初中几何-半角模型

初中几何-半角模型
初中几何-半角模型

归纳一种几何模型:半角模型

特点:

过等腰△ABC(AB=AC)顶角顶点(设顶角为A),引两条射线且它们的夹角为A/2;这两条射线与过底角顶点的相关直线交于两点M、N,则BM,MN,NC之间必存在固定关系。这种关系仅与两条相关直线及顶角A相关.

解决方法:

以点A为中心,把△ACN(顺时针或逆时针)旋转角A度,至△ABN',连接MN';

结论:

1:△AMN全等于△AMN',MN=MN';

2:关注BM,MN',N'B(=NC),

若共线,则存在x+y=z型的关系;

若不共线,则△BMN'中,∠MBN'必与∠A相关,于是由勾股定理(有时需要作垂线)或直接用余弦定理可得

三者关系.

应用环境:(限于初中)

1:顶角为特殊角的等腰三角形,如顶角为30°、45°60°、75°或它们的补角、90°;

2:正方形、菱形等也能产生等腰三角形;

3:过底角顶点的两条相关直线:底边、底角两条平分线、腰上的两高、底角的邻补角的两条角平分线,底角的邻余角另外两边等;正方形或棱形的另外两边;

4:此等腰三角形的相关弦.

以上条件可以形成数百种题目!而解决方法均可以运用此方法.

中考数学几何专项复习题-07倍半角模型知识精讲

倍半角模型知识精讲 一、二倍角模型处理方法 1.作二倍角的平分线,构成等腰三角形. 例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形. 2.延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形. 例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形. 例题:如图,在△ABC中,∠C=2∠A,AC=2BC,求证:∠B=90o. 【解答】见解析 【证法一】如图1,作∠C的平分线CE交AB于点E,过点E作ED⊥AC于点D. 则∠ACE=∠A,AE=CE, ∵AE=EC,ED⊥AC,∴CD=AC, 又∵AC=2BC,∴CD=CB,∴△CDE≌△CBE,∴∠B=∠CDE=90o; 【证法二】如图2,延长AC到点D,使得CD=CB,连接BD,取AC的中点E,连接BE.

由题意可得EC=CD=BC,∠DBE=90o, ∵CD=CB,∠D=∠CBD,∴∠ACB=2∠D, ∵∠ACB=2∠A,∠A=∠D,∴AB=BD, 又∵AE=DC,∴△ABE≌△DBC,∴∠ABE=∠DBC,∴∠ABC=∠EBD=90o. 【证法三】如图3,作∠C的平分线CD,延长CB到点E,使得CE=AC,∴AC=BC+BE. ∵AC=2BC,∴BC=BE,在△ACD与△ECD中,AC=EC,∠ACD=∠ECD,CD=CD, ∴△ACD≌△ECD,∴∠A=∠E, 又∵∠DCB=∠DCA=∠A,∴∠E=∠DCB,∴DC=DE,∴∠ABC=90o. 二、倍半角综合 1.由“倍”造“半” 已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可. 如图,若() 2.由“半”造“倍” 已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可. 如图,在Rt△ABC(∠A<45o)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,

中考数学常见几何模型简介教学总结

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。(3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③.

?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

中考数学必会几何模型:半角模型

半角模型 已知如图:①∠2=1 2 ∠AOB;②OA=OB. O A B E F 1 23 连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′ 43 2 1 F' F E B A O 模型分析 ∵△OBF≌△OAF′, ∴∠3=∠4,OF=OF′. ∴∠2=1 2 ∠AOB, ∴∠1+∠3=∠2 ∴∠1+∠4=∠2 又∵OE是公共边, ∴△OEF≌△OEF′. (1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点; (2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系; (3)常见的半角模型是90°含45°,120°含60°. 模型实例 例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN. (2)作AH⊥MN于点H,求证:AH=AB.

证明:(1)延长ND 到E ,使DE=BM , ∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ?? ? ??=∠=∠=BM DE B ADE AB AD ∴△ADE ≌△ABM . ∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ?? ? ??=∠=∠=AN AN EAN M AN EA M A ∴△AMN ≌△AEN . ∴MN=EN . ∴BM+DN=DE+DN=EN=MN . (2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN . 即EN AD 2 1 MN AH 21?=?. 又∵MN=EN , ∴AH=AD . 即AH=AB .

初中常用数学模型

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2 ;2.D

如图,若∠B=∠C=∠DEF=α(0<α≤90) 则一定有△BDE与△CEF相似。 十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。 【例题1】(2009 ) 【例题2】(2006 ) 【例题3】(原创)

答案:1. 2或3-24或 25 2.(5 453-,) 【3】巧造旋转模型 在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。 巧造旋转往往要有一定的等量关系和特殊角度,如下题: 通过观察可得∠ABC=∠C=45°,AB=AC 。 我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。 那么就有EB ⊥BC ,而在RT △AED 中,DE2=2AD2(等腰直角三角形) 所以BE2+BD2=DE2,即BD2+CD2=2AD2 是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 ) 【例题2】 【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略【4】等腰模型 这是一个很基础的模型——什么样的结构会生成等腰三角形 首先:平行+角平分线, 如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。 其次:垂直+角平分 这个不难理解,因为等腰三角形三线合一。 这种模型很常用,常常需要做辅助线(延长之类)

中考数学 几何专题——半角模型

几何模型之半角模型 一、旋转性质 1.图形对应边相等(易得等腰,且等腰均相似) 2.对应角相等 3.对应点与旋转中心连线构成旋转角,旋转角处处相等 二、半角模型 半角模型(90°含45°) 条件模型结论 ①等腰直角△ABC; ②∠DAE=45° DE2=BD2+CE2 ①等腰直角△ABC; ②∠DAE=45° DE2=BD2+CE2 ①正方形ABCD; ②∠EAF=45°①EF=BE+DF; ②△CEF的周长是正方形周长的一半; ③点A到EF的距离等于正方形的边长. ①正方形ABCD; ②∠EAF=45°EF=DF-BE 三、模型演练 1.如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF 于点H.若EF=BF+DF.那么下列结论:①AE平分∠BEF;②FH=FD; ③∠EAF=45°;④S△E A F=S△A B E+S△A D F;⑤△CEF的周长为2.其中正确结论的 是.

2.在Rt△ABC中,AB=AC,D?E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论①△AEF≌△AED;②∠AED=45°; ③BE+DC=DE;④BE2+DC2=DE2,其中正确的是() A.②④ B.①④ C.②③ D.①③ 3如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长. 4.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=25.若∠EOF=45°,则F点的坐标是. 5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交

人教版八年级数学 几何培优讲义设计 第6讲 夹半角模型 无答案

知识目标 第 6 讲 夹半角模型 知识导航 夹半角,顾名思义,是一个大角夹着一个大小只有其一半的角,如下图所示。 这类题目有其固定的做法,当 取不同的值的时候,也会有类似的结论,下面我们就来看一看这一类问题。夹 半角的常见分类: (1)90 度夹 45 度 (2)120 度夹 60 度 (3)2α夹α 题型一 90 度夹 45 度 【例 1】 如图,正方形 ABCD 中, E 在 BC 上,F 在 CD 上,且∠EAF =45°,求证:(1)BE +DF =EF (2)∠AEB =∠AEF 【练习】在例 1 的条件下,若 E 在 CB 延长线上,F 在 DC 延长线上,其余条件不变,证明: (1)DF -BE =EF (2)∠AEB +∠AEF =180°

夹边角和勾股定理结合会产生很多有趣的结论,比如: (1)已知△ABC 为等腰三角形,∠ACB=90°,M、N 是AB 上的点,∠MCN=45°,求证:AM2+BN2=MN2 (2)如图,正方形ABCD 中,F 为CD 中点,点E 在BC 上,且∠EAF=45°,求证:点E 为线段BC 靠近B 的三等分点. 题型二120 度夹60 度 【例2】已知如图,△ABC 为等边三角形,∠BDC=120°,DB=DC,M、N 分别是AB、AC 上的动点,且∠MDN=60°,求证:MB+CN=MN. 【练习】如图,四边形ABCD 中,∠A=∠BCD=90°,∠ADC=60°,AB=BC,E、F 分别在AD、DC 延长线上,且∠EBF=60°,求证:AE=EF+CF.

真题演练 在等边△ABC 的两边 AB 、AC 所在直线上分别有两点 M 、N .D 为△ABC 外一点,且∠MDN =60°,∠BDC =120°,BD =DC .探究:当 M 、N 分别在直线 AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系以及 △AMN 的周长 Q 与等边△ABC 的周长 L 的关系. (1)当点 M 、N 在边 AB 、AC 上,且 DM =DN 时,BM 、NC 、MN 之间的数量关系是 ; Q 此时 = ;(不必证明) L (2)当点 M 、N 在边 AB 、AC 上,且当 DM ≠DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明; (3)当 M 、N 分别在边 AB 、CA 的延长线上时,若 AN =2,则 Q = (用含有 L 的式子表示)

(完整)初中数学几个常用模型资料

初 中 数 学 几 个 数 学 模 型 模型1、l:r=3600 :n 0 ①圆锥母线长5cm ,底面半径长3cm ,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心角等于( C ) A .45° B.60° C .90° D.120° ③要制作一个圆锥形的模型,要求底面半径为2cm ,母线长为4cm ,在一个边长为8cm 的正方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做 (B)能做一个 (C)可做二个 (D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是 (D )A 、2r=R B 、R r =4 9 C 、R r =3 D 、r 4模型2、角平分线+平行=等腰三角形 如图,?ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关系( B ). (A )EF>BE+CF (B )EF=BE+CF (C )EF

初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案

初中数学突破中考压轴题几何模型之正方形的 半角模型教案有答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD 重合,得折痕DG,使2 AD=,求AG. 【解析】:作GM⊥BD,垂足为M. 由题意可知∠ADG=GDM, 则△ADG≌△MDG. ∴DM=DA=2. AC=GM 又易知:GM=BM. 而BM=BD-DM=22-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P为正方形ABCD内一点,10 ==,并且P点到CD边的距离也 PA PB 等于10,求正方形ABCD的面积? 【解析】:过P作EF AB ⊥于F交DC于E.

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 D (1)等边三角形 O O C E C A 图 1B A 图 2 【条件】:△ OAB和△ OCD均为等边三角形; 【结论】:①△ OAC≌△ OBD;②∠ AEB=60°;③ OE平分∠ AED D (2)等腰直角三角形 O C E A B A 图 1 D E B D O E C B 图2 【条件】:△ OAB和△ OCD均为等腰直角三角形; 【结论】:①△ OAC≌△ OBD;②∠ AEB=90°;③ OE平分∠ AED (3)顶角相等的两任意等腰三角形 D O O C 【条件】:△ OAB和△ OCD均为等腰三角形; D E 且∠ COD=∠AOB E 【结论】:①△ OAC≌△ OBD;C ②∠ AEB=∠AOB; ③OE平分∠ AED A图 1B A图 2B

O O 二、模型二:手拉手模型----旋转型相似 (1)一般情况 D 【条件】: CD∥ AB,C D 将△ OCD旋转至右图的位置 A B 【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD; ②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA O (2)特殊情况 C D 【条件】:CD∥ AB,∠ AOB=90° 将△ OCD旋转至右图的位置 A B 【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD; ②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA; ③ BD OD OB tan ∠ OCD;④ BD⊥AC; AC OC OA ⑤连接 AD、 BC,必有AD2BC 22 2 ;⑥ S△BCD ABCD 三、模型三、对角互补模型 (1)全等型 -90 ° 【条件】:①∠ AOB=∠ DCE=90°;② OC平分∠ AOB E C A B D O C E A B 1 A C BD 2A C D O E B 图 1 【结论】:①;② OD+OE=2;③S △DCE S △OCD S △OCE 1 OC2 CD=CE OC2 证明提示:A C M ①作垂直,如图 2,证明△ CDM≌△ CEN D ②过点 C 作 CF⊥ OC,如图 3,证明△ ODC≌△ FEC ※当∠ DCE的一边交 AO的延长线于 D 时(如图4):O N EB 图 2 以上三个结论:① CD=CE;② OE-OD= 2 OC;A 1 OC 2M C ③ S S △OCE△OCD2A C D O N B E O图 3E F B D 图 4

中考模型解题系列之大角夹半角模型

中考模型解题系列之大角夹半角模型 满分100分 答题时间30分钟 1.(本小题100分) (2010重庆改编)等边的两边AB 、AC 所在直线上分别有两点M 、N ,D 为外一点,且 ,,BD=DC.探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及 的周长Q 与等边的周长L 的关系. (I )如图1,当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是_____________;此时___________; (II )如图2,点M 、N 在边AB 、AC 上,且当DM DN 时,猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明; (III )如图3,当M 、N 分别在边AB 、CA 的延长线上时,若AN=,则Q=_________(用、L 表示). 核心考点: 全等三角形的判定与性质 旋转的性质

单选题(本大题共8小题,共100分) 1.(本小题10分)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0

2018北师大版下册数学截长补短和半角模型[原创]

32 H A B F E 1G E F D C B A D C B A O G A B C D A B C 初中几何之截长补短模型 模型 截长补短 如图①,若证明线段AB 、CD 、EF 之间存在 EF=AB+CD ,可以考虑截长补短法。 截长法:如图②,在EF 上截取EG=AB ,再证明 GF=CD 即可。 补短法:如图③,延长AB 至H 点,使BH=CD , 再证明AH=EF 即可。 模型分析 截长补短的方法适用于求证线段的和差倍分关系。截长,指在长线段中 截取一段等于已知线段;补短,指将短线段延长,延长部分等于已知线段。 该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法 构造全等三角形来完成证明过程。 模型实例 例1.如图,已知在△ABC 中,∠C=2∠B ,AD 平分∠BAC 交BC 于点D 。 求证:AB=AC+CD 。 例2.如图,已知OD 平分∠AOB ,DC ⊥OA 于点C ,∠A=∠GBD 求证AO+BO=2CO 。 精练1.如图,在△ABC 中,∠BAC=60°,AD 是∠BAC 的平分线,且 AC=AB+BD 。 求∠ABC 的度数。

E A B C D E A B C D F E A B C D A O E A B C D 2.如图,∠ABC+∠BCD=180°,BE 、CE 分别平分∠ABC 、∠BCD 。求证:AB+CD=BC 。 3.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB 。求证AC=AE+CD 。 4.如图,在△ABC 中,∠ABC=90°,AD 平分∠BAC 交BC 于点D ,∠C=30°, BE ⊥AD 于点E 。求证:AC-AB=2BE 。 5.如图,Rt △ABC 中,AC=BC ,AD 平分∠BAC 交BC 于点D ,CE ⊥AD 交AD 于F 点,交AB 于点E 。求证:AD=2DF+CE 。 6.如图,五边形ABCDE 中,AB=AC ,BC+DE=CD ,∠B+∠E=180°。求证:AD 平分∠CDE 。

2019年初中数学突破中考压轴题几何模型之正方形的半角模型教案

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生 和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM . 而(-1), ∴AG=BM=2). 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1 (10)2BF x =+. 由222PB PF BF =+. 可得:2221 10(10)4 x x =++. 故6x =. 216256ABCD S ==. 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可. 理由:连结AE 、AF . 由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用,

初中数学常见模型之蚂蚁行程

蚂蚁行程 模型1 立体图形展开的最短路径 模型分析 上图为无底的圆柱体侧面展开图,如图蚂蚁从点A 沿圆柱表面爬行一周。到点B 的最短路径就是展开图中AB ′的长,22''''AB AA A B =+。做此类题日的关键就是,正确展开立体图形,利用“两点之间线段最短”或“两边之和大于第三边”准确找出最短路径。 模型实例 例1.有一圆柱体油罐,已知油罐底面周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周建造房子,正好到达A 点的正上方B 处,问梯子 最短有 多长? 例2.如图,一直圆锥的母线长为QA=8,底面圆的半径2r =, 若一只小蚂蚁从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则蚂蚁爬行的最短 路线长是 。 例3.已知长方体的长、宽、高分别为30cm 、20cm 、10cm ,一只蚂蚁从A 处出发到B 处觅食,求它所走的最短路径。(结果保留根号)

热搜精练 1.有一个圆锥体如图,高4cm,底面半径5cm,A处有一蚂蚁,若蚂蚁欲沿侧面爬行到C处,求蚂蚁爬行的最短距离。 2.如图,圆锥体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图,则最短路程为。 3.桌上有一个圆柱形无盖玻璃杯,高为12厘米,底面周长18厘米,在杯口内壁离杯口距离3厘米的A处有一滴蜜糖,一只小虫22 杯子外壁,当它正好在蜜糖相对方向离桌面3厘米的B处时,突然发现了蜜糖,问小虫至少爬多少厘米才能到达蜜糖所在的位置。 4.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬行到点B,如果它运动的路径是最短的,则最短距离为。

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案

正方形角含半角模型提升 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么 例4. 如图,在正方形ABCD 的BC 、CD 边上取E 、F 两点,使45EAF ∠=o ,AG EF ⊥于G . 求证:AG AB = 例5.(1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点 O ,90AOF ?∠=. 求证:BE CF =. (2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点 O ,90FOH ?∠=,4EF =.求GH 的长. 【双基训练】 1. 如图6,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,?其边长分别为3cm 和5cm ,则CDE ?的面积为________2cm . (6) (7) 2.你可以依次剪6张正方形纸片,拼成如图7所示图形.?如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,?那么正方形⑤的面积为________. 3.如图9,已知正方形ABCD 的面积为35平方厘米,E 、F 分别为边AB 、BC 上的点.AF 、CE 相交于G ,并且ABF ?的面积为14平方厘米,BCE ?的面积为5平方厘米,?那么四边形BEGF 的面积是________. 4. 如图,A 、B 、C 三点在同一条直线上,2AB BC =。分别以 AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN , EC 。 求证:FN EC =。 5.如图 ,ABCD 是正方形.G 是BC 上的一点,DE AG ⊥于 E ,BF AG ⊥于 F . (1)求证:ABF DAE △≌△; (2)求证:DE EF FB =+. 【纵向应用】 6. 在正方形ABCD 中,12∠=∠.求证:BE OF 2 1 = 7. 在正方形ABCD 中,12∠=∠.AE DF ⊥,求证:CE OG 2 1= 8. 如图13,点E 为正方形ABCD 对角线BD 上一点, EF BC ⊥, EG CD ⊥ 求证:AE FG ⊥ 9.已知:点E 、F 分别正方形ABCD 中AB 和BC 的中点,连接AF 和DE 相交于点G , 图2 D G A E B C F 13 A D E F C G B

八年级数学——半角模型

例:如图E、F分别在正方形ABCD的边BC、CD上,且∠EAF=45°。求证:EF=BE+DF; 解析: 延长CB到G,使GB=DF,连接AG, 证△ABG≌△ADF,得∠3=∠2,AG=AF, 进而求证△AGE≌△AFE, 可得GB+BE=EF,所以DF+BE=EF 特征描述:过等腰△ABC(AB=AC)顶角顶点(设顶角为A),引两条射线且它们的夹角为A/2;这两条射线与过底角顶点的相关直线交于两点M、N,则BM,MN,NC之间必存在固定关系。这种关系仅与两条相关直线及顶角A相关. 题型识别:“等线段、共顶点、半角度” 解决方法: ①以公共顶点为中心,旋转三角形,使得相等的两线段重合; ②找出两组全等三角形,得到对应的边角相等关系。 如图,在正方形ABCD的边BC,CD上分别有点E,F,∠EAF=45°,AH⊥EF.求证:AH=AB;

分析:将△ADF 绕点A 顺时针旋转90°得到△ABG ,根据旋转的性质可得DF =BG ,AF =AG ,∠DAF =∠BAG , 然后求出∠EAF =∠EAG =45°,再利用“边角边”证明△AEF 和△AEG 全等,根据全等三角形对应边上的高相等可得AH =AB . 证明:将△ADF 绕点A 顺时针旋转90°得到△ABG , 由旋转的性质得,DF =BG ,AF =AG ,∠DAF =∠BAG . ∵∠F AG =∠BAG +∠BAF =∠DAF +∠BAF =∠BAD =90°, ∠EAF =45°, ∴∠EAF =∠EAG =45°. 在△AEF 和△AEG 中, AF AG EAF EAG AE AE =??∠=??=? ∴△AEF ≌△AEG (SAS ), ∵AH 、AB 分别是△AEF 和△AEG 对应边上的高, ∴AH =AB . (1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果:___________. (2)如图2:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.点E 、F 分别是BC 、CD 上的点,且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系. 小王同学探究此问题的方法是,延长FD 到点C ,使DG =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是___________. 请你帮小王同学写出完整的证明过程.

初中数学(中考数学)常见解题模型及思路(初中数学自有定理)

初中数学压轴题常见解题模型及套路(自有定理) A . 代数篇: 1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。 设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S= 108 999 余例仿此—— 2.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y ;x-y ;xy ; 22x y + 中,知二求二。 222222()2()2x y x y x y x y x y x y +=++?+= +- 2222()2()4x y x y x y x y x y -=+-=+- 加减配合,灵活变型。 3.特殊公式 22 1 1 2x x x x ±=+±2 ()的变型几应用。 4.立方差公式:3322a b a b a ab b ±=±+m ()() 5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略 6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。 例.求1+2+4+8+16+32+2222n 令S=1+2+4+8+16+32+222+2n (1) 两边同乘2得: 2S=2+4+8+32+64+222+2n +12n + (2) (2)-(1)得:2S-S=12n +- 1 从而求得S 。 7. 11n m m n --=mn 的灵活应用:如:1111 62323 ==-?等。 8.用二次函数的待定系数法求数列(图列)的通项公式f (n )。 9.韦达定理求关于两根的代数式值的套路:

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案(5、26)

正方形角含半角模型提升 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积? 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么? 例 4. 如图,在正方形ABCD 的BC 、CD 边上取E 、F 两点,使 45EAF ∠=o ,AG EF ⊥于G . 求证:AG AB =

例5.(1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,90AOF ? ∠=. 求证:BE CF =. (2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点 O ,90FOH ?∠=,4EF =.求GH 的长. 【双基训练】 1. 如图6,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,?其边长分别为3cm 和5cm ,则CDE ?的 面积为________2 cm . (6) (7) 2.你可以依次剪6张正方形纸片,拼成如图7所示图形.?如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,?那么正方形⑤的面积为________. 3.如图9,已知正方形ABCD 的面积为35平方厘米,E 、F 分别为边AB 、BC 上的点.AF 、CE 相交于G ,并且ABF ?的面积为14平方厘米,BCE ?的面积为5平方厘米,?那么四边形BEGF 的面积是________. 4. 如图,A 、B 、C 三点在同一条直线上,2AB BC =。分别以 AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN , EC 。 求证:FN EC =。 图 2

第5讲角含半角模型(解析版)

中考数学几何模型5:角含半角模型TH 名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。 类型一:等腰直角三角形角含半角模型 (1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2. 图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE (2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2. 图示(2) (3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..

任意等腰三角形 类型二:正方形中角含半角模型 (1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD. 图示(1)作法:将△ABE绕点A逆时针旋转90° (2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE. 图示(2)作法:将△ABE绕点A逆时针旋转90° (3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠ C=180°,点E,F分别在边BC,CD上,∠EAF=1 2 ∠BAD,连接EF,则:EF=BE+DF. 图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型 主题半角模型 教学内容 教学目标 1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 知识结构 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM . 而BM=BD-DM=2 2-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1 (10)2 BF x =+. 由2 22PB PF BF =+. 可得:2 221 10 (10)4 x x =++. 故6x =. 2 16256ABCD S ==. 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥, ?垂足为M ,AM AB =,则有EF BE DF =+,为什么 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可. 理由:连结AE 、AF . 由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用, ∴△ABE ≌△AME . ∴BE=ME . 同理可得,△ADF ≌△AMF . ∴DF=MF . ∴EF=ME+MF=BE+DF .

初中数学常见模型之8字模型与飞镖模型

O D C B A 图12图E A B C D E F D C B A O O 图12图E A B C D E D C B A H G E F D C B A 8字模型与飞镖模型 模型1 角的“8”字模型 如图所示,AB 、CD 相交于点O , 连接AD 、BC 。 结论:∠A+∠D=∠B+∠C 。 模型分析 8字模型往往在几何综合 题目中推导角度时用到。 模型实例 观察下列图形,计算角度: (1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。 热搜精练 1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。 2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。

D C B A M D C B A O 135E F D C B A 105O O 120 D C B A 模型2 角的飞镖模型 如图所示,有结论: ∠D=∠A+∠B+∠C 。 模型分析 飞镖模型往往在几何综合 题目中推导角度时用到。 模型实例 如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。探究∠AMC 与∠B 、∠D 间的数量关系。 热搜精练 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ; 2.如图,求∠A+∠B+∠C+∠D = 。

O D C B A O D C B A O C B A 模型3 边的“8”字模型 如图所示,AC 、BD 相交于点O ,连接AD 、BC 。 结论:AC+BD>AD+BC 。 模型实例 如图,四边形ABCD 的对角线AC 、BD 相交于点O 。 求证:(1)AB+BC+CD+AD>AC+BD ; (2)AB+BC+CD+AD<2AC+2BD. 模型4 边的飞镖模型 如图所示有结论: AB+AC>BD+CD 。

2020中考数学几何-半角模型

半角例题: 如图,将CBN 绕点C 顺时针旋转90,得CAD ,连结MD ,则AD BN n,CD CN ,∠ACD ∠ BCN , ∴∠MCD ∠ACM ∠ACD ACM ∠BCN 90 45 45MCN . ∴MDC ≌MNC , ∴MD MN x 又易得DAM 45 45 90, ∴在Rt AMD 中,有m 2 n 2 x2 ,故应选(B) C A M N B 练习: 1、如图,正方形ABCD 的边长为 1,AB 、AD 上各存一点P 、Q ,若APQ 的周长为 2,求PCQ 的度数. D C Q A P B 2、E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且∠EAF 45,AH EF ,H 为 垂足,求证:AH AB . A D F B E C H

3、如图所示,在等腰直角ABC 的斜边AB 上取两点M 、N ,使MCN 45,记AM m ,MN x ,BN n ,求证:以x 、m 、n 为边长的三角形的形状是直角三角形. C A m M x N n B 4、已知:如图 1 在Rt ABC 中,BAC 90,AB AC ,点D 、E 分别为线段BC 上两动点,若DAE 45.探究线段BD、DE 、EC 三条线段之间的数量关系. 小明的思路是:把AEC 绕点A 顺时针旋转90,得到ABE,连结 E D ,使问题得到解决.请你参考小明的思路探究并解决下列问题: ⑴猜想BD、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; ⑵当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图 2,其它条件丌变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明. A B D E C 图1 A C D B E 图2

相关文档
最新文档