电厂电气监控管理系统

电厂电气监控管理系统
电厂电气监控管理系统

电厂电气监控管理系统

楚彦君,焦邵华,奚志江

(北京四方继保自动化股份有限公司,北京100084)

摘要:对发电厂中电气监控管理系统(ECMS )产生背景、系统构成、方案特点进行了介绍,阐述了火力发电厂ECMS 中关键技术点。ECMS 由站控层、分布控制层和间隔层构成。基于现场总线的ECMS 采用开放式网络结构,向电厂内生产、管理系统开放,提供全面可靠的电气信息。介绍了保护及故障信息管理、电气智能报警系统、电气控制逻辑、设备维护管理和诊断、系统在线自诊断技术、电气运行性能分析、控制权切换管理等特色的高级应用功能。该ECMS 在某发电厂进行了应用,提高了机组电气的自动化和信息化水平。

关键词:电力高级应用;现场总线;ECMS ;CSPA-2000分布式电气控制系统;分散控制系统中图分类号:TM 62;TM 734文献标识码:B 文章编号:1006-6047(2011)05-0126-04收稿日期:2010-07-26;修回日期:2011-03-01

电力自动化设备

Electric Power Automation Equipment

Vol.31No .5May 2011

第31卷第5期2011年5月

①中国电力工程顾问集团公司.现场总线技术在火力发电厂电气控

制系统中应用研讨会会议纪要.中国电力工程顾问集团公司文件电顾发电〔2008〕20号.

火电厂数字化(数字化电厂)是火电厂信息化的基础,而火电厂数字化的核心是推广应用现场总线系统[1]。

火力发电厂电气监控管理系统ECMS (Electrical

Control and Management System in power plants )①不与机组分散控制系统DCS (Distributed Control Sys -tem )通信,维持电气系统相对独立,加强电气高级应

用功能,提高了电气运行、维护、检修的水平。

1ECMS 构建

近些年火力发电厂已普遍采用了基于现场总线技术的电气监控系统ECS (Electrical Control System )[2-3],但由于目前受各种因素的影响,未能充分体现现场总线技术的优势,导致未能发挥预期的作用。ECMS 必须充分发挥发电厂电气成熟的现场总线技术和自动化技术,以提高发电厂自动化水平。1.1ECMS 方案

ECMS 方案是电气系统在发电厂自动化系统中相对独立的方案之一,其要点如下:机组集控室设置ECS 操作员站;发电机-变压器组、高低压厂用电源等电气设备的监视、控制和管理在ECS 实现;电动机的控制由DCS 实现;电动机的监测管理信息进入ECS ;ECS 不与DCS 通信,但要留有与DCS 通信接口;加强ECS 的电气信息管理功能。1.2系统网络结构介绍

CSPA-2000系统为基于现场总线的分布式电气控制系统,该系统具有开放式结构,向电厂内生产、管理系统开放,提供全面可靠的电气信息,实现全厂的全面信息化,同时提供丰富高级应用功能,对电气信息进行分类统计、分析,提高了电气信息管理水平。

CSPA-2000系统采用先进的分层分布式结构,系统分站控层、分布控制层和间隔层3层,分布控制

层和间隔层设备可分散分布配置,易于设备维护和系统扩展。系统结构示意图如图1所示。图中,ECMS 完成整个厂用电系统的监视管理并拥有电源部分的控制权,对电动机部分只作监视不作控制。

站控层是整个系统的控制管理中心,完成对整个系统的数据收集、处理、显示、监视功能,经过授权对电气设备进行控制。站控层对DCS /ECS 完全开放,为运行人员提供电气设备管理、操作功能。系统配有系统服务器、转发工作站、工程师站(可以兼做操作员站、性能分析站)。服务器作为系统的核心,为整个系统提供过程数据、报警SOE 、记录的实时处理和存储,具有高速、高效和高度灵活的特点,关键进程运行在系统服务器上,进行高速数据扫描和数据处理,实现高级分析功能。同时作为通信服务器,通过站级网络与分布控制层的分散控制单元或者直接与装置交换数据。转发工作站可向第三方系统如DCS 、SIS 、MIS 等系统转发遥测、遥信、电量和计算量,进行各种信息的实时交换。工程师站(性能分析站)完成系统维护、高级数据分析功能,具有故障分析管理、在线设备分析和诊断、控制权管理、事故追忆与反演、厂用电统计和节能分析等高级应用功能,具备强大的设备维护和管理功能。

分布控制层由通信和控制2类功能组成,完成站控层和间隔层之间的实时信息交换,实现与调度中心等的数据交换,还可实现电厂电气控制逻辑功能。站控层和间隔层之间采用现场总线网络,支持Profibus 、LonWorks 等主流现场总线网络,具有很好的实时性、可靠性和维护性。

间隔层由各种保护测控装置和智能设备组成,完成就地电气设备的保护、测量、控制功能,通过现场总线通信方式与分布控制层通信

站控层

服务器

服务器

操作员站

操作员站工程师站转发工作站转发工作站

主控单元实现电源部分逻辑控制

主控单元…

分布控制层

现场总线

电源部分

主控单元主控单元……

现场总线

电动机部分

DCS 主站

电动机部分

逻辑控制

DPU

硬接线

ECMS DCS 图1CSPA-2000分布式电气控制系统网络结构示意图

Fig.1Network structure of CSPA -2000distributed electric control system

1.3

以现场总线为主网络

针对厂用电系统终端设备数量多、范围广、实时性要求高等特点,特设分布控制层,对间隔层设备的保护、测控信息进行分析、处理,采用现场总线网送到主控单元,提高了数据处理效率和响应速度。1.3.1现场总线特点

现场总线是一个基层网络,而且还是一种开放式、新型全分布控制系统。其具有如下特点[4]:

a.系统开放性,现场总线的通信协议都是公开的,它可以与任何遵守相同标准的其他设备互联;

b.系统具有可互操作性与互用性;

c.现场设备的智能化与功能下发性,现场设备可以完成自动控制的基本功能,并可随时诊断设备的运行状态;

d.系统结构的高度分散性,现场总线构成全分布式控制系统的体系结构,提高了系统的可靠性;

e.对现场环境有较强的适应性,具有较强的抗干扰能力。

1.3.2现场总线的优越性

由于现场总线系统结构简单,使控制系统从设计、安装、投运到正常生产运行及其检修维护都体现出现场总线系统的优越性。主要表现在:提高了系统的准确性与可靠性;系统具有较好的可维护性,丰富的故障自诊断功能;在节省硬件数量与投资的同时,还可节省安装费用;增强了现场级信息集成能力。1.3.3采用的现场总线类型

现场总线采用了电气系统中的2种总线类型:LonWorks [5-8]总线和Profibus /DP [9-12]总线。6kV 综保设备采用LonWorks 现场总线,380V 综保采用的Profibus /DP 总线。

2电气信息化管理

电气信息量的增加对数据分析功能至关重要,CSPA -2000系统提供了丰富的高级应用功能,为指导生产运行、分析数据提供了强有力的手段。2.1电气信息的丰富性

电厂采用ECMS 后,电气信息量极大丰富,电气量是传统DCS 硬接线信息量的10倍以上。如某

600MW 机组ECMS I /O 信息量如下:硬接线信息量为1827,计算信息量为23556,通信信息量为944(电气专用设备通信),硬接线/总信息量为6.94%,计算量/总信息量为89.47%,通信信息量/总信息量为3.59%,ECMS I /O 总点数为26327。

由以上信息量可以看出对于600MW 单元机组信息量已经达到26000点以上,信息量规模很大,对

这样的海量信息,如何更好地使用是至关重要的。2.2丰富的数据处理和电气信息挖掘功能

CSPA -2000系统提供了丰富的数据处理和电气信息挖掘功能,下面进行简要介绍。2.2.1SCADA 功能

系统提供丰富的SCADA 功能。

a.组态功能:可在线进行画面组态、实时库组态、逻辑组态。

b.数据采集与处理功能。

c.控制操作功能。

d.数据库在线组态。

e.画面编辑、显示和打印功能。

f.灵活的报表功能:可提供日报表、月报表、年报表等不同形式报表,用户可根据需求灵活组态不同形式的报表,可实现报表管理、报表定义、报表打印等功能。

g.历史数据查询。

h.报警功能:报警模块可以及时地将系统运行中发生的事项以声、光、打印等方式通知值班人员。

i.在线计算功能。

j.事件顺序记录功能。

k.事故追忆功能:事故追忆功能可按用户需求自行配置事故前后的数据记录间隔和数据长度来分组记录事故时数据;事故追忆的触发可以是开关的事故跳闸或人工触发;支持多重事故追忆。

l.安全管理功能:具备完善的安全机制,用户能够自由组态操作权限,只允许有操作权限的操作员对特定的功能进行操作。2.2.2保护及故障信息管理

保护及故障信息管理包括保护定值管理、故障录波管理[13-15]、保护事件管理、系统日志管理、事故

间隔层

现场总线现场总线

楚彦君,等:电厂电气监控管理系统

第5期

追忆与反演、主控单元操作记录管理。

保护定值管理可以实现装置的定值管理,包括定值召唤、定值区切换、定值下装、定值固化、定值单保存、定值单打印等功能。

当发电厂故障引起保护及自动装置动作、开关跳闸时,系统把各测点的事件过程以毫秒级的分辨率正确记录,进行显示、打印和存贮,供事故分析、处理和查询。每条信息包括发生的时间、描述、动作状态等;同时提供故障录波的召唤、存储(COMTRADE 格式)和分析,实现故障透明化,便于保护动作后运行人员进行故障分析和处理。

事故追忆软件是CSPA-2000主站监控系统的高级应用软件之一,用于对系统的重要运行参数进行监视,一旦用户预定的事件(或称事故)发生,立刻将这些重要的运行参数在事故发生前一段的数据和事故发生后一段的数据保存下来,提供给用户对事故情况进行分析。事故记录采用全息断面的方式,无需为某个单独的事故配置记录点。

2.2.3电气信息智能报警功能

CSPA-2000系统的报警等级可灵活配置,根据用户的要求而增加。每种报警等级可以关联不同报警类型。针对于每一个测点也可以关联不同的报警等级,针对非常重要的测点可以单独配置报警等级,采用报警控件的方式在画面上单独组态,以用于特别报警监视。

智能化报警系统利用监控系统的实时数据信息,通过预定义的专家知识库快速筛选、提炼出关键信息和报警信息概要,分析故障位置,降低了人工分析报警信息的出错概率,为运行人员对事故的判断与处理赢得时间。

2.2.4电气操作闭锁和顺序控制功能

CSPA-2000系统的后台软件可以灵活方便地实现各种闭锁逻辑,间隔层的测控装置也具有本间隔的闭锁功能,实现了后台软件、间隔层的2层防误闭锁,满足了对断路器、隔离开关及接地刀闸操作的“防误”闭锁功能要求;同时根据现场运行逻辑,对设备实现顺序控制。

2.2.5设备维护管理和诊断

设备管理指厂用电系统中6kV设备的运行记录,包括电动机启动录波、设备分次数、设备合次数、事故分次数、报警预置故障次数、检修分次数、检修合次数、设备运行环境监控;同时记录设备的维护情况。

2.2.6系统在线自诊断

发电厂电气系统极大丰富了发电厂的电气信息,信息不仅涵盖测点信息、保护信息、通信信息,还包括各类自诊断信息。CSPA-2000系统具有先进的在线自诊断技术,可在线实现对通信网络、主控单元、现场保护测控单元、机组测控单元的硬件核心器件、软件运行状态、配置信息运行状态、通信状态进行在线诊断监测;可实现对SCADA系统服务器和工作站节点的进程、配置、通信状态进行在线诊断。

在系统网络通信中,可以实时看到各个主控单元双网状态、运行状态;各计算机节点双网状态、系统各个进程状态、内存、CPU使用情况等。

在主控单元网络通信图中可以实时地得到该主控单元下的各个装置的双网通信状态、装置的运行状态等信息。

在系统状态检测图中,可以实时地得到系统各个计算机节点的运行状态、网络状态、进程状态、各个服务状态等信息。同时可以进行计算机节点上服务的切换、ping操作等功能。

2.2.7电气运行性能分析

电气性能分析主要包括机组发电量统计、变压器负荷率统计、变压器损耗统计、厂用电回路功率因数统计、发电机功率因数统计、电度量分时统计、厂用电率统计、发电曲线、节能潜力分析生产节能报表。

2.2.8控制权切换管理

ECMS控制权管理功能基于IEC61131-3逻辑模块,控制权管理策略可以根据用户需求自由组态,控制操作及控制权的切换操作可以在任意一个系统上完成,主控单元可以记录必要控制操作信息,保证ECMS、DCS以及其他控制系统之间的控制权的可靠切换以及控制操作的安全管理。

3结论

ECMS的建设加快了电厂的数字化进程,为将来实现发电厂的信息化建设提供了基础。电力高级应用功能的增强,为发电厂电气运行和检修提供了有力的手段和保证。

参考文献:

[1]侯子良.推广应用现场总线系统全面实现火电厂数字化[J].中国电力,2004,37(3):72-75.

HOU Ziliang.Popularization of the field-bus system,total imple-mentation of the digital thermal power plant[J].Electric Power,2004,37(3):72-75.

[2]刘宏,顾肖.ECS在电厂脱硫电气系统的运用[J].电力自动化设备,2008,28(10):121-122.

LIU Hong,GU Xiao.Application of ECS in desulfuration system of power plant[J].Electric Power Automation Equipment,2008,28(10):121-122.

[3]戚建中.电厂厂用电监控系统ECS通信技术探讨[J].电力自动化设备,2007,27(1):108-110.

QI Jianzhong.Discussion on communication technology of power plant ECS[J].Electric Power Automation Equipment,2007,27(1):108-110.

[4]楚彦君,郑茂,李卫,等.现场总线应用于发电厂电气控制系统的研究[J].热力发电,2009,38(10):80-84,88.

CHU Yanjun,ZHENG Mao,LI Wei,et al.Study on application of field bus to electric control system in power plants[J].Ther-mal Power Generation,2009,38(10):81-84,88.

[5]何正友,钱清泉,刘学军.基于LonWorks技术的变电站自动化系统[J].电力自动化设备,2000,20(4):29-

30.第31卷

电力自动化设备

Electrical control and management system applied in power plants

CHU Yanjun ,JIAO Shaohua ,XI Zhijiang

(Beijing Sifang Automation Co.,Ltd.,Beijing 100084,China )

Abstract :The background ,structure and key technology of ECMS (Electrical Control and Management System )are introduced.The ECMS applied in fossil power plants has three layers :station control ,distributed control and compartment.The fieldbus -based ECMS adopts the network architecture ,open to the operation system and management system of power plant ,providing complete and reliable electric information.The advanced application functions are presented :the management of protection and fault information ,the intelligent electrical alarm system ,the electrical control logic ,the device maintenance and diagnosis ,the online system diagnosis ,the analysis of electric operating performances ,the management of control authority switching ,etc.Its application in a power plant enhances the automation and information level of electric island.

Key words :advanced power application ;field -bus ;ECMS ;CSPA -2000distributed electrical control system ;distributed control system

HE Zhengyou ,QIAN Qingquan ,LIU Xuejun.The integrated sub -station automation system based on LonWorks technology [J ].Electric Power Automation Equipment ,2000,20(4):29-30.[6]史旺旺,陈虹,刘敏华,等.智能建筑变电站综合自动化的分析和

实施[J ].电力自动化设备,2003,23(10):46-47.

SHI Wangwang ,CHEN Hong ,LIU Minhua ,et al.Analysis and implementation of intelligent building substation automation [J ].Electric Power Automation Equipment ,2003,23(10):46-47.

[7]刘志刚,何正友,钱清泉.基于LonWorks 电气化铁道监控系统的

研究和存在的问题[J ].电力自动化设备,2000,20(5):25-26.

LIU Zhigang ,HE Zhengyou ,QIAN Qingquan.Research on elec -trification railway supervisory system based on LonWorks and its existing problems [J ].Electric Power Automation Equipment ,2000,20(5):25-26.

[8]佘永红,许建昆.自动化系统在宝盖220kV 变电站的应用[J ].电

力自动化设备,2001,21(12):63-64.

SHE Yonghong ,XU Jiankun.Application of substation automa -tion system in Baogai 220kV substation [J ].Electric Power Au -tomation Equipment ,2001,21(12):63-64.

[9]丁劲松,李敏.现场总线与电厂全集成自动化[J ].电力自动化设

备,2004,24(10):66-67.

DING Jinsong ,LI Min.Fieldbus and power pl ant totally inte -grated automation [J ].Electric Power Automation Equipment ,2004,24(10):66-67.

[10]韩玉雄.Profibus 在变电站自动化系统中的应用[J ].电力自动化

设备,2002,22(6):66-67.

HAN Yuxiong.Discussion on application of Profibus in substa -tion automation [J ].Electric Power Automation Equipment ,2002,22(6):66-67.

[11]邓先明,杨宇,方荣惠.基于现场总线的煤矿供电自动化系统[J ].

电力自动化设备,2007,27(4):95-96.

DENG Xianming ,YANG Yu ,FANG Ronghui.Integrated auto -mation system based on field bus for coal mine power supply [J ].Electric Power Automation Equipment ,2007,27(4):95-96.[12]左成宝,胡海江,赵高晖.Profibus 总线在城市轨道交通控制系

统的应用[J ].仪器仪表学报,2005,26(增刊2):180-182,184.

ZUO Chengbao ,HU Haijiang ,ZHAO Gaohui.The application of Profibus to urban rail transit controlling system [J ].Chinese Journal of Scientific Instrument ,2005,26(Supplement 2):180-182,184.

[13]高翔,张沛超.电网故障信息系统应用技术[J ].电力自动化设

备,2005,25(4):11-14.

GAO Xiang ,ZHANG Peichao.Application technology of power fault information system [J ].Electric Power Automation Equip -ment ,2005,25(4):11-14.

[14]唐喜,孟岩.应用于电网故障信息关联的以太网通信协议[J ].

电力自动化设备,2006,26(9):61-64.

TANG Xi ,MENG https://www.360docs.net/doc/7d11287393.html,work communication protocol for as -sociation of power network fault information [J ].Electric Power Automation Equipment ,2006,26(9):61-64.

[15]钱海.信息技术在继电保护运行管理中的实际应用[J ].电力自

动化设备,2002,22(7):61-64.

QIAN Hai.IT application to operation management of relay protection [J ].Electric Power Automation Equipment ,2002,22(7):61-64.

(编辑:汪仪珍)

作者简介:

楚彦君(1975-),男,黑龙江齐齐哈尔人,产品经理,硕士,研究方向为自动化及计算机监控技术(E-mail :chuyanjun

@sf https://www.360docs.net/doc/7d11287393.html, )。

楚彦君,等:电厂电气监控管理系统

第5期

电厂电气自动化系统

发电厂电气自动化解决方案 发电厂电气自动化解决方案1.PDS-7000电厂电气自动化系统 电厂电气自动化系统(ECS)是指使用保护、测控、通信接口、监控系统等设备实现所有电厂电气设备的监测、控制、保护和信息管理。是实现发电厂电气自动化的全面解决方案。 国内大部分发电厂都采用集散控制系统(DCS)来实现热工系统的自动化运行,而传统的电气系统一般采用“一对一”的硬连接控制以及仪表监视,自动化水平相对落后。为了提升电气系统的自动化水平,应考虑建设相对独立的电气控制系统,ECS系统包括电厂所有电气子系统即升压站子系统、机组子系统和厂用电子系统。 PDS-7000电厂电气自动化系统适用于中小型电厂的电厂电气系统。 1.1系统特点 ★完整的电厂电气自动化解决方案 PDS-7000系统贯彻“以高性能的子系统构筑优异的电厂电气自动化系统” 的设计思想,包含了计算机监控系统、发电机机组子系统、升压站子系统、厂用电子系统,实现与电网调度通讯、与DCS通讯以及电厂内其它智能电气设备的接入等功能,构成了一个完整的电厂电气自动化系统。 PDS-7000电厂电气自动化系统采用分层分布式结构,从间隔层设备、通信网络到监控系统等各方面综合考虑,提供了完整的电厂电气自动化解决方案,系统结构更加清晰,信息的获得更加快捷,系统的维护更加简便,扩展更加灵活。 ★开放性设计思想 PDS-7000的开放性设计思想满足了系统扩展的灵活性,在从间隔层到站控层的各个环节的设计中,PDS-7000除了保持其自身的系统性和完整性以外,还可以方便的实现与其他智能设备的互相联接。 在系统的互联设计中,PDS-7000系统提供了与其它通信方式(以太网、RS-232C、EIA422/485或现场总线)的兼容性设计,这使得电厂电气自动化的设计或改造选择性更多、更灵活,能够方便的被接入DCS、SIS和远方调度。 ★可靠性

电力系统中的电气自动化技术 刘二保

电力系统中的电气自动化技术刘二保 发表时间:2017-12-05T11:59:20.030Z 来源:《建筑学研究前沿》2017年第18期作者:刘二保1 张全国2 [导读] 在电力系统的发展和创新下,电气自动化技术的应用越来越广泛,并在电力系统的生产发展进程当中取得了相当优异的成绩。摘要:伴随国内近几年来不断的进步和发展,科学技术的水平有了很大提高,在电力系统当中,电气自动化这一技术的优势也在不断的探索和完善过程中显现出来,而电力系统的发展也进入到了一个全新的阶段。电气自动化这一技术在不断的探索和创新当中,适用性是非常 广泛的,并且专业性也极强,随着国家对电网和电力系统事业加大建设力度,电气自动化的发展也日益蓬勃。关键词:电力系统;电气自动化;技术分析;应用 导言 随着人们对电力需求的不断增多,传统电力企业在满足社会生产对于电力的需求方面已经逐渐力不从心,而原来运用在电力系统当中的传统技术的弊端与不足也逐渐显露出来。在科学技术蓬勃发展的时代背景之下,电气自动化技术应运而生,将其运用在电力系统当中不仅能够大大减少工作人员的工作量,与此同时,还能够有效提升生产效率,促进电力系统的长效稳健发展。为此,研究电气自动化技术在电力系统当中的运用也具有极为重要的现实意义。 1 电力系统中电气自动化技术的使用背景和现状电力系统对于保持社会稳定和推动社会进步有着相当关键的作业,能够极大推动社会生产力的发展,确保国家军事信息的安全。近几年来,电力系统正在逐步进行各个方面的完善,但是与此同时也面对着能源枯竭的问题,其中的原因是由于电力系统和能源之间有着紧密的联系。目前,国内采取的发电类型主要包括两种,一个是火力发电,二是水力发电。前者发电形式使用的资源主要为不能再生的煤炭,众所周知,煤炭能源的匮乏让这一发电形式步入末路。而对于水力发电来说,国内的水资源应用规模仍然很小,处理措施尚不成熟,想要稳定应用水资源来进行发电还有很长一段路要走。电气系统中电气自动化技术的发展现状对于电力系统的发展过程中电气自动化技术的应用,可以划分成两个类型,首先是计算机网络方面的应用,其次是 PLC 方面的应用。然而电气自动化技术与其它行业领域的技术一样,具备自身的核心技术支持,而这两个类型中的计算机网络技术可以说是其核心技术支持,同时该技术也是电力系统中应用比较普遍的技术。可以说,电力系统能够具备自动化配电功能,很大程度上是由于计算机网络技术的应用,无论是对于供电变电过程,还是输电配电的过程,计算机技术都有着重要的作用。2电气自动化的技术特点2.1电气自动化是信息化水平发展到一定高度的综合体现信息技术是指导电气自动化技术的发展的必要条件,信息技术在电气自动化技术中时刻能够体现出来,信息技术在电气自动化技术中的渗透于不单单表现在电气自动化设备的运行过程中,还表现在电气自动化的管理与处理等方面。随着科学技术的不断进步,信息技术在各个领域也得到了广泛的应用,为了使生产设备之间减少空间及概念上的距离,应当使单独的设备进行有效融合,消除其间的界限,这样才能使得生产效率得到提高,同时特提高了生产的管理水平。 2.2电气自动化具有良好的维护性,操作简单笔者从多年的实际工作经验中发现,电气自动化技术与网络技术是密不可分的,两者相辅相成、互相弥补。网络技术能够凭借自身较强的可操作性及完善的功能将所需要的重要信息从复杂的信息数据中筛选出来,并对所筛选的结果进行有效整合。现阶段计算机技术也逐渐趋于成熟,将计算机技术与网络技术进行有效结合,形成一个稳定可操控的系统,并将其应用于电气自动化系统中,从而提高电气自动化系统的可控性。 2.3有利于控制成本的,提高工作效率在电力系统中应用电气自动化能够最大程度上提高企电力企业的工作效率,减少操作电力系统的人力,有效保障了供电的安全性等,从而提高电力企业的经济效益、降低电力企业的运营成本。3电气系统对电气自动化技术的需求 3.1电力系统控制的数据化需求当前,国内每个行业领域都逐渐朝着数据化的方向发展,要想适应社会与经济的发展需求,电力系统的发展就需要不断提升本身的数据化水平。而且对于电力领域来讲,社会对输出单位电力的资源耗损的需求与对电厂生产过程中对能源造成的损失需求愈来愈高,这便需要电厂通过一定的技术手段来着实减少本身生产单位千瓦时电力的能源消耗量,改变企业的电力系统工作效果。电气自动化技术不但具备其它控制系统自动控制设备作业的特点,而且由于该技术是在数据化的基础上成长起来的,因此还具有信息采集、输送与处理的能力,使得电力管理部门可以简便地监控电力系统的运行情况,在很大程度上改善了电力系统的工作效果。 3.2电力系统控制的稳定性需求要提高一个国家的经济水平,就必须先要将电力系统的建设做好。任何行业都不能离开电力行业的建设,电力是其他行业发展的根基,无论是普通用户的平日生活,还是大型企业的制造运营,都与电力系统有着密切的关系。国内已经步入电气化阶段,电力系统已经变为保持社会稳定和提高经济水平的关键工具,其对电力系统的稳定可靠输电有着较高要求。这便需要电力系统拥有发现故障、查找故障和处理故障的能力,尽量地简化设施人工操作程度。如果电力系统出现问题,需要系统能够以最快的速度来进行故障诊断与维修。电气自动化技术与以往电力系统使用的物理操作形式不一样,其具备控制方式简捷、控制过程安全稳定等特点,将电气自动化技术使用到电力系统中,能够满足电力系统对自动化与智能化的需求,方便快速查找电力系统中的问题部位且做出合理的调节。4电气自动化技术在电力系统中的应用 4.1仿真技术的应用在电气自动化技术应用的过程中促进了电气自动化技术的发展。随着电气自动化技术的快速发展,该技术已经实现了对复杂实验数据同步控制,使该技术的发展趋于真实化。在仿真技术中使用电气自动化技术,能够达到时刻监控电力系统的目的。 4.2智能技术的应用

发电厂电气主系统

第一题、单项选择题(每题1分,5道题共5分) 1、有机压母线时,厂用高压工作电源的引接方式是 A、发电机出口 B、主变低压侧 D、与电力联系紧密的最低一级电压的 C、发电机电压母线 升高电压母线 2、在中小型水力发电厂中,备用电源的设置方法是 A、明备用 B、暗备用 D、与电力联系的最低一级电压的升高 C、设置外部独立电源 电压母线 3、大型水电厂厂用母线的分段原则是 A、按机组台数分段 B、按主变台数分段 C、按炉分段 D、只分两段 4、发电厂厂用电高压接线,常采用 A、双母线接线 B、单母线分段 C、单母线分段带旁路母线 D、单母线 5、200MW机组的厂用电电压等级为 A、380/220V B、3kV和380/220V C、6kV和380/220V D、10kV和380/220V 第二题、多项选择题(每题2分,5道题共10分) 1、厂用高压工作电源的引接方式有 A、发电机电压母线 B、主变低压侧 C、发电机出口 D、联络变的低压侧 E、从与电力联系紧密的最低一级电压的升高电压母线 2、厂用高压备用电源的引接方式有 A、从与电力联系紧密的最低一级电压的升高电压母线

B、发电机电压母线 C、主变低压侧 D、发电机出口 E、联络变的低压侧 3、影响厂用电电压等级的因素有 A、电动机的容量 B、厂用负荷的分类 C、发电机的容量 D、发电机的电压 E、厂用电网络可靠,经济运行 4、火电厂厂用电采用 A、按炉分段 B、明备用 C、按机组分段 D、暗备用 E、单母线接线 5、水电厂厂用电采用 A、按炉分段 B、明备用 C、按机组分段 D、暗备用 E、单母线接线 第三题、判断题(每题1分,5道题共5分)1、大型火电厂厂用电母线按机组分段.

关于火力发电厂的电气一次系统设计方法分析

关于火力发电厂的电气一次系统设计方法分析 摘要电是支持人们生产经营活动顺利开展的重要支柱,随着我国社会经济的飞速发展,对于电力的需求逐渐增大,极大程度上提升了电能资源生产压力。当前,我国仍以火力发电的方式为主,因此,为提升发电质量和效率,保障电力运输的稳定性,应加大对火力发电厂中电力一次系统设计的重视程度,注意设备之间的连接方式,通过引进先进电气一次系统设计理念等方式,创新火力发电程序,转变传统火电厂发电模式。本文从选择发电机、主变压器等五个方面重点分析电气一次系统设计的方式。 关键词电力一次系统;发电机;变压器;接线方式 火力发电仍是我国主要的发电方式,因此,应重视对火力发电厂的建设,电气一次系统作为发电厂运行过程中重要组成部分,不仅直接关系着发电厂工作模式,也影响着整体工作效率。工作人员需结合发电厂实际情况,创新电气一次系统的设计方式,在设计过程中必须严格遵循我国相关标准,并不断引进先进接线方式和电气设备,做好电气一次系统的日常维护,确保火力发电厂的顺利运行。 1 选择合适的发电机 一次设备是电力系统的主体,主要是指直接生产、运送、调配电能的设备[1],发电机是其中重要组成部分,在设计电力一次系统时,应根据火力发电厂的实际供电范围,选择恰当的发电机容量,须坚持与发电厂汽轮机容量相一致的原则,具体包括以下几方面:首先,根据发电厂的额定电压、功率因数确定发电机型号与容量;其次,有机统一汽轮机额定出力能与发电机额定容量;接着,保障汽轮机最大连续容量与发电机最大连续容量相协调;最后,确保冷却器(发电机零部件)进水温度与汽轮机冷却水的温度相一致[2]。发电机的选择应同时满足以上四个原则,使其更好地运行,进而提升发电厂整体工作效率和经济效益。 2 选择恰当的主变压器 选择主变压器主要与机组容量有关,不同的机组容量,主变压器的形式也有所不同,具体包括以下三种形式,如表1所示[3]: 从表1中可知,主变压器共有两种形式,即单相变压器与三相变压器,在选择单相变压器时,应注意其备用相的设置原则:当系统中的安装机组≦2台时,可不设置备用相;当系统中的安装机组≧3台时[4],应设置一台或一台以上的备用相,但需要注意的是,如果发电厂附近有企业所属电厂已经设置备用相(同等参数),也可以不在系统中设置备用相。 连接主变压器设备和发电机设备采取单元的方式,因此,在确定主变压器本身容量时,应注意遵循以下原则:主变压器本身容量=发电机最大连续容量-常用工作变压器计算负荷。

变电站综合自动化系统设计方案

变电站综合自动化系统设计方案 1.1.2 研究现状 变电站综合自动化系统是利用先进的计算机技术、现代电子技术、通信技术和信息处理技术等实现对变电站二次设备(包括继电保护、控制、测量、信号、故障录波、自动装置及远动装置等)的功能进行重新组合、优化设计,对变电站全部设备的运行情况执行监视、测量、控制和协调的一种综合性的自动化系统。通过变电站综合自动化系统内各设备间相互交换信息,数据共享,完成变电站运行监视和控制任务。变电站综合自动化替代了变电站常规二次设备,简化了变电站二次接线。变电站综合自动化是提高变电站安全稳定运行水平、降低运行维护成本、提高经济效益、向用户提供高质量电能的一项重要技术措施。 如今变电站综合自动化已成为热门话题,研究单位和产品也越来越多,国内具有代表性的公司和产品有:北京四方公司的CSC 2000系列综合自动化系统,南京南瑞集团公司的BSJ2200计算机监控系统,南京南瑞继电保护电气有限公司的RCS一9000系列综合自动化系统,国电南自PS 6000系列综合自动化系统、武汉国测GCSIA变电站综合自动化系统、许继电气公司的CBZ一8000系列综合自动化系统。国外具有代表性的公司和产品有:瑞典ABB的MicroSCADA自动化系统等。现在的变电站自动化系统将站内间隔层设备(包括微机继电保护及自动装置、测控、直流系统等)以互联的方式与主机实现数据交换与处理,从而构成一种服务于电网安全与监测控制,全分散、全数字化和可操作的自动控制系统。 本系统站控层用的软件工具是瑞典ABB公司开发的用于变电站自动化系统的MicroSCADA和COM500,COM500作为前置机,它是整个系统数据采集的核心,MicroSCADA用于后台监控;间隔层测控装置用的主要是芬兰ABB公司生产的是REF54_系列和瑞典ABB公司生产的REC561等自动化产品,远动装置用的是浙江创维自动化工程有限公司自主研发CWCOM200。

电厂电气自动化系统管理及通讯技术探讨

电厂电气自动化系统管理及通讯技术探讨 发表时间:2019-09-03T10:11:39.713Z 来源:《建筑模拟》2019年第30期作者:张新梅[导读] 电厂的电气自动化系统通过厂家网络将测控、微机保护、备用投入等智能化装置联网实现智能化管理,利用网络通信的方式实现与电网调度、电厂DCS系统的信息交换。 张新梅 大唐三门峡发电有限责任公司河南省三门峡市 472143 摘要:电厂的电气自动化系统通过厂家网络将测控、微机保护、备用投入等智能化装置联网实现智能化管理,利用网络通信的方式实现与电网调度、电厂DCS系统的信息交换。电厂电气自动化系统为电气系统的电气运行、电气故障定位分析提供了资源保障,也提高了电气系统的安全性、经济性、可靠性。本文对电厂电气自动化系统管理及通讯技术进行探讨。 关键词:电气自动化;系统管理;通讯技术 引言:目前电厂电气系统包括发变组保护、厂用电、励磁系统等等的自动化水平还相对落后。文中在此基础上,利用先进的测控技术、网络技术,研发了基于网络的火电厂电气分层分布式的电气自动化系统。该系统集管理、通信、测控、保护等功能于一体,可完成电厂整个电气系统的信息管理、实时信息监控、电能管理、GPS对时等功能。为电气系统的运行管理和故障分析提供了可靠的数据保障,可大大提高电厂电气系统的自动化水平。 一、电厂电气自动化技术特征 1、发电效率的提升 在社会经济发展作用下,人们对于电力供应质量与数量的需求不断提升,这也使得电厂运行期间有了全新的挑战,并使得强化电厂运行效率逐渐成为了人们关注与研究的主要问题之一。在以往的电厂设备中,通常需要工作人员对其进行操作与控制,使其运行效率的提升受到阻碍。而对电气自动化进行使用,可确保电厂自动化运行与控制的实现,促进其发电效率快速提升,更好的满足社会供电需求。 2、发电成本下降 现阶段,电厂使用的发电原材料主要为石油以及煤炭等资源,同时传统电厂技术也存在着较为明显的不足,使得这种资源利用率相对较多,发电效果也相对较差,使用资源较多但却没有产生预期的电量,使得发电成本快速提升。而在电厂中使用电气自动化技术,可较好实现对各种燃烧模式进行自动化控制,使燃料燃烧率得到全面的提升,有效降低燃料燃烧费用,使发电成本明显的降低了。 二、电厂电气自动化系统的管理研究 电厂电气自动化系统在运行过程中会受到各个功能的作用及保护,无论是对故障进行分析,还是实现信息管理,都可以通过这一系统集中运行,从其本质进行研究可以发现,该系统运行是以计算机控制及测控技术为主导,这样就能在复杂的系统环境下进行分层管理,而通信技术的应用优势也能进一步凸显。电厂电气自动化系统能够简化及优化电气运行流程,为后续电气运行及管理提供便利条件,这不仅能够有效提高电气信息应用能效,更能强化电厂内部联系,确保各个关联项目之间都能精准衔接。 电力电气系统在实际运行过程中能够充分发挥其信息报警及图形接口等作用,电气设备在运行中的实时状态可以通过绘制曲线图等形式表现出来,数据等信息能够精准显示,就能使得运行环境更为清晰、明了的表现出来,这也就能够为潮流监控功能的实现提供基础保障。信息报警涵盖多种报警项目,在系统运作时,只要各项运行指标的能效发挥状态超出预设标准、智能设备出现异常运行状态等,系统就会自动报警;事件报告能够对人工操作等项目的运行流程进行记录,并以报告形式展现出来;图形接口能够在结合实际运行标准的基础上,对报表数据进行调整;报表功能则能够对潮流及电量进行记录,无论是开关动作次数还是电气设备检修都能以报表形式得以显示。 首先,电气设备管理。利用此系统测控装置的计量和转换电表脉冲信号的功能,在系统主站进行电量在线统计生成报表,可实现厂用电抄表系统的全部功能,另外可统计系统实时潮流信息。系统可实现对在线的电气设备管理,现场信息可传送到MIS系统,补充MIS系统的数据,可实现对电气设备档案、台账、维修记录的统计等等。 其次,故障信息管理。可对设备动作,事件信息SOE、事故重演、事件追忆、录波分析等功能实现信息管理,可对事故原因分析起到重要作用,对事故防范提供借鉴。例如可通过对电动机启动时的波形和在线运行状态,分析电动机相关故障,实现对电动机的故障检修。 第三,定值管理。此系统可实现对定值的在线校核和远方修改。随着科技的不断发展,电厂未来电气的主站系统可扩展为可视化电厂定值管理系统和继电保护整定计算;最后,小电流接地选线管理。目前的小电流接地选线技术还是由独立的系统单片机计算得到,而电厂电气系统形成的网络可使每路CPU间可并行采集计算,极大的优于目前的小电流接地选线装置技术。使小电流接地选线管理水平得到极大的提高。 三、电厂电气自动化系统通讯技术 1、网络通讯技术的应用 在现场总线通讯技术之前,电厂电气系统广泛采用串行通信技术。这种通讯技术在实际应用中不断暴露出各种问题,诸如通信速率低、较难实现星型拓扑结构时系统站点和功能的扩展、不能在通信网中设置一个以上的主机等等。随着生产现场对自动化技术要求的不断提高,现场总线在电厂电气自动化系统应用中的不足逐步凸显,主要表现为系统的通讯节点超过一定数量时,系统的响应速度不能满足厂家系统对通讯的要求;拓扑结构的网络系统任何一个节点都可能导致整个系统的崩溃;系统的大量数据的传输延时不能满足系统要求等等。 因此具有可擴展性、高带宽、可靠性等诸多优点的以太网逐步成为电厂电气自动化系统的主导通讯技术。以太网以其优越的性能成为网络连接的标准,不仅在电厂电气系统得到应用,也应用到大量工业控制领域。以太网具有以下优势:可根据通讯要求在一个网络中混合使用光纤、双绞线等各种通讯介质;以太网被通讯用的交换式集线器分为多个冲突域,这样就大大增加了系统的响应速率,就目前形势和可见的将来,以太网完全可以满足电厂电气系统的通讯节点和通讯实时性的要求;以太网的标准IEEE802.3已经成为国际通用标准,具有开放系统的共性。随着以太网的不断推广,各种网络通讯设备和工具也得到大量使用,使得以太网的成本得到大大的降低;以太网的布线技术是基于集线器的总线拓扑结构,使得以太网通讯达到高标准的可靠性,每个节点都被集线器隔离开来。因此单环的环网可做到任何一点的固执都不会影响整个系统的通讯,可准确定位故障点,大大优化了网络通讯。

火力发电厂电气事故案例大全

电气事故 鸭溪电厂做50%甩负荷试验违章指挥造成#2高压厂变严重损坏(2005年)[序]2005年6月11日9时42分#2机组在做50%甩负荷试验过程中造成#2高压厂变损坏,给整个试运及机组移交后的安全运行带来了严重的影响,为吸取经验教训,落实责任,督促各部门认真执行和落实防范措施,特通报如下: 【事故经过】 2005年6月11日9时30分#2机组首次带负荷至150MW,准备做甩50%负荷试验,试验前由于考虑到甩负荷应接近运行的实际工况,厂用电未按试验方案倒至备用电源运行。9时39分中试所试运指挥钟晶亮下令做甩50%负荷试验,运行值长向海扬接令并向中调申请同意后下令给电气运行副操王飞手动按下5022、5023开关跳闸按钮,同时锅炉手动停运B球磨机及D1、D4火嘴,机组甩负荷后带厂用电运行,汽轮机转速最高飞升至3061r/min,转速下降后在2748~2870 r/min之间波动,汽包水位随之大幅度波动(最高+160mm,最低-241mm),开大电动给水泵勺管开度至90%。9时42分钟,晶亮下令用并切方式切换厂用电,电厂参加试运人员及时向其提出不能采用并切方式,但其继续下达了并切厂用电的命令,运行值长向海扬接令后又向电气运行副操王飞下达了并切厂用电的命令,王飞用并切半自动首先切换6kVⅡA段厂用电源,在备用电源开关6202合上后拉开工作电源开关6201时, #2发变组故障跳机, 6kVⅡB段保护启动切换成功,检查高厂变复压过流,高厂变轻、重瓦斯,高厂变差动保护动作,#2高压厂变呼吸器处喷油。 事后对#2高压厂变吊盖解体检查发现低压侧A分支:A相线圈扭曲;B相线圈上部有两处匝间短路;C相线圈下部有多匝线圈烧熔、铁芯9处损伤、10片局部烧熔。 【事故原因】 1.发电机甩负荷后转速不能维持3000 r/min在2748~2870 r/min之间波动是因为发电机带有厂用负荷,中缸排汽压力超过动作定值,造成OPC频繁动作所至。 2.#2高压厂变损坏的主要原因是发电机甩负荷后与鸭电线220 kV系统已成为两个独立的系统,由于错误地采用了并切厂用电的方式造成非同期合环,导致发电机振荡,在远大于高压厂变额定电流的振荡冲击电流长达10秒钟的交变冲击作用下引起。(后从发电机录波数据中查核为1700A~8000A)。 【暴露的问题】 1.对汽轮机的热工保护不熟悉,未深入研究分析带厂用电甩负荷可能出现的问题,从

火力发电厂电气系统调试知识讲解

一调试概述 1.调试概念及内容 火电厂电气调试工作的主要任务是:当电气设备的安装工作结束以后,按照国家有关的规范和规程、制造厂家技术要求,逐项进行各个设备调整试验,以检验安装质量及设备质量是否符合有关技术要求,并得出是否适宜投入正常运行的结论。 电气调试的主要内容是:对电厂全部电气设备,包括一次和二次设备,在安装过程中及安装结束后的调整试验;通电检查所有设备的相互作用和相互关系;按照生产工艺的要求对电气设备进行空载和带负荷下的调整试验;调整设备使其在正常工况下和过度工况下都能正常工作;核对继电保护整定值;审核校对图纸;编写厂用电受电方案、复杂设备及装置的调试方案、重要设备的试验方案及系统启动方案;参加分部实验的技术指导;负责整套启动过程中的电气调试工作和过关运行的技术指导。 为使调试工作能够顺利进行,调试人员事前应研究图纸资料、设备制造厂家的出厂试验报告和相关技术资料,了解现场设备的布置情况,熟悉有关的电气系统接线等。除此以外,还要根据有关规范和规程的规定,制定设备的调试方案,即调试项目和调试计划。其中调试项目包括:不同设备的不同的试验项目和规范要求,并在可能的情况下列出具体的试验方法、关键的试验步骤、详细的试验接线以及有关的安全措施等。调试计划则包括:全厂调试工作的整体工作量,具体时间安排,人员安排,所需实验设备、工机具以及相关的辅助材料等。

全厂电气设备的单体调整和试验;配合机械设备的分部试运行;还有全厂总的系统调试是火电厂整体启动不可分割的三个重要环节。在每个环节当中,电气调试则总是调试启动的先锋,没有全厂厂用电的安全运行,全厂的分部试运行就无从谈起,更没有可靠的系统调试运行。因此,火电厂厂用电调试组织的好坏与否,将是直接影响全厂系统调试的关键。 2.调试工作的组织形式 1)按专业分 仪表调校组(负责现场安装的仪表的校验和调整,试验用0.5级仪表的校验和调整)。 高压试验组(负责电气设备的绝缘试验和特性试验等工作) 继电保护组(负责继电保护的校验和整定工作) 二次调试组(负责校对图纸、查对接线、回路通电试验及操作试验等工作) 2)按系统分 厂用电机组;变压器组;发电机组等。 每个组的工作任务均包括:仪表、高压、继电保护、二次调试等的调试工作。 但是以上两种方式并不是一成不变的,往往根据调试人员的水平、工期的长短等而有所改变,目的是更好地完成全厂的电气调试任务。对于调试人员的培训,可按"多能一专"的原则进行。 3)调试工作的安全工作

4200MW火力发电厂的电气部分设计

摘要 由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。 电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。电能的使用已经渗透到社会、经济、生活的各个领域,而在我国电源结构中火电设备容量占总装机容量的75%。本文是对配有4台200MW汽轮发电机的大型火电厂一次部分的初步设计,主要完成了电气主接线的设计。包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。 关键词:发电厂;变压器;电力系统;继电保护;电气设备

目录 1 绪论 (1) 1.1电力系统概述 (1) 1.2毕业设计的主要内容及基本思想 (1) 1.2.1毕业设计的主要内容、功能及技术指标 (2) 1.2.2毕业设计的基本思想及设计工作步骤 (2) 2 4*200MW 火力发电厂电气主接线的确定 (4) 2.1概述 (4) 2.1.1电气主接线设计的重要性 (4) 2.1.2电气主接线的设计依据 (4) 2.1.3电气主接线的主要要求 (5) 2.2电气主接线的选择 (5) 2.2.1主接线的基本形式 (6) 2.2.2主接线的设计 (10) 2.2.3方案的选择 (13) 3 火电厂发电机、变压器的选择 (15) 3.1主变压器和发电机中性点接地方式 (15) 3.1.1电力网中性点接地方式 (15) 3.1.3 发电机中性点接地方式 (16) 3.2发电机的选型 (16) 3.2.1 简介 (16) 3.2.2 选型 (16) 3.3变压器的选型 (17) 3.3.1具有发电机电压母线的主变压器 (17) 3.3.2单元接线的主变压器 (19) 3.4电气设备的配置 (19) 4 火力发电厂短路电流计算 (21) 4.1概述 (21) 4.1.1短路的原因及后果 (21) 4.1.2短路计算的目的和简化假设 (22)

水电站自动化系统机组LCU

水电站自动化系统机组LCU 一、系统概述: 1、水电站自动化系统概括说明: 水电站自动化系统是电站安全、优质、高效运行的重要保证。 目前我国绝大多数大中型电厂以及新建电厂均投入计算机自动化系统设备,国内自动化系统的市场已步入成熟发展的阶段。 水电站自动化系统采用全开放、分层分布式结构,系统由站控层、网络层和现地层设备构成。站控层各站点功能相对独立,互不影响;现地层以间隔为单元,各个 LCU (现地控制单元Local Control Unit)功能也相对独立,在站控层故障的情况下,LCU 仍能独立完成其监测和控制功能。 站控层是水电厂/站设备监视、测量、控制、管理的中心。站控层包括:操作员站、工程师站、通信服务器。另外根据水电厂/站的需要可以配置模拟屏、背投系统。 现地层一般以间隔为单元,配有机组LCU、公用设备及升压站LCU、坝区LCU 以及辅机控制单元等,不同的控制对象分散在各个机旁,或是中控室。在站控层及网络层故障的情况下,现地层仍能独立完成各间隔的监测和控制功能。现地层各LCU完成各单元的任务,相互独立,一个LCU故障不会影响其他LCU的运行。

网络层是站控层与现地层数据传输通道通。网络层可以按不同的容量的水电厂/站和不同的客户需求,配置成单以太网、双以太网和光纤自愈环网。网络通讯介质可采用光纤、同轴电缆或屏蔽双绞线。 系统网络结构有:单以太网、双以太网模式等。 单以太网系统特点是:在保证系统数据通道带宽的同时,做到系统扩展能力强,形式简洁,接口简单,方便安装调试。在实现系统性能的同时,可以有效地降低系统的成本。系统适合与中小型水电站,以及对系统成本控制有较高要求的水电站。 选用双以太网模式,相比单以太网而言,有效地提高系统的可靠性以及分担数据流量、减轻网络负荷,相应得网络投资加大。正常时,设备的数据交换分配在两个网络上,当某个网络发生故障的时候,立即自动切换到非故障的网络上,保证系统得正常通讯。该网络模式适用于各类大中型水电站,以及对系统 可靠性要求相对较高的用户。

电厂电气综合自动化系统的分析

电厂电气综合自动化系统的分析 摘要:随着发电厂发电机组不断扩大容量,不断发展参数,电厂电气综合自动 化程度成为重要发展点,综合自动化系统用来对电气设备进行信息控制、管理、 保护及检测电厂所有电器设备的安全稳定,本文将对以发电厂电气综合自动化系 统运行的可行性分析入手,分析电气综合自动系统在发电厂发电的运作过程中的 现状与应用。 关键词:电厂电气;自动化系统;现状应用 1电厂电气综合自动化概述 1)网络通信层。网络通信层主要包括一些主要管理装置,如网络中继器、网 络交换机、通信管理以及规约转换装置等,其重要作用是进行信息传递与信息管理,为电厂电气系统收集数据信息,方便电气系统的管理与监控。 2)站控层。站控层的主要功能是监控功能,通过选取开放设计的方式能够选 择多种配置模式,使电厂内所有设备的管理监控更加合理化,具有灵活性,保证 整个系统的安全可靠,由此可见,站控层具有重要的作用,是电厂电气系统中最 主要的组成部分。其主要包括通信服务器、操作员站、工程师站、卫星对时装置、服务站以及不间断电源,通过这些设备能够较好地完成监控工作,发挥电厂电气 系统自动化的重要作用。 3)间隔层。间隔层的关键是将间隔层设备采用间隔方式分布在电厂电气系统中,直接将厂用电保护装置放在总开关现场,减少大批量二次线的铺设,使各设 备相对独立。通过此方式能够将原本需要引入其他设备的二次接线取消,如需要 引入到主控室的信号电缆、测量电缆、保护电缆等都可以取消,改为直接依靠主 线控制,不仅能够节约资金还能够降低工作量,不需要实施此部分的维护工作以 及安装调试工作,节省了人力物力财力,具有重要的作用。间隔层的主要设备主 要分为三大类:一是厂用电子系统。厂用电子系统主要包括两种不同型号的厂用电 保护测控装置,10/6kV的厂用电保护测控装置以及400V的厂用电保护测控装置。二是安全自动装置。安全自动装置主要包括直流系统、稳定装置以及调节系统几 大部分。三是机组子系统。机组子系统主要包括保护装置与测控装置,保护装置 主要有母线保护装置、发电组保护装置以及升压变压器保护装置。 2目前我国电厂电气综合自动化的发展现状 随着我国综合自动化水平的提高以及现场总线电气系统自动化的高速发展, 电气系统自动化呈现良好的发展态势,其作为一台完成测量、逻辑判断以及设备 动作记录等一系列操作的微型计算机,在实施过程中需要借助与之相关的软件保 证项目实现。从整体上实现自动化设备在电力电气系统中的广泛运用,不仅能够 对生产与设备安全实施保护,并且还可与主系统及其其他系统的信息交换在通过 设备的通信界面来实现。 通信距离的优越性、通信速率的快速性、抗干扰能力的强大性,使得现场总 线控制技术逐渐成为电力以及工业系统中的中坚力量。,就像Profibus标准在西 门子公司具有的深刻影响力一般,现场总线控制技术在应用过程中也需要不断判 定其实施标准。 发展至今,很多电厂采用了DCS系统,虽能达标和控制其他功能,但应用电 气系统较缺乏。新的关注的热点——以太网络。目前,电厂电器综合自动化系统 倾向于借助微型计算机的力量,在有效利用现场总线系统或者是以太网络技术的 基础上,来为发电厂的通信功能上的技术支持和综合自动化提供应用程序。

3×100-MW火力发电厂电气一次部分设计

第三章火力发电厂的主要设备 一、发电机 发电机是电厂的主要设备之一,它同锅炉和汽轮机称为火力发电厂的三大主机,目前电力系统中的电能几乎都是由同步发电机发出的。根据电力系统的设计规程,在125MW以下发电机采用发电机中性点不接地方式,本厂选用发电机型号为QFN—100—2及参数如下: 型号含义:2-----------------2极 100-------额定容量 N------------氢内冷 F-------------发电机 Q------------汽轮机 P e =100MW;U e=10.5;I e=6475A; cos?=0.85;X d〞=0.183 S30=P30/ cos?= P e/ cos?=100000KV A/0.85=117647.059 KV A 二、电力变压器的选择 电力变压器是电力系统中配置电能的主要设备。电力变压器利用电磁感应原理,可以把一种电压等级的交流电能方便的变换成同频率的另一种电压等级的交流电能,经输配电线路将电厂和变电所的变压器连接在一起,构成电力网。 在满足技术要求的前提下,优先采用较低的电厂,以获得较高的经济效益。 由设计规程知:按发电机容量、电压决定高压厂用电压,发电机容量在100~300MW,厂用高压电压宜采用6 KV,因此本厂高压厂用电压等级6 KV。ⅱ、厂用变压器容量确定 由设计任务书中发电机参数可知,高压厂用变压器高压绕组电压为10.5KV,而由ⅰ知,高压厂用变压器低压绕组电压为6 KV,故高压厂用变压器应选双绕组

变压器。 ⅲ、厂用负荷容量的计算,由设计规程知: 给水泵、循环水泵、射水泵的换算系数为K=1; 其它低压动力换算系数为K=0.85; 其它高压电机的换算系数为K=0.8。 厂用高压负荷按下式计算:S g=K∑P K——为换算系数或需要系数 ∑P——电动机计算容量之和 S g =3200+1250+100+(180+4752+5502+475×2+826.667+570+210) ×0.8 =?KV A 低压厂用计算负荷:S d=(750+750)/0.85=? KV A 厂用变压器选择原则: (1)高压厂用工作变压器容量应按高压电动机计算负荷的110℅与低压厂用电计算负荷之和选择,低压厂用工作变压器的容量留有10℅左右的裕度; (2)高压厂用备用变压器或起动变压器应与最大一台(组)高压厂用工作变压器的容量相同。 根据高压厂用双绕组变压器容量计算公式: S B≥1.1 S g+ S d=1.1×8379.333+1764.706=?KV A 由以上计算和变压器选择规定,三台厂用变压器和一台厂用备用变压器均选用SF7---16000/10型双绕组变压器 ① 注:SF7---16000/10为三相风冷强迫循环双绕组变压器。①电气设备实用手册P181 2、电力网中性点接地方式和主变压器中性点接地方式选择: 由设计规程知,中性点不接地方式最简单,单相接地时允许带故障运行两小时,供电连续性好,接地电流仅为线路及设备的电容电流,但由于过电压水平高,要求有较高的绝缘水平,不宜用于110KV及以上电网,在6~63KV电网中,则采用中性点不接地方式,但电容电流不能超过允许值,否则接地电弧不易自熄,易产生较高弧光间歇接地过电压,波及整个电网;中性点经消弧线圈接地,当接地电容电流超过允许值时,可采用消弧线圈补偿电容电流,保证接地电弧瞬间熄灭,以消除弧光间歇接地过电压;中性点直接接地,直接接地方式的单相短路电流很大,线路或设备须立即切除,增加了断路器负担,降低供电连续性。但由于过电压较低,绝缘水平下降,减少了设备造价,特别是在高压和超高压电网,经济效益显著。故适用于110KV及以上电网中。主变压器中性点接地方式,是由电力网中性点的接地方式决定。 3、主变压器型号的容量及型号的选择,根据设计规程:单元接线的主变压器的容量按发电机额定容量扣除本机组的厂用负荷后,留有10℅的裕度,则:S30-S B=(117647.059-10981.9723)×1.1=?KV A 由发电机参数和上述计算及变压器的选择规定,主变压器选用1台220KV双

火力发电厂电气一次部分设计分析

火力发电厂电气一次部分设计分析 发表时间:2017-04-27T11:04:30.740Z 来源:《电力设备》2017年第3期作者:刘红星1 张泽坤2 尹建1 宋从健1 [导读] 摘要:当今社会对于电能的需求也越来越多,为了更好地给人们提供电能源,不仅要开发新型的发电模式,更主要的是提高现有发电模式的发电效率和质量。 (1.济宁金威热电有限公司山东济宁 272300;2.青岛科技大学山东青岛 266061) 摘要:当今社会对于电能的需求也越来越多,为了更好地给人们提供电能源,不仅要开发新型的发电模式,更主要的是提高现有发电模式的发电效率和质量。火力发电厂是目前众多发电模式中的一种,也是当前电力供送的主力军,对火力发电厂而言,一次接线是电气系统的重要组成部分,如果可以将其一次电气设计进行优化,就可以提高发电效率,更好的满足人们的电能需求。就本文对火力发电厂电气一次系统的设计进行了总结性分析。 关键词:火力发电厂;电气一次;接线;设计; 1 发电机的选择 选择发电机主要是选择发电机的容量,而在选择发电机容量时需要注意的是所选择的容量必须与汽轮机的容量相协调。选择原则如下:在额定的功率因数与额定电压之下选择发动机,首先要确保其额定容量与汽轮机的额定出力能相互配合,其次要确保发电机与汽轮机之间的最大连续容量能够相互配合,最后需要确定所选择的发电机的冷却器的进水温度必须与汽轮机相应工况下的冷却水温相同。 2 主变压器的选择 在选择主变压器时,若是与主变压器连接的机组容量为300M W ,则选择三相变压器;若是与主变压器连接的机组容量为600M W ,则应与运输和制造条件相结合进行选择,一般可选用三相或单相变压器;若是与主变压器连接的机组容量为IO00M W ,则选用单相变压器。若是主变压器选用的是单相变压器,那么,其备用相的配置原则为:若是安装机组等于或小于两台,则不考虑配置备用相;若是安装机组大于或等于三台,那么则考虑配置一台备用相,但是,发电厂的附近有集团、公司等所属的电厂若是已经配置了相同的参数的备用相,那么,则不需要再配置备用相。发电机和主变压器之间若是采用单元连接,那么,在选择主变压器的容量时应注意其容量应等于发电机的最大连续容量减去常用工作变压器一台的计算负荷。 3 有关电气主接线 3.1 主母线的接线方式总结 对于330 ~500kV 的配电装置而言,其在进行接线的时候首先要考虑的是系统对稳定性与可靠性的要求,其次还需要对电厂建设的经济性、送出的可靠性以及是否能灵活运行进行考虑。330 ~500kV 的配电装置的接线原则为:若进出线的回路数少于六回,在满足系统稳定性与可靠性要求的同时,可以采用双母线接线的方式进行接线;若进出线的回路数等于或大于六回,而且该配电装置在电气系统中起着重要作用,那么,则可以使用一台半断路器进行接线;若是电厂的机组数量较多,而其进出线的回路数较少,那么,在进出线回路数大于六回且两者的比例大约为2 :1的情况下,可以采用4/3的接线方式进行接线。对于220kV 的配电装置而言,其接线方式可以选用双母线单分段接线或双母线双分段接线,具体接线原则为:若是发电厂中的总装机等于或大于三台,那么,在选择接线方式的时候则应该考虑电力系统对稳定性及地方供电的可靠性的要求。电力系统中若是有一台断路器发生故障或是出现拒动的情况,那么,采用何种接线方式则需要在确保系统的稳定性和地区供电的可靠性的前提下根据允许切除的机组数量与出现的回路数来进行确定。 3.2 启动,备用电源的接线方式 发电厂中220kV 及以下的配电装置的启动/备用电源在进行接线时应直接从配电装置的母线上进行引接。若是出线电压是500kV或是330kV ,并且发电厂中没有比该电压等级更低的一级电压,而为了能够节省装置容量电费,启动备用电源的接线方式则可以从500kV或是330kv一级电压配电装置上进行降压引接。 4 电缆的选择和敷设 4 .1 电缆的选择 发电厂中的主厂房、输煤场所、燃油供应室以及其他一些易燃易爆的场所所采用的电缆应为C类阻燃电缆。发电厂中的消防系统、火灾报警系统、应急照明系统、不停电电源、直流系统以及事故保安电源等所采用的电缆则应为动力电缆,而为了控制这些系统的控制电缆则应为耐火电缆。对于计算机监控、双重化继电保护等双回路合用同一通道但是双回路之间又没有采取隔离措施的情况而言,在选择电缆的时候,其中一个通道应选用耐火电缆。在选择电缆时还应注意一部分重要回路的电缆的内芯,例如在控制电缆、耐火电缆以及3kV 及其以上电力电缆等重要的回路中,所选用的电缆应为铜芯。另外,需要注意的是进入计算机的控制电缆除了需要铜芯以外,该电缆还应为屏蔽电缆。根据电缆敷设方式的不同,所采用的电缆也有一些不同,例如应用桥架、梯架、托盘等方式进行敷设的电缆均应采用非铠甲电缆。电缆所处环境的温度也对其有所影响,因此,在选择电缆时还需要注意其所处环境。若是电缆所处环境的温度达到了60℃,那么则应该采用耐高温电缆;若是电缆所处环境在100~C 以上,那么则应该选用矿物质绝缘电缆;而若是电缆所处的环境温度在一2O℃及其以下,那么选用电缆时则应该按照低温环境与绝缘类型的具体要求进行,一般可选用交联聚乙烯、聚乙烯等绝缘电缆,需要注意的是一般不适宜选用聚氯乙烯绝缘电缆。 4.2 电缆的敷设 发电厂主厂房中的电缆所采用的敷设方式一般为架空敷设,架空敷设不需要考虑步道,而且在配电室下面也不用设置电缆夹层。发电厂厂区内的电缆所采用的敷设方式应尽量为综合管架敷设,而其辅助车辆的电缆所采用的敷设方式应为架空敷设。对于集中控制室、继电保护室等这类有着多根电缆汇聚在一起的场所进行电缆敷设时均需要设置电缆夹层。具有腐蚀性的场所在进行电缆敷设时应采用桥架,而其他不带腐蚀性的区域则采用镀锌钢桥架。在进行电缆敷设时,需要注意的是必须将动力电缆和控制电缆分开敷设。 5 电气设备的布置 在进行电气设备布置中,1 10~220kV屋外敞开式高压配电装置以及330 ~500kV 敞开式高压配电装置所采用的布置方式均为中型布置。GIS采用的布置方式若是屋内布置,那么则需要布置排风口,因为室内的空气不允许再循环,因此需要排风口进行机械通风,需要注意的是在设置排风口时应将其设置在室内的上部和下部。在网络继电器室的布置过程中,为了使电缆路径达到最优化,在确定网络继电器室的布置位置与数量时就应根据容量规模进行。低压电动机控制中心 (M CC ) 在布置时应采用分散布置的方式分布在厂房中的负荷中心

相关文档
最新文档