线性代数期末复习资料(EK绝密版)

线性代数期末复习资料(EK绝密版)
线性代数期末复习资料(EK绝密版)

《线性代数》教学中若干难点的探讨.doc

《线性代数》教学中若干难点的探讨- 摘要:在《线性代数》的教学过程中,有很多抽象的概念学生很难理解,比如线性相关、线性无关,极大线性无关组、向量组的秩等等。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,化抽象为具体,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 关键词:线性相关;线性无关;极大线性无关组;向量组的秩 《线性代数》是高等学校理、工、经、管类各专业的一门重要基础课程。通过对本课程的学习,学生可以获得线性代数的基本概念、基本理论和基本运算技能,为后继课程的学习和进一步知识的获得奠定必要的数学基础。通过各个教学环节的学习,可以逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力以及自学能力,并具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力。另外,通过《线性代数》的学习,还可以培养学生的综合素质和提高学生的创新意识。因此,只有熟练掌握这门课程,才能较好地运用到各个专业中。由于该课程内容抽象,教学课时短,这无疑对教师的教学和学生的学习造成了极大的困扰。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 一、线性相关性与线性无关性 线性方程组理论是线性代数的基本内容之一,而向量组的线性相关性和线性无关性又是解线性方程组的基础。教材第三章线性方程组开门见山,直接给出了线性相关及线性无关的定义。

线性相关是指一个向量组α1,α2,…,αs,如果存在一组不全为零的数λ1,λ2,…,λs,使得λ1α1+λ2α2+…+λsαs=0,则称该向量组α1,α2,…,αs线性相关。如果不存在这样一组不全为零的数,则称该向量组α1,α2,…,αs线性无关。单纯地称某向量组线性相关或线性无关,对于学生来说是比较抽象的,他们对这一定义总是感觉很模糊,很难理解,如何才能更好地更形象地理解这一定义呢?如果在教学中,把这块知识与解析几何联系起来,用几何知来解释什么是线性相关或线性无关,那么学生肯定更容易接受。例如,对于定义中λ1α1+λ2α2+…+λsαs=0,可以理解为b=(λ1,λ2,…,λs)这样的一个行向量。如果向量组有两个列向量构成,即α1,α2,则b=(λ1,λ2),λ1α1+λ2α2=0。若λ1≠0,则经过变换可以得到α1=■,这说明α1和α2共线。对于有三个向量构成的向量组,λ1α1+λ2α2+λ3α3=0,b=(λ1,λ2,λ3),若λ1≠0,经变换得到α1=■+■,这说明α1,α2,α3三个向量共面。 对于两个向量,线性相关指两向量平行(或者说是共线),此时只是在线上的关系,仅仅是一维,线性无关指两向量相交,确定了一个二维平面。线性无关提供了另一种维度,使得向量所在空间增加了一维。对于三个向量,线性相关指三向量共面,研究的是二维平面,而线性无关指三向量不共面,使得向量所在空间增加了一维,即三个向量若线性无关,那么它们不共面,存在于三维立体空间中。四个向量,五个向量,…,研究方法类似。结合几何知识,通过几何图像可以更直观地呈现出新的概念,学生更易于接受,而且还有助于提高学生对《线性代数》的学习兴趣。 二、极大线性无关组及向量组的秩

线性代数知识点总结

线性代数知识点总结 第一章 行列式 (一)要点 1、二阶、三阶行列式 2、全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义 3、行列式的性质 4、n 阶行列式ij a D =,元素ij a 的余子式和代数余子式,行列式按行(列)展开定理 5、克莱姆法则 (二)基本要求 1、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章 矩阵 (一)要点 1、矩阵的概念 n m ?矩阵n m ij a A ?=)(是一个矩阵表。当n m =时,称A 为n 阶矩阵,此时由A 的元素按原来排列的形式构成的n 阶行列式,称为矩阵A 的行列式,记为A . 注:矩阵和行列式是两个完全不同的两个概念。 2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1)矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。 如果两矩阵A 与B 相乘,有BA AB =,则称矩阵A 与B 可换。 注:矩阵乘积不一定符合交换 (2)方阵的幂:对于n 阶矩阵A 及自然数k , 规定I A =0 ,其中I 为单位阵 .

(3) 设多项式函数k k k k a a a a ++++=--λλλλ?1110)( ,A 为方阵,矩阵A 的 多项式I a A a A a A a A k k k k ++++=--1110)( ?,其中I 为单位阵。 (4)n 阶矩阵A 和B ,则B A AB =. (5)n 阶矩阵A ,则A A n λλ= 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A 可逆,则其逆矩阵是唯一的);矩阵A 的伴随矩阵记为*A , 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如n m A ?,l n B ?,将矩阵B 分块为 ) (21l b b b B =,其中j b (l j 2, ,1=)是矩阵B 的第j 列, 则 又如将n 阶矩阵P 分块为) (21n p p p P =,其中j p (n j 2, ,1=)是矩阵P 的第j 列. (3)设对角分块矩阵

线性代数期末复习题 (2)

线性代数 一. 单项选择题 1.设A 、B 均为n 阶方阵,则下列结论正确的是 。 (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b)若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d)若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A)=m 时,则方程组 . (a) 可能无解 (b)有唯一解 (c)有无穷多解 (d)有解 4.矩阵A 与对角阵相似的充要条件是 . (a)A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5.A 为n 阶方阵,若02 =A ,则以下说法正确的是 . (a) A 可逆 (b) A 合同于单位矩阵 (c) A =0 (d) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B )CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A|=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数重点难点

自考《线性代数》重难点解析 2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看: 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点 行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1、若A为n阶方阵,则│kA│= kn│A│ 2、若A、B均为n阶方阵,则│AB│=│A│。│B│ 3、若A为n阶方阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关行列式概念与性质的命题 2、行列式的计算(方法)

1)利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D =│A│≠0,则Ax=b有唯一解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式│A│判别方程组解的问题 1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解) 2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法

线性代数知识点归纳同济第五版

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1. 行列式的计算: ① (定义法)12 1212 11 12121222() 121 2 ()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==**=-1 例 计算 2-100-1 300001100-25 解 2-100 -1 30000110 -2 5 =2-1115735-13-25?=?= ⑤ 关于副对角线: (1) 2 1121 21 1211 1()n n n n n n n n n n n a O a a a a a a a O a O ---* = =-1 ⑥ 范德蒙德行列式:()1 2 2 22 12 11 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏111 例 计算行列式

⑦ a b - 型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

线性代数总复习大纲及复习题

04-05(2) 线性代数总复习大纲及复习题: 一、 概念 1、 行列式的 定义 2、 向量组相关与无关的定义 3、 对称阵与反对称阵 4、 可逆矩阵 5、 矩阵的伴随矩阵 6、 基与向量的坐标 7、 矩阵的特征值与特征向量 8、 正定矩阵 9、 矩阵的迹 10、 矩阵的秩 11、 矩阵的合同 12、 二次型与矩阵 13、 齐次线性方程组的基础解系 二、 性质与结论 1、 与向量组相关与无关相关的等价结论 2、 行列式的性质 3、 克莱姆规则(齐次线性方程组有非零解的充要条件) 4、 矩阵可逆的充要条件及逆矩阵的性质 5、 初等变换与初等矩阵的关系 6、 A A A A A E **== 7、 n 维向量空间坐标变换公式 8、 相似矩阵的性质 9、 合同变换 10、 矩阵正定的充要条件 11、 线性方程组解的性质与结构定理 三、复习题及参考答案 1.若三阶行列式1 23 11 22 331 2 3 2226a a a b a b a b a c c c ---=,则 1 23 1 231 2 3 a a a b b b c c c = 12 2.若方程组12312312 3000 tx x x x tx x x x tx ++=?? ++=??++=?有非零解,则t=????1???。

3.已知齐次线性方程组32023020x y x y x y z λ+=?? -=??-+=? 仅有零解,则λ≠ 0 4.已知三阶行列式D=123 312231,则元素12a =2的代数,余子式12A = -1 ; 3.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。( 对 ) 4.行列式 0020 023 16.02342345 = ( 对 ) 5.对向量1234,,,αααα,如果其中任意两个向量都线性无关,则1234,,,αααα线性无关。( 错 ) 6. 如果A 是n 阶矩阵且0A =,则A 的列向量中至少有一个向量是其余各列向量的线性组合。( 对 ) 7. 向量组s ααα,,,21 线性无关的充分必要条件是其中任一部分向量组都线性无关。( 对 ) 8 矩阵212111215A ?? ? = ? ??? 是正定的。( 对 ) 9. n 阶矩阵A 与B 相似,则A 与B 同时可逆或同时不可逆。( 对 ) 10.已知向量组123(1,2,1),(,1,1),(1,,1).a a ααα===则当a= 1 或a= 2 时向量组321,,ααα线性相关。 ( 对 ) 11.n 阶矩阵A 满足2320,A A E -+=则A-3E 可逆,A-2E 可逆。 ( 对 ) 12.阵A 与其转置T A 具有相同的行列式和特征值。 ( 对 ) 13.如果n 阶矩阵 A 的行列式┃A ┃=0,则A 至少有一个特征值为零 。( 对) 14. 设A 为n 阶方阵,k 为常数,则kA k A =。 ( B ) 15.设6阶方阵A 的秩为3,则其伴随矩阵的秩也是3。 ( B )

《线性代数》期末复习要点

《线性代数》期末复习要点 第一章行列式 1、行列式的计算(略) 2、Cramer法则:系数行列式D≠0,则方程租有唯一解。 齐次方程租有非零解,则D=0。 3、V andermonde行列式。(略) 第二章矩阵 1、矩阵的计算(略) 2、对称矩阵:A∧T=A。反称矩阵A∧T=-A。 3、矩阵可逆,则|A|≠0。 4、分块矩阵(略) 5、初等变换与初等矩阵(略) 6、m×n阶矩阵A,B等价,则当且仅当存在m阶可逆矩阵P和n阶可逆矩阵Q使PAQ=B。 7、(1)可逆矩阵一定满秩,即r=n。(2)若A的一个r阶子式不等于零,则r(A)≥r,若A的r+1阶子式都为零,则r(A)≤r。 8、矩阵秩的不等式:(1)r(AB)≤min{r(A),r(B)}。(2)A,B分别为m×n阶和n×k 阶矩阵,r(AB)≥r(A)+r(B)-n。特别的,当AB=0时,r(A)+r(B)≤n。(3)A,B 均为m×n阶矩阵,则r(A+B)≤r(A)+r(B)。 第三章n维向量空间 1、线性相关:(1)k1,k2,kn不全为0且能使kiα1+k2α2+……+knαn=0成立,则α1,α2,……,αn线性相关。(2)至少一个向量是其余向量的线性组合。(3)含零向量的向量组是线性相关的。(4)n维向量中的两个向量组T1={α1,α2,α3,……,αr},T2={β1,β2,β3,……βs},若T1可由T2线性表示,且r>s,则T1线性相关。若T1可由T2线性表示但T1线性无关,则r≤s。(5)n+1个n维向量一定线性相关。 2、(1)零向量自身线性相关。非零向量自身线性无关。(2)向量组中一部分线性相关,则整体线性相关,若向量组整体线性无关,则向量组的一部分线性无关。 3、向量组的任意极大线性无关组都与之等价,向量组的任意两个极大线性无关组都等价。 4、矩阵的秩等于其行(列)向量组的秩。 5、向量空间的基与维数,空间向量的坐标(略) 6、基变换和坐标变换:{α1,α2,α3,……,αr},{β1,β2,β3,……βs r}是向量空间V的两组基,若有r维方阵C,使[β1,β2,β3,……βs]=[α1,α2,α3,……,αr]C,则称C为从基{α1,α2,α3,……,αr}到基{β1,β2,β3,……βs}的过渡矩阵(基变换矩阵)。则坐标变换X=CY。 7、内积:(1)交换性(α,β)=(β,α)。(2)线性性:(α1+α2,β)=(α1,β)+(α2,β)。(kα,β)=k(α,β)。(3)非负性。(4)Cauchy-Schwarz不等式P99。 向量的长度,向量间夹角的余弦P99。 8、标准正交向量组,Gram-Schmidt正交化方法。P103,104。▲重点记忆。 第四章线性方程组 1、线性方程组及其表示(略) 2、m×n型线性方程AX=b。(1)有解的充要条件是系数矩阵的秩和增广矩阵的秩相同。(2)有唯一解的充要条件是系数矩阵的秩和增广矩阵的秩相同,都为n。 3、Gauss消元法。(略) 4、齐次线性方程和非齐次方程组解的结构。基础解系与通解。(略) 5、AX=b解空间的维数dimN(A)=n-r(A)。 m×n型线性方程AX=0有非零解的充要条件是r(A)<n。

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不 3 24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A 反三角行列式为A*(-1)^n(n-1)/2 行列式的一行的代数余子式分别乘以另一行元素,值为零。 正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。 克莱姆法则D=222112 11a a a a ,D1=22 2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1) 若一个线性方程组有非零解,则它的行列式式值等于零。 行列式中行叫c ,列叫r 写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。 n 维向量分横向量和列向量。 写向量时一定要记得在上面加箭头 任意一个n 维向量都能由n 个n 维单位向量线性表示 如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。 如果一个向量a 线性相关,则a=0 由一个非零向量构成的向量组一定线性无关。即a ≠0则a 这个向量组线性无关。 含有零向量的向量组一定线性相关 例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关 解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0 K1+2k2=0 k1+3k2=0 3 121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关 一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零 两个向量线性相关除非他们对应分量成比例。 如果一个向量组一部分向量线性相关,则,整个向量组线性相关。 一个向量组线性无关,那么它的一部分也线性无关 向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。 应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。 要证线性无关,则减少维,如果减少后无关,则原向量组无关。 要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。 要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。 向量个数大于维数一定线性相关 一个向量组的每个最大线性无关组中的向量个数一定相等 向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基

自考《线性代数》重难点解析与全真练习

自考《线性代数》重难点解析与全真练习 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1若A为n阶方阵,则|kA| = kn | A I 2、若A、B均为n阶方阵,AB丨=| A |。丨B丨 3、若A为n阶方阵,则|A* | = | A | n-1 若A为n阶可逆阵,则|A-1 | = | A | -1 4、若A为n阶方阵,入i (i=1 , 2,…,n)是A的特征值,| A | =口入i 四、题型及解题思路 1 、有关行列式概念与性质的命题 2、行列式的计算(方法) 1 )利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D = | A |丰0,则Ax=b有解,即 x1=D1/D, x2= D2/D ,…, xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式A 判别方程组解的问题 1)当| A | = 0时,齐次方程组Ax= 0有非零解;非齐次方程组解,也可 能有无穷多解) 2)当| A |丰0时,齐次方程组Ax= 0仅有零解;非齐次方程组克莱姆法则求出。 、重点 1 、理解:矩阵的定义、性质, 几种特殊的矩阵(零矩阵,上(下)对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种方法Ax= b 不是解(可能无Ax= b 有解,此解可由三角矩阵,对称矩阵,

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数期末复习题

《线性代数》综合复习题 一、单项选择题: 1、若三阶行列式D 的第三行的元素依次为1、 2、3,它们的余子式分别为4、2、1,则D =( ) (A)-3 (B) 3 (C) -11 (D) 11 2、设123,,ααα是三阶方阵A 的列向量组,且齐次线性方程组AX =O 仅有零解,则( ) (A) 1α可由23,αα线性表示 (B) 2α可由13,αα线性表示 (C) 3α可由12,αα线性表示 (D) 以上说法都不对 3、设A 为n(n ≥2)阶方阵,且A 的行列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于( ) (A) 3n a (B) 3a n -1 (C) 3n a n -1 (D) 3a n 4、设A =????? ??3332312322 21131211a a a a a a a a a , B =????? ??+++133311311232232122131112a a a a a a a a a a a a ,????? ??=1000010101P ,???? ? ??=1010100012P ,则有( ) (A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误.. 的是( ) (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的行向量组是正交单位向量组 6、设A 是n 阶方阵,且O E A A =+-232,则( ) (A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A = (C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2= 7、设矩阵210120001A ?? ?= ? ??? ,矩阵B 满足2ABA BA E **=+,其中E 为三阶单位矩阵,A * 为A 的伴随矩 阵,则B = (A ) 13; (B )19; (C )1 4 ; (D )13。 8、下列命题中,错误的是 (A) 若1110,,,n n n k k αααα++=且线性无关,则常数1,,n k k 必全为零 (B) 若1110,, ,n n n k k αααα+ +=且线性无关,则常数1, ,n k k 必不全为零 (C) 若对任何不全为零的数1,,n k k ,都有1110,, ,n n n k k αααα++≠则 线性无关

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数期末复习提纲解析

★ 线性代数基本内容、方法及要求 第一部分 行列式 【主要内容】 1、行列式的定义、性质、展开定理、及其应用——克莱姆法则 2、排列与逆序 3、方阵的行列式 4、几个重要公式:(1)T A A =; (2)A A 11=-; (3)A k kA n =; (4)1*-=n A A ; (5) B A AB =; (6)B A B A B A ==0* *0 ; (7)???≠==∑=j i j i A A a n i ij ij ,,01 ; (8)???≠==∑=j i j i A A a n j ij ij ,,01 (其中B A ,为n 阶方阵,k 为常数) 5、行列式的常见计算方法:(1)利用性质化行列式为上(下)三角形; (2)利用行列式的展开定理降阶; (3)根据行列式的特点借助特殊行列式的值 【要求】 1、了解行列式的定义,熟记几个特殊行列式的值。 2、掌握排列与逆序的定义,会求一个排列的逆序数。 3、能熟练应用行列式的性质、展开法则准确计算3-5阶行列式的值。

4、会计算简单的n 阶行列式。 5、知道并会用克莱姆法则。 第二部分 矩阵 【主要内容】 1、矩阵的概念、运算性质、特殊矩阵及其性质。 2、方阵的行列式 3、可逆矩阵的定义、性质、求法(公式法、初等变换法、分块对角阵求逆)。 4、n 阶矩阵A 可逆?0≠A ?A 为非奇异(非退化)的矩阵。 ?n A R =)(?A 为满秩矩阵。 ?0=AX 只有零解 ?b AX =有唯一解 ?A 的行(列)向量组线性无关 ?A 的特征值全不为零。 ?A 可以经过初等变换化为单位矩阵。 ?A 可以表示成一系列初等矩阵的乘积。 5、矩阵的初等变换与初等矩阵的定义、性质及其二者之间的关系。 6、矩阵秩的概念及其求法((1)定义法;(2)初等变换法)。

线性代数期末复习题

线性代数复习题 一、判断题 (正确在括号里打√,错误打×) 1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即 3 3333222221 1111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( ) 2. 若一个行列式等于零,则它必有一行(列)元素全为零,或有两行(列)完全相同,或有两行(列)元素成比例. ( ) 3. 若行列式D 中每个元素都大于零,则D > 0. ( ) 4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. ( ) 5. 若矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. ( ) 6. 若矩阵A 与矩阵B 等价,则矩阵的秩R (A ) = R (B ). ( ) 7. 零向量一定可以表示成任意一组向量的线性组合. ( ) 8. 若向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. ( ) 9. 向量组s ααα,...,,21中,若1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. ( ) 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. ( ) 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. ( ) 12. 齐次线性方程组一定有解. ( ) 13. 若λ为可逆矩阵A 的特征值,则1 -λ为1-A 的特征值. ( ) 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. ( ) 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. ( ) 16. 若矩阵A 与矩阵B 相似,则R R =A B ()(). ( ) 二、单项选择题 1. 设行列式 , ,21 23 121322 21 1211n a a a a m a a a a ==则行列式 =++23 2221 131211a a a a a a ( ) n m + )A ( )( )B (n m +- m n - )C ( n m - )D ( 2. 行列式7 012156 83的元素21a 的代数余子式21A 的值为 ( ) 33 )A ( 33 )B (- 56 )C ( 56 )D (-

线性代数经管类——重点难点总结

4184线性代数(经管类)——重点难点总结 1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T 2、设A 是n m ?矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥ B .b Ax =(其中b 是m 维实向量)必有唯一解 C .m A r =)( D .0=Ax 存在基础解系 解:αααααααααααααααα 100 101 101)())(()())(()(T T T T T T T T ==, 由于)13(23)2,3(=??? ? ??=T αα, 所以10010010113)13()(==ααααT T ??? ? ??=???? ??=466913)2,3(2313100 100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k , 即0)()()()(443332221141=++++++-ααααk k k k k k k k ,

因为4321,,,αααα线性无关,必有??? ?? ??=+=+=+=-000043322141 k k k k k k k k , 只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0? B.A =E C.r (A )=n D.0

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

相关文档
最新文档