氧指数的测定实验报告

氧指数的测定实验报告
氧指数的测定实验报告

中南大学

消防工程教学实验

实验报告

实验一:氧指数的测定实验报告

一、实验目的

1.明确氧指数的定义及其用于评价高聚物材料相对燃烧性的原理;

2.了解HC-2型氧指数测定仪的结构和工作原理;

3.掌握运用HC-2型氧指数测定仪测定常见材料氧指数的基本方法;

4.评价常见材料的燃烧性能。

二、实验原理(可加附页)

物质燃烧时,需要消耗大量的氧气,不同的可燃物,燃烧时需要消耗的氧气量不同,通过对物质燃烧过程中消耗最低氧气量的测定,计算出物质的氧指数值,可以评价物质的燃烧性能。

所谓氧指数(Oxygen index),是指在规定的试验条件下,试样在氧氮混合气流中,维持平稳燃烧(即进行有焰燃烧)所需的最低氧气浓度,以氧所占的体积百分数的数值表示(即在该物质引燃后,能保持燃烧50mm长或燃烧时间3min时所需要的氧、氮混合气体中最低氧

的体积百分比浓度)。作为判断材料在空气中与火焰接触时燃烧的难

易程度非常有效。一般认为,OI<27的属易燃材料,27≤OI<32的属可燃材料,OI≥32的属难燃材料。HC-2型氧指数测定仪,就是用来测定物质燃烧过程中所需氧的体积百分比。

氧指数的测试方法,就是把一定尺寸的试样用试样夹垂直夹持于透明燃烧筒内,其中有按一定比例混合的向上流动的氧氮气流。点着试样的上端,观察随后的燃烧现象,记录持续燃烧时间或燃烧过的距离,试样的燃烧时间超过3min或火焰前沿超过50mm标线时,就降低氧浓度,试样的燃烧时间不足3min或火焰前沿不到标线时,就增加氧浓度,如此反复操作,从上下两侧逐渐接近规定值,至两者的浓度差小于0.5%。

三、实验仪器、设备

1.基本组成

型氧指数测定仪由燃烧筒、试样夹、流量控制系统及点火器组成。燃烧筒为一耐热玻璃管,筒的下端插在基座上,基座内填充一定高度的玻璃珠,玻璃珠上放

置一金属网,用于遮挡燃烧滴落物。试样夹为金属弹簧片,对于薄膜材料,应使用U型试

样夹。流量控制系统由压力表、稳压阀、调节阀、转子流量计及管路组成。点火器火焰长度可调,试验时火焰长度为10mm

2.仪器正常工作条件

环境温度:室温~40℃

气源:工业用氮气、氧气,纯度为>99%

输入压力:0.25-0.5MPa/min

工作压力:0.1-0.2MPa/min

3、技术指标

稳压精度:≤0.001MPa/min

响应时间:<10秒

数字分辨率:±0.1%

测量精度:0.5级

四、实验步骤及数据

实验步骤

1.将有机玻璃划50mm标线

2.检查气路,确定各部分连接无误,无漏气现象。

3.在空气中点燃试样,试样在空气中迅速燃烧,估计开始实验时的氧浓度为18%左右。

4.安装试样:将试样夹在夹具上,垂直地安装在燃烧筒的中心位置上,并保证试样顶端低于燃烧筒顶端至少100mm,罩上燃烧筒。

5.通气并调节流量,先开氮气,后开氧气,然后调节稳压阀,仪器压力表指示压力为0.1±0.01MPa,并保持该压力。调节流量调节阀,得到稳定流速的氧、氮气流。应注意:在调节氧气、氮气浓度到设计的浓度后,用调节好流量的氧氮混合气流冲洗燃烧筒30s

6.用点火器从试样的顶部中间点燃,勿使火焰碰到试样的棱边和侧表面。在确认试样顶端全部着火后,立即移去点火器,开始计时并在3min或者火焰灭后记录试样长度。

7.确定临界氧浓度的大致范围:点燃试样后,立即开始记时,观察试样的燃烧长度及燃烧行为。若燃烧终止,但在1s内又自发再燃,则继续观察和记时。如果试样的燃烧时间超过3min,或燃烧长度超过50mm,说明氧的浓度太高,必须降低,此时记录实验现象记“×”,如试样燃烧在3min和50mm之前熄灭,说明氧的浓度太低,需提高氧浓度,此时记录实验现象记“Ο”。如此在氧的体积百分浓度的整数位上寻找这样相邻的四个点,并要求这四个点处的燃烧现象为“ΟΟ××”。

实验数据

五、实验结果讨论

实验结果显示,该种材料的氧指数为17.5%~17.8%,属于易燃材料。

六、误差分析

1、实验时偶然因素比较多,可能由于实验材料放的位置不太合适而改变试样燃烧的速度。

2、实验时调节的流量调节阀的精度为1,故后缀的小数位只能凭借直观的观察,因而会导致实验结果的不精确

3、每次调节氧氮的含量比时没有充气30s以上去排除仪器中所有的气体,故会产生一定误差

实验一 材料的氧指数测定实验

实验一材料的氧指数测定实验 一.实验目的 1.明确氧指数的定义及其用于评价高聚物材料相对燃烧性的原理; 2.了解HC-2型氧指数测定仪的结构和工作原理; 3.掌握运用HC-2型氧指数测定仪测定常见材料氧指数的基本方法; 4.评价常见材料的燃烧性能。 二.实验原理 物质燃烧时,需要消耗大量的氧气,不同的可燃物,燃烧时需要消耗的氧气量不同,通过对物质燃烧过程中消耗最低氧气量的测定,计算出物质的氧指数值,可以评价物质的燃烧性能。所谓氧指数(Oxygen index),是指在规定的试验条件下,试样在氧氮混合气流中,维持平稳燃烧(即进行有焰燃烧)所需的最低氧气浓度,以氧所占的体积百分数的数值表示(即在该物质引燃后,能保持燃烧50mm 长或燃烧时间3min时所需要的氧、氮混合气体中最低氧的体积百分比浓度)。作为判断材料在空气中与火焰接触时燃烧的难易程度非常有效。一般认为,OI<27的属易燃材料,27≤OI<32的属可燃材料,OI≥32的属难燃材料。HC-2型氧指数测定仪,就是用来测定物质燃烧过程中所需氧的体积百分比。该仪器适用于塑料、橡胶、纤维、泡沫塑料及各种固体的燃烧性能的测试,准确性、重复性好,因此普遍被世界各国所采用。 氧指数的测试方法,就是把一定尺寸的试样用试样夹垂直夹持于透明燃烧筒内,其中有按一定比例混合的向上流动的氧氮气流。点着试样的上端,观察随后的燃烧现象,记录持续燃烧时间或燃烧过的距离,试样的燃烧时间超过3min或火焰前沿超过50mm标线时,就降低氧浓度,试样的燃烧时间不足3min或火焰前沿不到标线时,就增加氧浓度,如此反复操作,从上下两侧逐渐接近规定值,至两者的浓度差小于0.5%。氧指数法是在实验室条件下评价材料燃烧性能的一种方法,它可以对窗帘幕布、木材等许多新型装饰材料的燃烧性能作出准确、快捷的检测评价。需要说明的是氧指数法并不是唯一的判定条件和检测方法,但它的应用非常广泛,已成为评价燃烧性能级别的一种有效方法。 三.实验装置 HC-2型氧指数测定仪由燃烧筒、试样夹、流量控制系统及点火器组成(见

化工原理氧解吸实验报告

化工原理氧解吸实验报告 This model paper was revised by the Standardization Office on December 10, 2020

北京化工大学 化原实验报告学院:化学工程学院 姓名:娄铮 学号: 45 班级:环工1302 同组人员:郑豪,刘定坤,邵鑫 课程名称:化工原理实验 实验名称:氧解吸实验 实验日期: 2014-4-15 实验名称:氧解吸实验 报告摘要:本实验首先利用气体分别通过干填料层、湿填料层,测流体流动引起的填料层压降与空塔气速的关系,利用双对数坐标画出关 系。其次做传质实验求取传质单元高度,利用

K x a =G A /(V p △x m )]) ()(ln[) ()x -x (112221e22m e e e x x x x x x ----= ?X G A =L (x 2-x 1)求出 HOL= Ω a K L X 一、实验目的及任务: 1) 熟悉填料塔的构造与操作。 2) 观察填料塔流体力学状况,测定压降与气速的关系曲线。 3) 掌握液相体积总传质系数Kx a 的测定方法并分析影响因素。 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、基本原理: 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a ,并进行关联,得到K x a=AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为~2的直线(图中aa ’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始

氧吸收解吸系数测定实验报告

氧吸收/解吸系数测定实验报告 一、实验目的 1、了解传质系数的测定方法; 2、测定氧解吸塔内空塔气速与液体流量对传质系数的影响; 3、掌握气液吸收过程液膜传质系数的实验测定方法; 4、关联圆盘塔液膜传质系数与液流速率之间的关系; 4、掌握VOC 吸收过程传质系数的测定方法。 二、实验原理 1) 吸收速率 吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间传质速率表示。在连续吸收操作中,这三种传质速率表达式计算结果相同。对于低浓度气体混合物单组分物理吸收过程,计算公式如下。 气相内传质的吸收速率: )(i y A y y F k N -= 液相内传质的吸收速率: )(x x F k N i x A -= 气、液相相际传质的吸收速率: )()(**x x F K y y F K N x y A -=-= 式中:y ,y i ——气相主体和气相界面处的溶质摩尔分数; x ,x i ——液相主体和液相界面处的溶质摩尔分数; x *,y *——与x 和y 呈平衡的液相和气相摩尔分数; k x ,K x ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; k y ,K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积,m 2。 对于难溶气体的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达吸收速率式。 对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达吸收速率式。 本实验为一解吸过程,将空气和富氧水接触,因富氧水中氧浓度高于同空气处于平衡的水中氧浓度,富氧水中的氧向空气中扩散。解吸是吸收的逆过程,传质方向与吸收相反,其 原理和计算方法与吸收类似。但是传质速率方程中的气相推动力要从吸收时的(y -y * )改为 解吸时的(y *-y ),液相推动力要从吸收时的(x *-x )改为解吸时的(x -x * )。 2) 吸收系数和传质单元高度 吸收系数和传质单元高度是反映吸收过程传质动力学特性的参数,是吸收塔设计计算的必需数据。其数值大小主要受物系的性质、操作条件和传质设备结构形式及参数三方面的影响。由于影响因素复杂,至今尚无通用的计算方法,一般都是通过实验测定。 本实验计算填料解吸塔的体积传质系数K x a (kmol/(m 3 ·h))的公式如下:

化工原理吸收实验报告

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系

2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式: m p X A x V a K G ???= m p A x X /V G a K ?=? 2 211ln ) 22()11(e e e e m x x x x x x x x x --?---= )x -L(x G 21A = Ω?=Z V p 相关的填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z ?=-Ω=?12 OL OL N Z H = 其中, m x x e OL x x x x x dx N ?-= -=?2 11 2 Ω=a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=0.1m,吸收塔径φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和0.83m (金属θ环)。

氧指数检测法新旧标准的比较

氧指数检测法新旧标准的比较 氧指数法检测的方法标准是《塑料燃烧性能试验方法氧指数法》GB/T2406-93(以下称为旧标准),该标准在2008年进行了更新,被《塑料用氧指数法测定燃烧行为第1部分:导则》GB/T 2406.1-2008 代替。GB/T2406.1-2008 是试验导则,仪器设备的要求、检测方法具体内容则转移到了《塑料用氧指数法测定燃烧行为第2部分:室温试验》GB/T 2406.2-2009 (以下称为新标准)。 1.设备要求的改变 在设备要求方面,新标准燃烧装置与旧标准有不同的要求,表1列出了新、旧标准对试验的要求区别。从新旧标准对设备的要求变化可知,新标准对燃烧装置的尺寸要求放宽了,但强调了出口处的气流速度。旧标准所使用的燃烧设备,只需要进行一些小改动,并对燃烧筒出口处的气流速度进行校准,仪器即可重新投入使用。 2.试验环境要求的变更 旧标准对试验环境要求比较宽松,试验条件为10~35℃,相对湿度为 45%~75%。 新标准则对试验环境要求则比较严格,标准第7.4 节对状态调节作了如下要求: “除非另有规定,否则每个试样试验前应在温度23℃±2℃和湿度50%±5%条件下至少调节 88h。” 另外,新标准在试验步骤中反复对试验环境进行要求,新标准对试验环境有要求的章节分别 摘录如下: “8.1.1 试验装置应放置在23℃±2℃的环境中。必须时将试样放置在23℃±2℃和湿度50%±5%的密闭容器中,当需要时从容器中取出。 8.1.5 调整气体混合器和流量计,使氧/氮气体在23℃±2℃下混合……

8.3.3 移出试样,清洁燃烧筒及点火器。使燃烧筒温度回到23℃±2℃,或用另一个燃烧筒代替。” 新旧标准对比可知,新标准对试验环境要求比较严格。根据作者的试验经验,环境温度、湿度对氧指数检测存在一定的影响,新标准提高了试验环境的要求,排除了环境因素对试验结果的影响。因此,氧指数检测实验应该根据新标准的要求进行调整,以提高试验的精度。 3.试验方法的变更 3.1增加了试样状态调节要求 新标准增加了试样状态调节要求,每个试验前应在温度23℃±2℃和湿度50%±5%条件下至少 调节 88h。对于含有易挥发可燃物的泡沫材料试样,在温度23℃±2℃和湿度50%±5%状态调节前,应在鼓风烘箱内处理 168h,以除去这些物质。 3.2点燃方法的变更 新标准对顶面点燃法 (方法 A) 进行了修改,增加了连续施加火焰 30s,每隔 5s 移开火焰,检查试样的燃烧情况的要求。新标准的这项变更,使方法 A 与方法 B (扩散点燃法) 的操作方法得到了统一,可操作性更强。 3.3与规定的最小氧指数值比较法 (方法 C)新标准为氧指数检测增加了方法C——与规定的最小氧指数值比较法(简捷方法。此法比较适合建筑绝缘材料检测的需要,能大大提高检测的效率。 表 1 新、旧标准对试验装置要求的比较

氧指数的测定实验报告

氧指数的测定实验报告 This model paper was revised by the Standardization Office on December 10, 2020

中南大学 消防工程教学实验 实验报告 实验一:氧指数的测定实验报告 一、实验目的 1.明确氧指数的定义及其用于评价高聚物材料相对燃烧性的原理; 2.了解HC-2型氧指数测定仪的结构和工作原理; 3.掌握运用HC-2型氧指数测定仪测定常见材料氧指数的基本方法; 4.评价常见材料的燃烧性能。 二、实验原理(可加附页) 物质燃烧时,需要消耗大量的氧气,不同的可燃物,燃烧时需要消耗的氧气量不同,通过对物质燃烧过程中消耗最低氧气量的测定,计算出物质的氧指数值,可以评价物质的燃烧性能。所谓氧指数(Oxygen index),是指在规定的试验条件下,试样在氧氮混合气流中,维持平稳燃烧(即进行有焰燃烧)所需的最低氧气浓度,以氧所占的体积百分数的数值表示(即在该物质引燃后,能保持燃烧50mm长或燃烧时间3min时所需要的氧、氮混合气体中最低氧

的体积百分比浓度)。作为判断材料在空气中与火焰接触时燃烧的难易程度非常有效。一般认为,OI<27的属易燃材料,27≤OI<32的属可燃材料,OI≥32的属难燃材料。HC-2型氧指数测定仪,就是用来测定物质燃烧过程中所需氧的体积百分比。 氧指数的测试方法,就是把一定尺寸的试样用试样夹垂直夹持于透明燃烧筒内,其中有按一定比例混合的向上流动的氧氮气流。点着试样的上端,观察随后的燃烧现象,记录持续燃烧时间或燃烧过的距离,试样的燃烧时间超过3min或火焰前沿超过50mm标线时,就降低氧浓度,试样的燃烧时间不足3min或火焰前沿不到标线时,就增加氧浓度,如此反复操作,从上下两侧逐渐接近规定值,至两者的浓度差小于%。 三、实验仪器、设备 1.基本组成 型氧指数测定仪由燃烧筒、试样夹、流量控制系统及点火器组成。 燃烧筒为一耐热玻璃管,筒的下端插在基座上,基座内填充一定高度的玻璃珠,玻璃珠上放 置一金属网,用于遮挡燃烧滴落物。试样夹为金属弹簧片,对于薄膜材料,应使用U型试样夹。流量控制系统由压力表、稳压阀、调节阀、转子流量计及管路组成。点火器火焰长度可调,试验时火焰长度为10mm 2.仪器正常工作条件 环境温度:室温~40℃ 气源:工业用氮气、氧气,纯度为>99%

氧指数的测定过程

氧指数的测定过程 1.设备和试样的安装 试验装置应放置在温度23±2℃的环境中。选择起始氧浓度,可根据类似材料的结果选取,也可观察试样在空气中的点燃情况,如果试样迅速燃烧,选择起始氧浓度约在18%(体积分数),如试样缓慢燃烧或不稳定燃烧,选择的起始氧浓度约在21%(同上),如试样在空气中不连续燃烧,选择的起始氧浓度至少在25%(同上),这取决于点燃的难易程度或熄灭前燃烧时间的长短。 确保燃烧筒处于垂直状态,将试样垂直安装在燃烧筒的中心位置,使试样的顶端低于燃烧筒顶口至少100mm,同时试样的最低点的暴露部分要高于燃烧筒基座的气体分散装置的顶面100mm。 调整气体混合器和流量计,使氧/ 氮气体在23±2℃下混合,氧浓度达到设定值,并以40±2 mm/s 的流速通过燃烧筒。在点燃试样前至少用混合气体冲洗燃烧筒30s,确保点燃及试样燃烧期间气体流速不变。 2.点燃试样 根据试样的形状,选择一种点燃方式。 (1)I、II、III、IV 和VI 型试样,用顶面点燃法- 方法A。 顶面点燃法是在试样顶面使用点火器点燃。将火焰的最低部分施加于试样的顶面,施加火焰30s,每隔5s 移开一次,移开时恰好有足够时间观察试样的整个顶面是否处于燃烧状态。在每增加5s 后,观察整个试样顶面持续燃烧,立即移开点火器,此时试样被点燃并开始记录燃烧时间和观察燃烧长度。 (2)V 型试样,用扩散点燃法- 方法B。

扩散点燃法是使点火器产生的火焰通过顶面下移到试样的垂直面。下移点火器把可见火焰施加于试样顶面并下移到垂直面近6mm,连续施加火焰30s,包括每5s 检查试样的燃烧中断情况,直到垂直面处于稳定燃烧或可见燃烧部分达到支撑框架的上标线为止。 (3)单个试样燃烧行为的评价 当试样按照顶面点燃法或扩散点燃法点燃时,开始记录燃烧时间,观察燃烧行为。如果燃烧中止,但在1s 内又自己再燃,则继续观察和记时。 如果试样的燃烧时间和燃烧长度未超过表2 规定的相关值,记作“○”反应。如果燃烧时间或燃烧长度两则任何一个超过表1 中规定的相关值,记下燃烧行为和火焰的熄灭情况,此时记作“×”反应。材料的燃烧情况,如滴落、焦糊、不稳定燃烧、灼热燃烧或余辉。 表1 氧指数测量的判据 当不需要测定材料的准确氧指数,只是为了与规定的最小氧指数相比较时,则使用简化的步骤。试验三个试样,评价每个试样的燃烧行为,如果三个试样至少有两个在超过相关判据以前火焰息灭,则材料的氧指数不低于指定值,相反,材料的氧指数低于指定值。

氧解析-化工原理-吸收-实验报告

化工原理氧解析实验报告 课程名称:化工原理实验学校:化工大学 学院: 专业: 班级: 学号: 姓名: 实验日期: 同组人员:

一、实验摘要 本实验利用吸收柱使水吸收纯氧形成富氧水,送入解析塔顶再用空气进行解析,测定不同液量和气量下的解析液相体积总传质系数,并进行关联,同时对四种不同填料的传质效果及流体力学性能进行比较。 二、实验目的及任务 1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握液相体积总传质系数K x a 的测定方法并分析影响因素。 4、学习气-液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 三、基本原理 1、填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层“压降—空塔气速”关系示意如图1所示。 (1)在双对数坐标系中,此压降对气速作图可得斜率为1.8~2的直线(图中Aa 直线)。 (2)当有喷淋量时,在低气速下(c 点以前)压降正比于气速的1.8~2次方,但大于相同气速下干填料的压降(图中bc 段)。 (3)随气速的增加,出现载点(图中c 点),持液量开始增大,“压降—气速”线向上弯,斜率变陡(图中cd 段)。 (4)到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 lg u l g △p

2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图2所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,即平衡线为直线,操作线也为直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方程为 m p x A X aV K G ?=, 即 m P A x X V G a K ?=/ ])()(ln[) ()(11221122e e e e m x x x x x x x x X -----= ? ()12x x L G A -= Ω=Z V P 相关填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z =-Ω=?12 即OL OL N Z H /= m x x e OL x x x x x dx N ?-=-=? 21 1 2 Ω= a K L H X OL 图2 富氧水解吸实验 图1 填料层“压降—空塔气速”关系示意图

纺织品 燃烧性能试验 氧指数法

纺织品燃烧性能试验氧指数法 前言 本标准是非等效采用国际标准ISO 4589:1984《塑料燃烧性测定:氧指数法》,结合纺织品的特点,对国标GB 5454-85进行修改,其主要技术内容、试验方法程序与国际标准一致。 本标准继承了前版的主要技术内容,并对标准的名称、章节的编排及技术内容进行了补充和编辑性修改,增加了"前言",取消了附加说明,并将其内容并人前言中。 本标准名称修改为《纺织品燃烧性能试验氧指数法》。 第1章范围中增加本标准规定试样置于在什么条件下的试验方法内容,测定范围增加"包括单组分和多 组分"。 本标准增加第2章"引用标准",第3章增加3个名词和4个名词的对应外文词,增加第5章"试验人员 的健康与安全"。 第6章将"仪器"修改为"设备和材料",其内容作了编辑性的修改,增加一节"气体减压计"。 第7章将"试样"修改为"试样及调温",裁样数修改为"对于一般织物经、纬向至少各取15块",删掉"试验熔融性纤维制成的织物时,要缝上三根8~11Nm玻璃纤维……"制样试验方法。"试样平衡24h以上" 修改为"视试样薄厚调湿8~24h,待吸湿平衡"。 第8章增加"初始氧浓度的确定"、"升一降法","极限氧指数的测定"代替原标准6.7条。 本标准第9章,氧指数计算增加"K值系数确定表"、"氧浓度间隔的校验"、"精密度"三节。 本标准增加"附录A 氧浓度的计算",将"附录A参考件"名称改为"附录B",增加"附录C设备的校正" 和"附录D典型试验结果示例"。 本标准于1985年首次发布,1995年修订。 本标准的附录A是标准的附录。 本标准的附录B、附录C、附录D都是提示的附录。 本标准自生效之日起,同时代替GB 5454-85。 本标准由中国纺织总会提出。 本标准由中国纺织总会标准化研究所归口。 本标准起草单位:中国纺织总会标准化研究所。 本标准主要起草人:金纯秀、赵淑清。 中华人民共和国国家标准 纺织品燃烧性能试验氧指数法 Textiles-Burning behaviour-Oxygen index method GB/T 5454--1997 eqvISO 4589:1984 代替GB 5454-85 1、范围 本标准规定试样置于垂直的试验条件下,在氧、氮混合气流中,测定试样刚好维持燃烧所需最低氧浓 度(亦称极限氧指数)的试验方法。 本标准适用于测定各种类型的纺织品(包括单组分或多组分),如机织物、针织物、非织造布、涂层织物、层压织物、复合织物、地毯类等(包括阻燃处理和未经处理)的燃烧性能。

建筑节能氧指数检测作业指导书

#######工程技术有限责任公司 氧指数检测作业指导书文件编号: 版本号: 分发号: 编制: 批准: 生效日期:年月日

氧指数检测作业指导书 1、目的 了解材料的热物理特性,为合理使用与选择有关的功能材料提供依据。 2、范围 适应于测定匀质保温及墙体材料。 3、执行标准 3.1《塑料用氧指数法测定燃烧行为第1部分:导则》 GB/T 2406.1-2008 3.2《塑料用氧指数法测定燃烧行为第2部分:室温试验》 GB/T 2406.2-2009 4、仪器设备 4.1氧指数测定仪SK-YZS75/精度:±5%,测量范围:0-80%;输入压力:0.25-0.4MPa。 4.1.1设备要求: a)气体98%纯度的氧气和氮气,含氧气20.9%清洁空气(体积分数)。除非试验结果对混合 气体含湿量不敏感,否则含湿量应小于0.1%(质量分数)。 b)夹具应平滑,使上升气流受到干扰最小。 c)燃烧筒高(500±50)mm,内径(75至100)mm,顶端限流孔,收缩口直径40mm,高10mm, 排气流速至少90mm/s。 d)气体测试与控制装置,测量燃烧筒混合气体氧浓度(体积分数),准确至±0.5%,当在23℃ ±2℃通过燃烧筒气流为40mm/s±2mm/s时,调节浓度精度±0.1%。 e)点火器,末端2mm±1mm能插入燃烧筒并喷出火焰点燃试样,燃料未混入空气的丙烷,当 管子垂直插入时,应调节燃料供应量以使火焰向下喷射16mm±4mm。 4.2所用仪器设备应保证经过相关部门的检定,且应检定合格达到相应的精度,并在检定有效期内使用。 5、人员和环境要求 检验人员应是通过培训合格且取得相应上岗证书的技术人员,应了解本公司的《质量手册》及相关程序文件的质量要求,能熟练操作检验仪器设备并能处理一般例外情况的发生。试验环境:温度(23±2)℃。 6、试样要求 6.1应按材料标准进行取样,所取样品至少要能制备15根试样,也看按GB/T 2828.1-2003 或ISO 2859-2:1985进行。 6.2已知氧指数在±2以内波动的材料,需要15根试样,对于未知氧指数的材料,或显示不稳定燃烧特性的材料,需15至30根试样。 6.3必要时将试样放置在23℃±2℃和50%±5%的密闭容器中。 试样尺寸见表2

化工原理氧解吸实验报告

北京化工大学 化原实验报告 学院:化学工程学院 姓名:娄铮 学号: 2013011345 班级:环工1302 同组人员:郑豪,刘定坤,邵鑫 课程名称:化工原理实验 实验名称:氧解吸实验 实验日期: 2014-4-15

实验名称: 氧 解 吸 实 验 报告摘要:本实验首先利用气体分别通过干填料层、湿填料层,测流体流动引起的填料层压 降与空塔气速的关系,利用双对数坐标画出关系。其次做传质实验求取传质单元高度,利用 K x a =G A /( V p △x m )]) ()(ln[) ()x -x (112221e22m e e e x x x x x x ----=?X G A =L (x 2-x 1)求出 H OL = Ω a K L X 一、实验目的及任务: 1) 熟悉填料塔的构造与操作。 2) 观察填料塔流体力学状况,测定压降与气速的关系曲线。 3) 掌握液相体积总传质系数K x a 的测定方法并分析影响因素。 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、基本原理: 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a ,并进行关联,得到K x a =AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa ’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的1.8~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始增大,压降—气速线向上弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 2、传质实验 在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图下所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,及平衡线位置线,操作线也是直线,因此可以用对数平均浓 l g △p

材料的氧指数测定实验指导书

材料的氧指数测定 一.实验目的 1.明确氧指数的定义及其用于评价材料相对燃烧性的原理; 2.了解HC-2型氧指数测定仪的结构和工作原理; 3.掌握运用HC-2型氧指数测定仪测定常见材料氧指数的基本方法; 4.评价常见材料的燃烧性能。 二.实验内容 测量回转绳、地板革的燃烧氧指数,对应不同氧气浓度、氮气浓度下,测量材料的燃烧时间(或燃烧长度),最后总结燃烧结果。 三.实验仪器 HC-2型氧指数测定仪,秒表。氧指数测定仪由燃烧筒、试样夹、流量控制系统及点火器组成(示意图见下)。 1—点火器;2—玻璃燃烧筒;3—燃烧着的试样;4 —试样夹;5—燃烧筒支架;6—金属网;7—测温装 置;8—装有玻璃珠的支座;9—基座架;10—气体预 混合结点;11—截止阀;12—接头;13—压力表;14 —精密压力控制器;15—过滤器;16—针阀;17—气 体流量计。 图1 氧指数测定仪示意图 燃烧筒为一耐热玻璃管,高450mm,内径75~80mm,筒的下端插在基座上,基座内填充直径为3~5mm的玻璃珠,填充高度100mm,玻璃珠上放置一金属网,用于遮挡燃烧滴落物。试样夹为金属弹簧片,对于薄膜材料,应使用140 mm×38mm的U型试样夹。流量控制系统由压力表、稳压阀、调节阀、转子流量计及管路组成。流量计最小刻度为0.1l/min。点火器是一内径为1~3mm的喷嘴,火焰长度可调,试验时火焰长度为10mm。 四.试样 1.材料:回转绳、地板革 2.试样数量:每组应制备4个标准试样 3.外观要求:试样表面清洁、平整光滑,无影响燃烧行为的缺陷。 4.试样的标线:距离点燃端50mm处划一条刻线。

五.实验原理、方法 物质燃烧时,需要消耗大量的氧气,不同的可燃物,燃烧时需要消耗的氧气量不同,通过对物质燃烧过程中消耗最低氧气量的测定,计算出物质的氧指数值,可以评价物质的燃烧性能。所谓氧指数(Oxygen index),是指在规定的试验条件下,试样在氧氮混合气流中,维持平稳燃烧(即进行有焰燃烧)所需的最低氧气浓度,以氧所占的体积百分数的数值表示(即在该物质引燃后,能保持燃烧50mm长或燃烧时间3min 时所需要的氧、氮混合气体中最低氧的体积百分比浓度)。作为判断材料在空气中与火焰接触时燃烧的难易程度非常有效。一般认为,OI<27的属易燃材料,27≤OI<32的属可燃材料,OI≥32的属难燃材料。HC-2型氧指数测定仪,就是用来测定物质燃烧过程中所需氧的体积百分比。该仪器适用于塑料、橡胶、纤维、泡沫塑料及各种固体的燃烧性能的测试。 氧指数的测试方法,就是把一定尺寸的试样用试样夹垂直夹持于透明燃烧筒内,其中有按一定比例混合的向上流动的氧氮气流。点着试样的上端,观察随后的燃烧现象,记录持续燃烧时间或燃烧过的距离,试样的燃烧时间超过3min或火焰前沿超过50mm标线时,就降低氧浓度,试样的燃烧时间不足3min或火焰前沿不到标线时,就增加氧浓度,如此反复操作,从上下两侧逐渐接近规定值,至两者的浓度差小于0.5%。氧指数法是在实验室条件下评价材料燃烧性能的一种方法,它可以对窗帘幕布、木材等许多新型装饰材料的燃烧性能作出准确、快捷的检测评价。需要说明的是氧指数法并不是唯一的判定条件和检测方法,但它的应用非常广泛,已成为评价燃烧性能级别的一种有效方法。 六.实验步骤 1.检查气路,确定各部分连接无误,无漏气现象。 2.确定实验开始时的氧浓度:根据经验或试样在空气中点燃的情况,估计开始实验时的氧浓度。如试样在空气中迅速燃烧,则开始实验时的氧浓度为18%左右;如在空气中缓慢燃烧或时断时续,则为21%左右;在空气中离开点火源即马上熄灭,则至少为25%。根据经验,确定片材氧指数测定实验初始氧浓度为26%。氧浓度确定后,在混合气体的总流量为10l/min的条件下,便可确定氧气、氮气的流量。例如,若氧浓度为26%,则氧气、氮气的流量分别为2.5l/min和7.5l/min。 3.安装试样:将试样夹在夹具上,垂直地安装在燃烧筒的中心位置上(注意要划50mm标线),保证试样顶端低于燃烧筒顶端至少100mm,罩上燃烧筒(注意燃烧筒要轻拿轻放)。 4.通气并调节流量:开启氧、氮气钢瓶阀门,调节减压阀压力为0.2~0.3MPa,然后开启氮气和氧气管道阀门(绿色瓶为为氧气,黑色瓶为氮气,应注意:先开氮气,后开氧气,且阀门不宜开得过大),然后调节稳压阀,仪器压力表指示压力为0.1±0.01MPa,并保持该压力(禁止使用过高气压)。调节流量调节阀,通过转子流量计读取数据(应读取浮子上沿所对应的刻度),得到稳定流速的氧、氮气流。检查仪器压力表指针是否在0.1Mpa,否则应调节到规定压力,O2+N2压力表不大于0.03Mpa或不显示压力为正常,若不正常,应检查燃烧柱内是否有结炭、气路堵塞现象;若有此现象应及时排除使其恢复到符合要求为止。应注意:在调节氧气、氮气浓度后,必须用调节好流量的氧氮混合气流冲洗燃烧筒至少30s(排出燃烧筒内的空气)。 5.点燃试样:用点火器从试样的顶部中间点燃(点火器火焰长度为1-2cm),勿使火焰碰到试样的棱边和侧表面。在确认试样顶端全部着火后,立即移去点火器,开始计时或观察试样烧掉的长度。点燃试样时,火焰作用的时间最长为30s,若在30s内不能点燃,则应增大氧浓度,继续点燃,直至30s内点燃为止。 6.确定临界氧浓度的大致范围:点燃试样后,立即开始记时,观察试样的燃烧长度及燃烧行为。若燃烧终止,但在1s内又自发再燃,则继续观察和记时。如果试样的燃烧时间超过3min,或燃烧长度超过50mm (满足其中之一),说明氧的浓度太高,必须降低,此时记录实验现象记“×”,如试样燃烧在3min和50mm 之前熄灭,说明氧的浓度太低,需提高氧浓度,此时记录实验现象记“Ο”。如此在氧的体积百分浓度的整数位上寻找这样相邻的四个点,要求这四个点处的燃烧现象为“ΟΟ××”。例如若氧浓度为26%时,烧过50mm的刻度线,则氧过量,记为“×”,下一步调低氧浓度,在25%做第二次,判断是否为氧过量,直到找

水中溶解氧的测定实验报告

溶解氧的测定实验报告 xx 一、实验目的 1.理解碘量法测定水中溶解氧的原理: 2.学会溶解氧采样瓶的使用方法: 3.掌握碘量法测定水中溶解氧的操作技术要点。 二、实验原理 溶于水中的氧称为溶解氧,当水受到还原性物质污染时,溶解氧即下降,而有藻类繁殖时,溶解氧呈过饱和,因此,水中溶解氧的变化情况在一定程度上反映了水体受污染的程度。 碘量法测定溶解氧的原理: 在水中加入硫酸锰及碱性碘化钾溶液,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: MnSO 4+2aOH=Mn(OH) 2↓(白色)++Na 2SO42Mn(OH) 2+O 2=2MnO(OH) 2(棕色) H 2MnO

3十Mn(OH) 2=MnO 3↓(棕色沉淀)+2H 2O 加入浓硫酸使棕色沉淀(Mn0 2)与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深 2KI+H 2SO 4=2HI+K 2SO4 MnO 3+2H 2SO 4+2HI=2MnSO 4+I 2+3H 2O I2+2Na 2S 2O 3=2NaI+Na 2S

4O6用移液管取一定量的反应完毕的水样,以淀粉做指示剂,用标准溶液滴定,计算出水样中溶解氧的含量。 三、仪器 1.250ml—300ml溶解氧瓶 2.50ml酸式滴定管。 3.250ml锥形瓶 4.移液管 5.250ml碘量瓶 6.洗耳球 四、试剂 l、硫酸锰溶液。溶解480g分析纯硫酸锰(MnS0 4· H 20)溶于蒸馏水中,过滤后稀释成1000ml.此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液。取500g氢氧化钠溶解于300—400ml蒸馏水中(如氢氧化钠溶液表面吸收二氧化碳生成了碳酸钠,此时如有沉淀生成,可过滤除去)。 另取得气150g碘化钾溶解于200ml蒸馏水中,待氢氧化钠冷却后,将两溶液合并,混匀,用水稀释至1000ml。如有沉淀,则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,闭光保存。此溶液酸化后,与淀粉应不呈蓝色。 3.1%淀粉溶液:

材料氧指数影响因素及措施

材料氧指数影响因素及措施 1.氧指数仪的校准 JF-3 氧指数仪采用氧分析仪来测量氧浓度值并直接显示数值。为保证测试结果的准确性,设备使用前应先用标准气体对设备进行校准,调整设备水平,保证燃烧筒垂直。在校验过程中,笔者发现如果仅按照说明书中操作打开“空气校验”旋钮,调节“满度”使数值显示为21 后,试样测量结果数值会偏高,因为流过氧分析仪的空气流速达不到标准规定的要求。可通过使用压缩空气以40±2 mm/s 的流速通过燃烧筒,调节“满度”使数值显示为21,从而保证仪器校验准确。 2.燃烧残余物的清理 氧指数测定仪为了使气体充分混合均匀,基座底部用直径3~5 mm 的玻璃珠填充,填充高度为80~100 mm。氧指数试样燃烧后有时会有灰烬、滴落物,甚至是大块的燃烧残渣落下,在玻璃珠上方装有的金属网正是为了防止下落的燃烧碎片阻塞气体入口和配气通路。但是时间久了这些残余物仍然会堵塞金属网眼,同时该金属网无法阻挡燃烧滴落物等液态物质,这些滴落物渗过金属网会造成玻璃珠板结,导致气流阻塞或不均匀。为了保证实验数据的准确,应定期清理或更换玻璃珠和金属网。 3.试样的制备 试样的大小、形状、取向、表面情况都会影响测试结果,因此试样应保持清洁、平整光滑,无影响燃烧行为的缺陷,如气泡、裂纹、飞边、毛刺等。试样在试验前温度应在23±2 ℃,相对湿度(50±5)%条件下至少状态调节88 h,从而消除样品内应力,使样品内外达到平衡状态,减少结果的偏差。 4.通风橱的使用

氧指数仪在使用中会产生大量的烟尘,不仅污染室内环境还往往有一定毒性,一般应放在通风橱中使用,但在使用过程中需要注意通风橱的开启时间。试验中氧氮混合气体应以40 mm/s±2 mm/s 的流速通过燃烧筒,但是如果在试验中使用通风橱就会加快燃烧筒中混合气体的流速,导致测试结果偏高。通风橱应在每次实验完毕后开启。 5.温度控制 点火方式用顶端点燃法时应严格控制点火时间,火焰接触顶面最长时间30 s,并每隔5 s 移开观察试样燃烧情况。这样可以防止状态调节后的试样再次被火焰加热,从而得到较低的OI 值,因为多数材料随着温度的升高OI 值下降。此外,一个样条烧完后,燃烧筒的温度有所提高,如A 样氧指数18.0%,燃烧一个样条燃烧筒温度会升高约3~4 ℃;B样氧指数43.4%,燃烧一个样条燃烧筒温度会升高10 ℃以上;有的试样甚至会使燃烧筒温度超过60 ℃,这时如果继续用这个燃烧筒试验就会加热试样和燃烧筒里流过的气流温度,从而降低测试结果。因此,应通过准备2~3 个燃烧筒和试样架,保证试验过程的温度。 6.点燃气体 点燃气体的种类也会影响OI 值的测试结果。按要求,点燃气体应为未混有空气的丙烷,但有的为了图方便会使用打火机气(丁烷)作为点燃气。丙烷的燃烧热值为2 217.8 kJ/mol,丁烷的燃烧热值为2 653 kJ/mol,其热值不同火焰温度也不同,使用丁烷气会更易点燃试样,使测试结果产生偏差。 随着科技的不断发展,人们对材料燃烧性能提出了更高的要求,准确的氧指数值可以帮助研究材料的燃烧特性,根据使用要求调整配方最终满足需求。

化工原理实验报告(氧解析)

化工原理实验报告 实验名称:氧解析实验 班级:化实1101 学号:2011011499 姓名:张旸 同组人:陈文汉,黄凤磊,杨波 实验日期:2014.04.14

一、 报告摘要 本实验利用气体分别通过干、湿填料层,测流体流动因其的填料层压降与空塔气速的 关系,并利用双对数坐标画出关系。同时,做传质实验求取传质单元高度,利用公式求取H OL 二、实验目的及任务 1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握液相体积总传质系数K x a 的测定方法并分析影响因素。 4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 三、实验原理 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a 并进行关联,得到K x a =AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的1.8~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始增大,压降—气速线向上弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 2、传质实验 在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图下所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,及平衡线位置线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方程为: G A =K x a V p △x m 即K x a = G A / ( V p △x m ) 其中]) ()(ln[)()x -x (112221e22m e e e x x x x x x ----= ?X lg u a l g △p a’ b c d 填料层压降—空塔气速示意 x 1 y 1 y 2 x 2

氧指数试验作业指导书

WX057: LFY-606氧指数测定仪 作业指导书 一. 操作步骤: 1.组装好点火器。(点火头配购合适的瓶颈打火机气体,如553324号的韩国宝利来 高级打火机气体)。注意:点火卡盘要装正,不要有气体泄漏! 2.试验装置检查:将控制箱后盖板下端两侧分别与氧气瓶、氮气瓶连接。其中与前 面板对应的右侧为氧气管,左侧为氮气管。将后盖板下端正中的气管与与混合气体供应阀相连。首先顺时针旋紧氮气、氧气流量控制阀,关闭混合气体供应阀,然后打开氮气、氧气气瓶供气阀观察氮气、氧气流量计的浮子是否固定不动,若不动说明装置不漏气。关闭所有阀门,准备试验。 3.试样氧浓度的初步选择;当试样氧指数值完全未知时,可将试样在空气中点燃,如 试样迅速燃烧,则氧气浓度可以从18%左右开始。如果试样缓和的燃烧或燃烧的不稳定,选择初始氧浓度大约21%。若试样在空气中不能继续燃烧。选择初始氧浓度不小于25%。据此推定的氧浓度,从标准GB/T5454—97附录B中查出相应的氧流量和氮流量。 4.将试样装在试样夹中间并加以固定,然后将试样夹连同试样垂直安插在燃烧玻璃 筒内的支架上。 5.先打开氧气、氮气瓶阀门,再打开混合气体供气阀。用氮、氧气流量调节阀调节 从附录B中查出的相应的氧气和氮气流量,让调节好的气流在试样点火之前流动冲洗燃烧筒至少30s,在点火和燃烧过程中保持此流量不变。 6.用点火器点燃试样:将点火器头上方的阀头按逆时针方向打开,用打火机从气嘴细长管口处点燃点火器。将点火器伸入燃烧玻璃筒内在试样上点火。待试样上端全部点燃后(点火时间应控制在10—15s内),移去点火器,顺时针方向关闭点火器阀头,并立即开始测定续燃和阴燃时间,随后测定损毁长度。 7.初始氧浓度的测定:以任意间隔为变量,以“升—降法”按下述步骤进行:

氧解析实验报告(终稿)

氧解析实验报告 课程名称:化工原理实验 学校:北京化工大学 学院:化学工程学院 专业:化学工程与工艺 班级:化工 1001 学号: 17 姓名:闵翔 实验日期: 2013年4月8日 同组人员:吕博杨、刘子彦、玛莎莉娜

一、实验摘要 本实验利用吸收柱使水吸收纯氧形成富氧水,送入解析塔顶再用空气进行解析,测定不同液量和气量下的解析液相体积总传质系数,并进行关联,同时对四种不同填料的传质效果及流体力学性能进行比较。 二、实验目的及任务 1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握液相体积总传质系数K x a的测定方法并分析影响因素。 4、学习气-液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 三、基本原理 1、填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层“压降—空塔气速”关系示意如图1所示。

(1)在双对数坐标系中,此压降对气速作图可得斜率为~2的直线(图中Aa直线)。 (2)当有喷淋量时,在低气速下(c点以前)压降正比于气速的~2次方,但大于相同气速下干填料的压降(图中bc段)。 (3)随气速的增加,出现载点(图中c点),持液量开始增大,“压降—气速”线向上弯,斜率变陡(图中cd段)。 (4)到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。 图1填料层“压降—空塔气速”关系

2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图2所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,即平衡线为直线,操作线也为直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方程为 m p x A X aV K G ?=, 即m P A x X V G a K ?=/ ])()(ln[) ()(11221122e e e e m x x x x x x x x X -----=? ()12x x L G A -= Ω=Z V P 相关填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z =-Ω=?12

相关文档
最新文档