 5 .观察静态工作点对输出波形失真的影响 (20分) (1) 置 R^=Q, F L =Q; (2) 在未接入交流信号时,调节 R W 使 I C =,测出Ub E 值; (3) 接入交流信号,逐步加大输入信 号,使输出电压 U 0足够大但不失真。 然后保持 输 入信号不变,分别增大和减小 FW,使波形出现失真,绘出 U 0的波形,并用直流电流表和 直流电压表 分别测出失真情况下的I C 和U CE 值,记入表4中。 表4实验数据四 (条件:R C =Q R L =? U i = mV ) 三、实验总结 (每题 10分,共 20 分) 1、总结R C, R L 及静态工作点对放大器电压放大倍数的影响。

实验一 单管共射极放大电路的设计

实验一单管共射极放大电路设计 姓名:樊益明 学号:20113042 单管放大电路设计题目: 要求:输入电阻Ri<=3K,输出电阻R0>=5k,直流电源Vcc=6V,设计一个当输入频率f=20kHz,放大倍数AV=60时稳定放大电路。一:放大电路的选择 (1)共射极放大电路:具有较大的电压放大倍数和电流放大倍数,输入电阻和输出电阻比较适中,一般只要对输入电阻和输出电阻和频率响应没有特殊要求的电路均常采用此电路。共射极放大电路被广泛地应用于低频电压放大电路的输入级、中间级和输出级。 (2)共集电极放大电路:此电路的主要特点是电压跟随,即电压放大倍数接近1而小于1而且输入电阻很高,接受信号能力强。输出电阻很低,带负载能力强。此电路常被用作多级放大电路的输入级和输出级或隔离用的中间级。首先,可利用此电路作为放大器的输入级,以减小对被测电路的影响,

提高测量的精度。其次,如果放大电路输出端是一个变化的负载,为了在负载变化时保证放大电路的输出电压比较稳定,要求放大电路具有很低的输出电阻,此时可以采用射极输出器作为放大电路的输出级,以提高带负载能力。最后,共集电极放大电路可以作为中间级,以减小前后两级之间的相互影响,起隔离作用。 (3)共基极放大电路:具有很低的输入电阻,使晶体管结电容的影响不显著,所以频率响应得到很大的改善,这种接法常用于宽频带放大器中。输出电阻高可以作为恒流源。 二:确定电路 根据题目要求:应选择稳定的,输入电阻较大的电路,即采用分压式直流负反馈共射极放大电路。 三:原理分析: (1)元器件的作用:

Q1 2N3019 C1 10u CC 10u RB1待定RC 3k RB2 待定 RE 待定RL 20k RC(1) C1(2) CE 10u Rb1和Rb2起分压作用,给三极管B极提供偏置电压。 Rc给三极管C极提供偏置电压。 Re为直流负反馈,消除温度对电路的影响。 RL为负载,Cb、Cc为交流耦合,Cb将交流信号耦合到三极管,Cc将信号耦合到负载。 Ce为旁路电容,三极管起放大作用。(2)静态分析:

单管放大电路仿真

单管放大电路仿真 一、实验名称 三极管放大电路仿真; 二、实验目的 (1)学会分析静态和动态对放大电路的影响。 (2)掌握电路放大倍数及有效控制电路失真情况。 三、实验要求 基极分压式共射放大仿真实验电路,如图I 所示,在Multisim 11中测得小信号时三极管(2N2222A )的V V on BE 75.0)( .试分析该电路静态、动态及失真情况。 四、实验内容 1.静态分析 1)理论分析 图 I 共射放大仿真实验电路

V V V c c R R R R V b b W b BQ 84.112101.55010212≈?? ?????++=++= mA A R V V I I e on BE BQ EQ CQ 09.110175.084.13) (=???????-≈-=≈ 取uA mA I I CQ BQ 0.522009.1220==≈=β β, []V V V R R I V c c V e c CQ CEQ 73.8)12(09.112)(≈+?-≈+-≈ 2)直流工作点分析 Multisim11分析如图II 所示 根据分析结果可得,有 V V V V V V V V V V EQ BQ BEQ EQ BQ 63.0169.1799.1,169.1,799.1=-≈-=≈≈ ()[] ()[]V V V R R I V V m A m A R V V I A m A R V R V V V e c CQ CC CEQ C CC CQ b b BQ 52.81216.11216.12673.9122.510799.12673.912729196≈+?-≈+-≈≈??????-≈-=≈?? ????--≈--=μ 图II 直流工作点仿真分析结果图

单管共射极放大电路实验报告

单管共射极放大电路实验报告

实验一、单管共射极放大电路实验 1. 实验目的 (1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。 (2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。 (3) 掌握放大电路的输入和输出电阻的测量方法。 2. 实验仪器 ① 示波器 ② 低频模拟 电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图) 实验原理图如图1所示——共射极放大电路。 Rs 4.7K

4.实验步骤 (1)按图1连接共射极放大电路。 (2)测量静态工作点。 ②仔细检查已连接好的电路,确认无误后 接通直流电源。 ③调节RP1使RP1+RB11=30k ④按表1测量各静态电压值,并将结果记 入表1中。 (1)测量电压放大倍数 ①将低频信号发生器和万用表接入放大器的 输入端Ui,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ,输入

信号幅度为20mv左右的正弦波,从示波器 上观察放大电路的输出电压UO的波形,分 别测Ui和UO的值,求出放大电路电压放 大倍数AU。 图2 实验电路与所用仪器连接图 ②保持输入信号大小不变,改变RL,观察负 载电阻的改变对电压放大倍数的影响,并将 测量结果记入表2中。 (4)观察工作点变化对输出波形的影响 ①实验电路为共射极放大电路

②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),观察放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调节RP1与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11值,测量此时的静态工作点,保持输入信号不变。改变RP1使RP1+RB11分别为25KΩ和100KΩ,将所测量的结果记入表3中。 (注意:观察记录波形时需加上输入电压,而测量静态工作点时需撤去输入电压。)

单管放大电路仿真实验报告

? 单管放大电路仿真实验报告 一、实验目的 1、 掌握放大电路支流工作点的调整与测量方法。 2、掌握放大电流主要性能指标的测量方法。 3、了解支流工作点对放大电路动态特性的影响。 4、掌握发射极负反馈电阻对放大电路性能的影响。 5、了解信号源内阻Rs 对放大电路频带(上限截止频率f H )的影响。 二、实验电路与实验原理图

2、直流通路 VCC 12V 将基极偏置电路用戴维南定理等效成电压源,得到支流通路。开路电压:V BB = V CC*R B2/(R B1 + R B2) 电源内阻:R B = R B1 // R B2 三、实验内容 1、静态工作点的调整 ※预习计算

直流工作点的调整 I CQ =1.0mA 时 3.3c R C CQ V R I V ==, 1.95BQ E CQ BE V R I V V ≈+= 12 '11 75.4//55.4CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω +=-=Ω -7.5C CEQ CC BQ R BE V V V V V V =-+= I CQ =2.0mA 时 6.6c R C CQ V R I V ==, 3.15BQ E CQ BE V R I V V ≈+= 12 ' 1140.8, //20.8CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω+=-=Ω -3C CEQ CC BQ R BE V V V V V V =-+= 由此可以得到扫描参数时的大致范围 要求:调节RW ,在ICQ=1mA 和2mA 时,测量VCEQ 的值,并记录RB1的值。 操作:对R W 进行参数扫描,通过观察Rc 上的电压变化 可以得到 CQ I ( c CQ c U I R = ), Uc 可以通过V (Vcc )-V(4)得到,从而可以在扫描参数设备时通过跟踪Uc 得到CQ I 为一 定值时对应的V CEQ 以及相应的R W 。 仿真结果(设备参数扫描):

晶体管共射极单管放大电路实验报告

广州大学学生实验报告 1. 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 【实验仪器与材料】 【实验内容与原理】 查阅资料可知实验箱中的三极管 ?" 30-35,rbb ?200Q 图1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用 R BI 和 R B 2组成的分压电路,并在发射极中接有电阻 R E ,以稳定放大器的静态工作点。当在 ------ 模拟电路实验 — 晶体 管共射极单管放大电路 实验 地点, 指导老师签名 实验课程名称 ―实验项目名称 实 验时间 ----------- ——实验成绩 【实验目的】 1.EL-ELA-IV 的模拟电路实验箱 2.函数信号发生器 3.双踪示波器 4.交流毫伏表 5.万用电表 6.连接线若干

放大器的输入端加入输入信号U后,在放大器的输出端便可得到一个与U相位相反, 幅值被放大了的输出信号U o,从而实现了电压放大。

所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

(3)输出电阻R o 的测量 和接入负载后的输出电压 U L ,根据 R U U L —— —U O 即可求出 R O (「 1)R L R O U L 在测试中应注意,必须保持 R L 接入前后输入信号的大小不变。 (4)最大不失真输出电压U OPP 的测量(最大动态范围) 如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。为 此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节 R W (改变静态 工作点),用示波器观察u 。,当输出波形同时出现削底和缩顶现象(如图 4)时,说 明静态工作点已调在交流负载线的中点。 然后反复调整输入信号,使波形输出幅度最 大,且无明显失真时,用交流毫伏表测出 U O (有效值),则动态范围等于2 2U o 。或 用示波器直接读出U OPP 来。 【实验步骤】 1?调试静态工作点 在实验箱上按电路图连接好电路,接通直流电源前,先将 R W 调至最大,不接入 函数信号发生器。接通+ 12V 电源、调节R W ,使l c = 2.0mA (即U E = 2.0V ),用直流 电压表测量U B 、U E 、U c 及用万用电表测量R B 2值。记录于表一中。 2.测量电压放大倍数 按图3电路,在放大器正常工作条件下, 测出输出端不接负载 R L 的输出电压U O 审4爭苗HIT*

单极管放大电路实验报告材料.doc

实验三 晶体管单管共射放大电路实验报告 一、 实验目的: 1.学习电子线路安装、焊接技术。 2.学会放大器静态工作点的测量和调试方法,分析静态工作点对放大器性能的影响。 3.掌握放大器交流参数:电压放大倍数、输入电阻、输出电阻、最大不失真输出电压和频率特性的测试方法。 4.进一步熟悉常用电子仪器及模拟电路设备的使用方法和晶体管β值测试方法。 二、实验原理: (一)实验电路 图3.1中为单管共射基本放大电路。 (二)理论计算公式: ① 直流参数计算: C CQ CEQ BQ EQ CQ BEQ B BEQ BQ R I VCC V I I I V 7.0V ; R V VCC I -=β?=≈≈-≈ 式中: ② 交流参数计算: 图2-1 共射极单管放大器实验电路

() C O be B i V i S i VS L C L be 'L V ' bb EQ 'bb be R R r //R R A R R R A R R R ; r R A 300r (mA) I (mV)26β1r r ≈=*+= ='*β-= ++≈∥Ω 的默认值可取式中: (三)放大电路参数测试方法 由于半导体元件的参数具有一定的离散性,即便是同一型号的元件,其参数往往也有较大差异。设计和制作电路前,必须对使用的元器件参数有全面深入的了解。有些参数可以通过查阅元器件手册获得;而有些参数,如晶体管的各项有关参数(最重要的是β值),常常需要通过测试获取,为电路设计提供依据。另一方面,即便是经过精心设计和安装的放大电路,在制作完成后,也必须对静态工作点和一些交流参数进行测试和调节,才能使电路工作在最佳状态。一个优质的电子电路必定是理论设计和实验调试相结合的产物。因此,我们不但要学习电子电路的分析和设计方法,还应认真学习电子调节和测试的方法。 1. 放大器静态工作点的调试和测量: 晶体管的静态工作点对放大电路能否正常工作起着重要的作用。对安装好的晶体管放大电路必须进行静态工作点的测量和调试。 ① 静态工作点的测量: 晶体管的静态工作点是指V BEQ 、I BQ 、V CEQ 、I CQ 四个参数的值。这四个参数都是直流量,所以应该使用万用电表的直流电压和直流电流档进行测量。 测量时,应该保持电路工作在“静态”,即输入电压V i =0。要使V i =0,对于阻容耦合电路,由于存在输入隔直电容,所以信号源的阻不会影响放大器的静态工作点,只要将测试用的信号发生器与待测放大器的输入端断开,即可使V i =0;但是输入端开路很可能引入干扰信号,所以最好不要断开信号发生器,而是将信号发生器的“输出幅度”旋钮调节至“0”的位置,使V i =0。对于直接耦合放大电路,由于信号源的阻直接影响待测放大器的静态工作点,所以在测量静态工作点时必须将信号发生器连接在电路中,而将输出幅度调节至0。 在实验中,为了不破坏电路的真实工作状态,在测量电路的电流时,尽量不采用断开测点串入电流表的方式来测量,而是通过测量有关电压,然后换算出电流。在本实验中,只要测出V BQ 、V CQ 、VCC 电压值,便可计算出V BEQ 、V CEQ 、I CQ 、I BQ 。计算公式如下(计算前,需知道R B 、R C 的值): 式中:R B = R 1 + RW B BQ BQ C CQ CQ CQ CEQ BQ BEQ R V VCC I R V VCC I V V ;V V -= -===

相关文档
最新文档