三轴加速度传感器设计

三轴加速度传感器设计
三轴加速度传感器设计

ADIS16228三轴数字加速度计在设备振动检测中的应用

机械设备的高速化、大型化和自动化发展,一方面提高了生产力,另一方面给安全维护提出了更高的要求。机械振动是各种机器工作工程中经常发生的现象,在机械故障和大型机械的状态监测中振动占有重要的地位,对振动信号进行在线监测和分析可诊断系统及其部件的运行是否正常。 振动相关的物理量包括加速度、速度和位移等,由于测量加速度信号具有方便、经济的优势,工程上通常通过测量加速度测量振动。早期的加速度传感器是惯性式的,由电磁感应原理产生微弱的电信号,再经过信号调理放大后通过A D C送到微处理器,这种方法电路复杂且成本较高。近年来ADI公司陆续推出了ADXL/ADIS系列数字加速度计,利用MEMS技术,大大降低了加速度测量的成本。 1.芯片概述:ADIS16228 iSensor? 是一款完整的振动检测系统,集三轴加速度检测与先进的时域和频域信号处理于一体。时域信号处理包括可编程抽取滤波器和可选的窗函数。频域处理包括针对各轴的512点、实数值FFT和FFT均值功能,后一功能可降低噪底变化,从而提高分辨率。通过14记录FFT存储系统,用户可以追踪随时间发生的变化,并利用多个抽取滤波器设置捕获FFT。 20.48 kSPS采样速率和5 kHz平坦频段提供的频率响应适合许多机械健康状况检测应用。铝芯可实现与MEMS加速度传感器的出色机械耦合。在所有操作中,内部时钟驱动数据采样和信号处理系统,无需外部时钟源。数据捕获功能具有三种模式,提供多个选项,以满足不同应用的需要。此外,在实时模式下,可以直接访问关于一个轴的数据流。利用SPI和数据缓冲结构,可以方便地访问输出数据。ADIS16228还提供数字温度传感器和数字电源测量功能。 ADIS16228采用15 mm × 24 mm × 15 mm模块封装,提供法兰、M2机械螺孔和灵活的连接器,支持简单易行的用户接口和安装。ADIS16228与ADIS16210尺寸兼容且引脚兼容。工作温度范围为?40°C至+125°C。功能框图如下: 2.硬件设计: 基于加速度传感器的振动检测设备由按键模块、加速度传感器模块、RS232接口电路、报警电路模块、继电器控制模块和LCD显示模块等几部分构成。系统结框图如下图所示,其中单片机为系统控制核心,采用ADuC7026,它最大支持41.78MHz时钟,集成了SPI 串行通信接口、定时器、GPIO、AD/DA、pwm等外设接口,性能优越。

三轴加速度传感器原理应用及前景分析

三轴加速度传感器原理及应用 2012年09月09日 12:42来源:本站整理作者:胡哥我要评论(0) 三轴加速度传感器原理 MEMS换能器(Transducer)可分为传感器(Sensor)和致动器(Actuator)两类。其中传感器会接受外界的传递的物理性输入,通过感测器转换为电子信号,再最终转换为可用的信息,如加速度传感器、陀螺仪、压力传感器等。其主要感应方式是对一些微小的物理量的变化进行测量,如电阻值、电容值、应力、形变、位移等,再通过电压信号来表示这些变化量。致动器则接受来自控制器的电子信号指令,做出其要求的反应动作,如光敏开关、MEMS显示器等。 目前的加速度传感器有多种实现方式,主要可分为压电式、电容式及热感应式三种,这三种技术各有其优缺点。以电容式3轴加速度计的技术原理为例。电容式加速度计能够感测不同方向的加速度或振动等运动状况。其主要为利用硅的机械性质设计出的可移动机构,机构中主要包括两组硅梳齿(Silicon Fingers),一组固定,另一组随即运动物体移动;前者相当于固定的电极,后者的功能则是可移动电极。当可移动的梳齿产生了位移,就会随之产生与位移成比例电容值的改变。 当运动物体出现变速运动而产生加速度时,其内部的电极位置发生变化,就会反映到电容值的变化(ΔC),该电容差值会传送给一颗接口芯片(InteRFace Chip)并由其输出电压值。因此3轴加速度传感器必然包含一个单纯的机械性MEMS传感器和一枚ASIC接口芯片两部分,前者内部有成群移动的电子,主要测量XY及Z轴的区域,后者则将电容值的变化转换为电压输出。 文中所述的传感器和ASIC接口芯片两部分都可以采用CMOS制程来生产,而在目前的实际生产制造中,由于二者实现技术上的差异,这两部分大都会通过不同的加工流程来生产,再最终封装整合到一起成为系统单封装芯片(SiP)。封装形式可采用堆叠(Stacked)或并排(Side-by-Side)。 手持设备设计的关键之一是尺寸的小巧。目前ST采用先进LGA封装的加速度传感器的尺寸仅有3 X 5 X 1mm,十分适合便携式移动设备的应用。但考虑到用户对尺寸可能提出的进一步需求,加速度传感器的设计要实现更小的尺寸、更高的性能和更低的成本;其检测与混合讯号单元也会朝向晶圆级封装(WLP)发展。 下一代产品的设计永远是ST关注的要点。就加速度传感器的发展而言,单芯片结构自然是

三轴角度检测(倾角传感器MMA7455(加速度传感器))

#include #include //要用到_nop_();函数 #define uchar unsigned char #define uint unsigned int /***************************************************************************/ /*********** 单片机引脚定义 ************/ /***************************************************************************/ sbit sda=P1^0; //I2C 数据传送位 sbit scl=P1^1; //I2C 时钟传送位 char x,y,z,num[9]={0,0,0}; /****************************************************************************** / /********** 数据部 分 ***********/ /****************************************************************************** / #define IIC_READ 0x1D //定义读指令 #define IIC_WRITE 0x1D //定义写指令 #define LCD_data P0 //数据口 sbit inter_0=P3^2; sbit LCD_RS = P2^7; //寄存器选择输入 sbit LCD_RW = P2^6; //液晶读/写控制 sbit LCD_EN = P2^5; //液晶使能控制 sbit LCD_PSB = P2^4; //串/并方式控制 void delay_1ms(uint x) { uint i,j; for(j=0;j

三轴加速度传感器在跌倒检测中的应用

三轴加速度传感器在跌倒检测中的应用 前言 人们在跌倒后会面临双重危险。显而易见的是跌倒本身可能对人体产生伤害;另外,如果跌倒后不能得到及时的救助,可能会使结果更加恶化。例如,许多老年人由于其身体比较虚弱,自理能力和自我保护能力下降,常常会发生意外跌倒,如果得不到及时的救助,这种跌倒可能会导致非常严重的后果。有资料显示,很多严重的后果并不是由于跌倒直接造成的,而是由于跌倒后,未得到及时的处理和救护。当出现跌倒情况时,如果能够及时地通知到救助人员,将会大大地减轻由于跌倒而造成的危害。 不仅是对老人,在很多其他情况下,跌倒的报警也是非常有帮助的,尤其是从比较高的地方跌倒下来的时候。比如人们在登山,建筑,擦窗户,刷油漆和修理屋顶的时候。 这促使人们越来越热衷于对跌倒检测以及跌倒预报仪器的研制。近年来,随着iMEMS?加速度传感器技术的发展,使得设计基于三轴加速度传感器的跌倒检测器成为可能。这种跌倒检测器的基本原理是通过测量佩戴该仪器的个体在运动过程中的三个正交方向的加速度变化来感知其身体姿态的变化,并通过算法分析判断该个体是否发生跌倒情况。当个体发生跌倒时,仪器能够配合GPS模块以及无线发送模块对这一情况进行定位及报警,以便获得相应的救助。而跌倒检测器的核心部分就是判断跌倒情况是否发生的检测原理及算法。 ADXL3451是ADI公司的一款3轴、数字输出的加速度传感器。本文将在研究跌倒检测原理的基础上,提出一种基于ADXL345的新型跌倒检测解决方案。 iMEMS加速度传感器ADXL345

iMEMS 半导体技术把微型机械结构与电子电路集成在同一颗芯片上。iMEMS加速度传感器就是利用这种技术,实现对单轴、双轴甚至三轴加速度进行测量并产生模拟或数字输出的传感器。根据不同的应用,加速度传感器的测量范围从几g到几十g不等。数字输出的加速度传感器还会集成多种中断模式。这些特性可以为用户提供更加方便灵活的解决方案。 ADXL345是ADI公司最近推出的基于iMEMS技术的3轴、数字输出加速度传感器。ADXL345具有+/-2g,+/-4g,+/-8g,+/-16g可变的测量范围;最高13bit分辨率;固定的4mg/LSB灵敏度;3mm*5mm*1mm超小封装;40-145uA超低功耗;标准的I2C或SPI数字接口;32级FIFO存储;以及内部多种运动状态检测和灵活的中断方式等特性。所有这些特性,使得ADXL345有助于大大简化跌倒检测算法,使其成为一款非常适合用于跌倒检测器应用的加速度传感器。 本文给出的跌倒检测解决方案,完全基于ADXL345内部的运动状态检测功能和中断功能,甚至不需要对加速度的具体数值进行实时读取和复杂的计算操作,可以使算法的复杂度降至最低。 中断系统 图1给出了ADXL345的系统框图及管脚定义。

完整版三轴数字加速度传感器ADXL345技术资料

概述: ADXL345是一款小而薄的超低功耗3轴加速度计,分辨率高(13位),测量范围达±16g。数字输出数据为16位二进制补码格式,可通过SPI(3线或4线)或I2C数字接口访问。ADXL345非常适合移动设备应用。它可以在倾斜检测应用中测量静态重力加速度,还可以测量运动或冲击导致的动态加速度。其高分辨率(3.9mg/LSB),能够测量不到1.0。的倾斜角度变化。该器件提供多种特殊检测功能。 活动和非活动检测功能通过比较任意轴上的加速度与用户设置的阈值来检测有无运动发生。敲击检测功能 可以检测任意方向的单振和双振动作。自由落体检测功能可以检测器件是否正在掉落。这些功能可以独立 映射到两个中断输岀引脚中的一个。正在申请专利的集成式存储器管理系统采用一个32级先进先岀(FIFO)缓冲器,可用于存储数据,从而将主机处理器负荷降至最低,并降低整体系统功耗。低功耗模式支持基于运动的智能电源管理,从而以极低的功耗进行阈值感测和运动加速度测量。ADXL345采用3 mm X 5 mm x 1 mm,14引脚小型超薄塑料封装。 对比常用的飞思卡尔的MMZ7260三轴加速度传感器,ADXL345,具有测量精度高、可以通过SPI或I2C 直接和单片机通讯等优点。 特性: 超低功耗:VS= 2.5 V 时(典型值),测量模式下低至23uA, 待机模式下为0.1 g A功耗随带宽自动按比例变化 用户可选的分辨率10位固定分辨率全分辨率,分辨率随g范围提高而提高, ±16g时高达13位(在所有g范围内保持4 mg/LSB的比例系数) 正在申请专利的嵌入式存储器管理系统采用FIFO技术,可将主机处理器负荷 降至最低。单振/双振检测,活动/非活动监控,自由落体检测 电源电压范围:2.0 V 至3.6 V I / O电压范围:1.7 V至VS SPI (3线和4线)和I2C数字接口 灵活的中断模式,可映射到任一中断引脚 通过串行命令可选测量范围 通过串行命令可选带宽 宽温度范围(-40°C至+85 °C) 抗冲击能力:10,000 g 无铅/符合RoHS标准 小而薄:3 mn X 5 mm x 1 mm,LGA 封装 模组尺寸:23*18*11mm (高度含插针高度 应用: 机器人控制、运动检测 过程控制,电池供电系统 硬盘驱动器(HDD)保护,单电源数据采集系统 手机,医疗仪器,游戏和定点设备,工业仪器仪表,个人导航设备

三轴向高灵敏度加速度传感器

三轴向高灵敏度加速度传感器 便携式电子产品功能的增加推动了对数据驱动器存储的需求,设计人员正在寻找占用较小板卡空间的改进保护系统。飞思卡尔半导体率先推出业界第一款三轴向高灵敏度加速度传感器——MMA7260Q。MMA7260Q能在XYZ三个轴向上以极高的灵敏度读取低重力水平的坠落、倾斜、移动、放置、震动和摇摆,它是同类产品中的第一个单芯片三轴向加速器。 1 小巧的巨人 飞思卡尔自1980年第一个传感器问世以来,销售的传感器数量在去年已经突破了具有里程碑意义的4.5亿大关。飞思卡尔帮助客户开发产品,用以监控身边的大量产品和技术。 MEMS传感器是面向加速和压力传感器市场的支持技术。飞思卡尔将非常小的电子和机械组件包含在一个封装中,做成了MEMS传感器。这个封装还整合了集成电路(IC)。当MEMS感应、处理或控制周围环境时,它使系统的一部分能够进行信息处理。传感器适用于需要测量因倾斜、移动、定位、震动或摆动而产生的各种力,或者测量压力、高度、重量和水位的最终产品以及嵌入式系统。 飞思卡尔基于MEMS的压力传感器和加速传感器是汽车电子、保健监控设备、智能便携电子设备(如蜂窝电话、PDA、硬盘驱盘器、计算机外围设备和无线设备)等应用中的关键组件。使用MEMS传感器,您能够拥有更准确的血压监控设备;更精确的气象站气象测量;功能更高的呼吸器和反应更快、更强的游戏设备。 汽车设计人员和厂商在每辆汽车内的不同地方都要应用MEMS传感器。在加强汽车安全的应用中,加速传感器提供碰撞检测功能,并对前/侧气囊及其他汽车安全设备进行有效部署。在特殊的保健监控应用中,压力传感器为病人提供重要诊断。在蜂窝电话中,MEMS产品能用自然的手部运动(而不是推动按钮的方法)激活各种功能。 飞思卡尔开发的基于微机电系统(MEMS)的三轴向低重力加速计MMA7260Q,专门面向便携式消者电子产品。MMA7260Q的可选灵敏度允许在1.5 g、2 g、4 g和6 g的不同范围内进行设计。它的3μA睡眠模式、500μA低运行电流、1.0 ms的快速启动响应时间以及6 minx6 mm×1.45 mm的QFN小巧包装等其他特性,使围绕 MMA7260Q的设计活动轻松方便、经济高效。 MMA7260Q是一款单芯片设备,具有三轴向检测功能,使便携式设备能够智能地响应位置、方位和移动的变化。它的封装尺寸很小,只需较小的板卡空间,另外还提供快速启动和休眠模式。这些特性使MMA7260Q成为采用电池供电电子产品的理想之选,包括PDA、手机、3D游戏和数码相机等。 飞思卡尔能提供1.5~250 g的一系列加速传感器产品,使用在从高度敏感的地震监测到强劲的碰撞检测等应用中。 在三星电子最近发布的两款最新数字音频播放器(YH_J70和YP_T8)中,采用了这种传感器。YH_J70采用这种传感器,实现了通过倾斜和自由下落检测来滚动菜单的功能。在YP_T8闪存式多媒体播放器中,通过传感器的倾斜检测实现了游戏功能。 2 全方位感知 由于MMA7260Q传感器能在三个轴向上灵敏地准确测量到低重力水平的坠落、倾斜、移动、放置、震动和摇摆,各个行业的设计工程师都能得以致用。

三轴加速度传感器

Three-axis acceleration sensor variable in capacitance under application of acceleration United States Patent 5383364 Abstract: An acceleration sensor comprises an upper semiconductor substrate having a rigid frame, four deformable beams connected with the rigid frame, and a weight portion supported by the plurality of deformable beams, a lower semiconductor substrate bonded to the rigid frame, a plurality of movable electrodes attached to the weight portion, and electrically isolated from one another, and a plurality of stationary electrodes attached to the second semiconductor substrate, and opposite to the plurality of movable electrodes for forming a plurality of variable capacitors, and the center of gravity of the weight portion is spaced from a common neutral surface of the four beams for allowing acceleration to produce bending moment exerted on the four beams, thereby causing the variable capacitors to independently change the capacitance. Inventors: Takahashi, Masaji (Tokyo, JP) Kondo, Yuji (Tokyo, JP) Application Number: 07/972537 Publication Date: 01/24/1995 Filing Date: 11/06/1992 Export Citation: Click for automatic bibliography generation Assignee: NEC Corporation (Tokyo, JP) Primary Class: 73/514.32 Other Classes: 73/514.34, 73/514.36, 361/280 International Classes: G01P15/125; G01P15/18; (IPC1-7): G01P15/125 Field of Search: 73/517R, 73/517AV, 73/517B, 361/280 View Patent Images: Download PDF 5383364 PDF help US Patent References: 5243861 Capacitive type semiconductor accelerometer 1993-09-14 Kloeck et al. 735/17R 5134881 Micro-machined accelerometer with composite material springs 1992-08-04

三轴加速度传感器MMA7260

MMA7260 三轴加速度传感器使用手册 一、MMA7260QT的简介 MMA7260QT低成本微型电容式加速度传感器,采用了信号调理、单极低通滤波器和温度补偿技术,并且提供4个量程可选,用户可在4个灵敏度中的选择。该器件带有低通滤波并已做零g补偿。本产品还提供休眠模式,因而是电池充电的手持设备产品的理想之选。 二、特性: (1) 可选灵敏度(1.5g/2g/4g/6g) (2) 低功耗:500 μA (3) 休眠模式: 3 μA (4) 低压运行:2.2 V - 3.6 V (5) 6mm x 6mm x 1.45 mm的无引线四方扁平 (QFN) 封装; (6) 高灵敏度(800 mV/g @ 1.5g) (7) 快速开启 (8) 低通滤波器具备内部信号调理 (9) 设计稳定、防震能力强 (10) 无铅焊接 (11) 环保封装 (12) 成本低 三、典型应用: 三轴加速度传感器是一种可以对物体运动过程中的加速度进行测量的电子设备,典型互动应用中的加速度传感器可以用来对物体的姿态或者运动方向进行检测,比 如其中WII和iPhone中的经典应用。Nokia最新推出的手机N95利用内置的加速度传感器,让用户可以通过机身的摆动进行各种操作,包括主菜单操 作、图片浏览、切歌操作甚至进行游戏的控制等,非常全面,甚至超越了苹果 iPhone的动作感应功能的应用范畴。 基于Freescale公司MMA7260的这个三轴加速度传感器,对于普通的互动应用来讲应该是一个不错的选择, 可以用于摩托车和汽车防盗报警器,遥控航模,游戏手柄,跌倒探测,硬盘冲击保护,倾斜角度测量,电梯安全监控等需要测试加速度的地方。

加速度传感器测振动位移

加速度传感器测振动速度与位移方案 1. 测量方法(基本原理) 设加速度传感器测量振动所得的加速度为: a(t) (单位:m/s 2) N a +a 对加速度积分一次可得速率:v(t)二a (t)dt 八[七冲讥(单位: m/s) V 2 N * 对速率信号积分一次可得位移:s (tr 曲回八[宜尹门t 仲位: m) i 4 2 其中: a(t)为连续时域加速度波形 v(t)为连续时域速率波形 s(t)为连续位移波形 a i 为i 时刻的加速度采样值 V i 为i 时刻的速率值 a o =0; v 0=0 : t 为两次采样之间的时间差 2. 主要误差分析 误差主要存在以下几个方面: 1) 零点漂移所带来的积分误差 由于加速度传感器的输出存在固定的零点漂移。即当加速度为 Og 时传感器输出并不 一定为0,而是一个非零输出A error 。传感器的输出值为:a(t) + A rror 。对A error 二次积分会 产生积分累计效应。 2) 积分的初始值所带来的积分误差 a o 和V o 的值并不为零,同样会产生积分累计效应。 3) 高频噪声信号所带来的误差 高频噪声信号会对瞬时位移值测量精度带来影响,但积分值能相互抵销而不会带来累 计。

3?解决办法 1)零点漂移和积分初始值不为零可以加高通滤波器的方法滤除。 2)高频噪声信号的影响并不大,为了达到更高的精度,可以加一个低通滤波器。选择高通滤 波器和低通滤波器合理的截至频率,可以得到较理想的结果。 (注:高通滤波即去除直流分量;低通滤波即平滑滤波算法) 。 4.仿真研究 4.1问题的前提背景 1.本课题研究的对象是桥梁振动的加速度a(t),速度v(t)和位移s(t),可以认为桥梁的加 速度,速度,位移的总和为0。 即:J0a(t)dt=0 0v(t)dt 二0 0s(t)dt =0 N 其离散表达式为:’二a i =0(N =::) i =0 N '二v i =0(^ = ') i=S N 、s =0 (N 八)i=e 2.加速度传感器测量值存在误差,它主要是在零点漂移和测量噪声两个方面。 即测量值a measure(t) = a(t) j (t) 其中:a measure(t)为加速度传感器测量加速度值 a(t)为桥梁振动的实际加速度值 a error⑴为传感器测量误差 3.振动速度与振动位移取决于振动加速度与振动频率,可以证明,振动速度与振动加速度成正比,与振动频率成反比;振动位移与振动速度成正比,与振动频率成反比。 4.2仿真 1.取一组仿真用振动加速度信号:a measure(t) =9.8sin(2二40 t) 3,如图1所示。

三轴加速度传感器的步态识别系统==

三轴加速度传感器的步态识别系统 近年来随着微机电系统的发展,加速度传感器已经广泛应用于各个领域并拥有良好的发展前景。例如在智能家居、手势识别、步态识别、跌倒检测等领域,都可以通过加速度传感器实时获得行为数据从而判断出用户的行为情况。 目前许多智能手机都内置多种传感器,通过预装软件就能够获得较精确的原始数据。本文提出一种基于三轴加速度传感器,用智能手机采集用户数据,对数据进行处理及特征提取获得特征矩阵并分类识别的方法,有效地识别了站立、走、跑、跳四种动作。 人体动作识别处理过程主要包含数据采集、预处理、特征提取和分类器识别数据采集数据采集和发送模块安装在用户端,另一个数据接收模块接在电脑终端上。 由于我们制作的采集模块很轻、很小,所以方便佩戴。当用户运动时,三轴加速度传感器会将据采集并通过无线方式发送给电脑接收模块,再通过电脑上的软件部分对采集到的数据进行分析处理,将结果输出,显示用户的实时状态。 本文使用的加速度传感器数据来自于共计60个样本。传感器统一佩戴于腰间。本文选取了其中一位采集者的数据用于主要分析研究,其余两位采集者的数据则用于验证由第一位采集者数据研究所得的结论,这样的做法既减小了数据处理的繁杂又能保证最终结果的准确性。预处理应用程序设置的采集时间间隔为0.1s,对每一个动作的采集时间为25s。考虑到用户在采集数据一开始与将要结束时的动作

不平稳可能对数据带来较大影响,前2s2s采集的数据将被舍弃不予分析。因原始加速度信号一般都含有噪声,为了提高数据分析结果的准确性,通常在原始加速度信号进行特征提取前对其进行去躁、归一化、加窗等预处理。通过加窗处理,不仅规整了加速度信号的长度,而且方便研究人员按照需要选择适宜的信号长度,这样有利于后续的特征提取。 许多研究人员使所示。研究人员采集的加速度传感器信号由于采集者的动作力度不同造成加速度信号的幅度差异较大,这会对之后的分类识别造成负面影响,归一化技术可以调整加速度信号的幅度,按照一定的归一化算法可以使加速度信号的幅度限定在某一数值范围内,文献[2]在识别跑、站立、跳和走路这四种动作时对四种动作的加速度信号进行了归一化;文献[3]在进行手势识别时对手势动作的加速度信号进行了归一化处理。特征提取特征提取和选择模块的作用在于从加速度信号中提取出那些表征人体行为的特征向量,处于预处理模块和分类器模块之间,是人体行为识别过程中的一个重要环节,直接影响分类识别的效果。特征的提取方法具有多样性,对于不同的识别目的,研究人员会提取不同的特征,例如为了识别分类站立和跑步,研究人员通常会选取方差和标准差这类能够反映加速度信号变化大小的特征,而为了识别分类走路和跑步,研究人员通常会选取能量和均值这类能够反映加速度信号大小的特征。使用不同的特征表征行为会对分类识别效果产生不同的影响,因此寻找更加有效的特征一直是研宄人员关注的一个课题。通过查阅大量的文献,大致可以把加速度信

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

三轴数字加速度传感器ADXL技术资料

概述: ADXL345是一款小而薄的超低功耗3轴加速度计,分辨率高(13位),测量范围达土16g。数字输出数据为16位二进制补码格式,可通过SPI(3线或4线)或I2C数字接口访问。ADXL345非常适合移动设备应用。它可以在倾斜检测应用中测量静态重力加速度,还可以测量运动或冲击导致的动态加速度。其高分辨率(3.9mg/LSB),能够测量不到1.0。的倾斜角度变化。该器件提供多种特殊检测功能。 活动和非活动检测功能通过比较任意轴上的加速度与用户设置的阈值来检测有无运动发生。敲击检测功能 可以检测任意方向的单振和双振动作。自由落体检测功能可以检测器件是否正在掉落。这些功能可以独立 映射到两个中断输岀引脚中的一个。正在申请专利的集成式存储器管理系统采用一个32级先进先岀(FIFO)缓冲器,可用于存储数据,从而将主机处理器负荷降至最低,并降低整体系统功耗。低功耗模式支持基于运动的智能电源管理,从而以极低的功耗进行阈值感测和运动加速度测量。ADXL345采用3 mm X 5 mm X 1 mm,14引脚小型超薄塑料圭寸装。 对比常用的飞思卡尔的MMZ7260三轴加速度传感器,ADXL345,具有测量精度高、可以通过SPI或I2C 直接和单片机通讯等优点。 特性: 超低功耗:VS= 2.5 V时(典型值),测量模式下低至23uA,待机模式下为0.1卩A功耗随带宽自动按比 例变化用户可选的分辨率10位固定分辨率全分辨率,分辨率随g范围提高而提高, ±16g时高达13位(在所有g范围内保持4 mg/LSB的比例系数)正在申请专利的嵌入式存储器管理系统采用FIFO技术,可将主机处理器负荷降至最低。单振/双振检测,活动/非活动监控,自由落体检测电源电压范围:2.0 V至3.6 V I / O电压范围:1.7 V至VS SPI (3线和4线)和I2C数字接口灵活的中断模式,可映射到任一中断引脚通过串行命令可选测量范围通过串行命令可选带宽宽温度范围(-40° C至+85 °C)抗冲击能力:10,000 g无铅/符合RoHS标准小而薄: 3 mn X 5 mm X 1 mm,LGA 封装 模组尺寸:23*18*11mm (高度含插针高度 应用: 机器人控制、运动检测过程控制,电池供电系统硬盘驱动器(HDD)保护,单电源数据采集系统手机,医疗 仪器,游戏和定点设备,工业仪器仪表,个人导航设备 电路功能与优势 ADXL345是一款小巧纤薄的低功耗三轴加速度计,可以对高达±16 g的加速度进行高分辨率(13位)测量。数字输岀数据为16位二进制补码格式,可通过SPI (3线或4线)或者I2C数字接口访问。 ADXL345非常适合移动设备应用。它可以在倾斜检测应用中测量静态重力加速度,还可以测量运动或冲 击导致的动态加速度。它具有高分辨率(4 mg/LSB ),能够测量约0.25。的倾角变化。使用ADXL345等数字输出加速度计时,无需进行模数转换,从而可以节省系统成本和电路板面积。此外,ADXL345内置 多种功能。活动/非活动检测、单击/双击检测以及自由落体检测均在内部完成,无需主机处理器执行任何

三轴转台标定加速度传感器

基于三轴转台的ADXL335加速度传感器标定实验 一、实验目的 1、熟练使用SGT320E 型三轴多功能转台,掌握传感器测量和采集的方法 2、掌握卡尔曼滤波课程的传感器三参数标定原理 二、实验器材 1、实验室具备“SGT320E 型三轴多功能转台”实验设备 2、实验室具备ADXL335加速度传感器 3、安捷伦数据采集卡、笔记本电脑、MATLAB 软件等。 三、实验原理 1、三轴转台部分 静态测试:此实验基础以“SGT320E 型三轴多功能转台”为平台,在三轴转台内框夹具上安装“ADXL335加速度传感器”进行测试,由三轴转台内框0°作为初始位置,内框旋转180°,每隔2°采集一次数据。将90个数据按照最小二乘法滤波,在Matlab 中计算出标定传感器所需要的三个误差参数:Bias (零偏)、Scale Factor error (刻度系数误差)、g-sensitive drift (作用在转感器敏感轴上的加速度引起的g 相关零偏)。 2、加速度传感器三个误差参数标定原理部分 在理想状态下,加速度计敏感轴被放置于垂直地面方向,则读数应为g ,当敏感轴与重力加速度方向存在一个夹角K θ时,读数应为K g θcos ?。 但事实上,加速度计是存在误差。如果为了简化变量,忽略加速度计本身噪声,那加速度计的输出可以包括重力部分(K g θcos ?)、零偏值(Bias )、刻度因素误差(K g SF θcos ??)、敏感轴偏移误差(2 )cos (K g K θ??),因此加速度传感器的输出表达式为: 2)cos (cos cos _K K K g K g SF Bias g Output Acc θθθ??+??++?= 那么误差表达式为: 2)cos (cos cos _K K K g K g SF Bias g Output Acc Error θθθ??+??+=?-= 因此,标定传感器就需要求出、、三个参数。 如果将Error 当作测量模型K y ,将K g θcos ?当作K x ,则测量方程表达式为: 2* )(K K K x K x SF Bias y ?+?+= Bias SF K

三轴加速度传感器

三轴加速度传感器在智能车控制与道路识别中的应用 三轴加速度传感器MMA7260Q可以测量智能车惯性大小,选取最佳重心位置,并能准确定位智能车处于直线、弯道、坡道、漂移等运行状态;利用加速度传感器能够提前预测路径,并判断何时刹车效果最佳。并且很好的解决了在直立行走车模的平衡与方向识别。 由此提出了一种基于三轴加速度传感器在智能车中的 控制以及路径识别的设计。该设计采用三轴加速度传感器MMA7260Q测量智能车在运动中的加速度信号,以嵌入式单片MC9S12XSl28B作为核心控制器,对加速度信号进行采样,A /D转换,再将特征数据存储在EEPROM中。很好地解决了智能车运动路径分析的问题以及在。实时获取小车加速度,从而更加全面的获取小车的运行状态,为控制的流畅性和更好的路况识别提供了可能。 在直立行走的车模中,应用同样的原理,选择最佳重心,可以很好地解决直立行走车模的平衡以及方向识别,从而加快车模的行车速度。

实验结果证明:结合加速度传感器具有很强的抗干扰性,提取角度信息更准确,确保了智能车在直道上能够以较高的速度行驶,在弯道则能基本不失速平滑地过弯。 1. 智能车现存问题 在车模运行当中,人无法判断小车的运行状态,使用加速度传感器来监控小车的加速度,这样可以更加精确地知道小车的运行状态,而且可以通过对某个方向加速度的变化的检测来区分出坡道和非坡道。从而进行相应的策略应对。避免小车在比赛时出现停车与翻车现象。以及很好地解决了直立行走的车模中在行走过程中的平衡性。 2. MMA7260Q简介 加速度传感器是Freescale公司出品的MMA7260Q。

图1 芯片引脚定义 2.1 MMA7260Q的特性: 在一个设备中提供三轴向XYZ检测灵敏度,可选灵敏度:1.5g、2g、4g 和6g;功耗低,具有休眠模式,低压运行一般在2.2V~3.6V,能够快速启动,一般启动时间为1ms;其低噪音,封装一般为16针脚6mm x 6mm x 1.45mm无针脚型方体扁平封装(QFN)。 2.2 MMA7260Q的优点 为多功能应用提供灵活的可选量程:包括1.5g、2g 、4g 和6g;功耗低,可延长电池使用寿命开机响应时间短,最适合电池供电手持设备的休眠模式,组件数量少-节约成本和空间噪音低、灵敏度高,具有自适应功能,频率及解析度高,提供精确的坠落、倾斜、移动、放置、震动和摇摆感应灵敏度不同应用的建议重力加速度级别自由落体检测: 1g~2g 倾斜控制:1g~2g。 2.3加速度传感器应用分析 2.3.1干扰因素分析 芯片可以测试一个方向上的加速度变化。所以采用了不同的安装方式,其间要考虑到比较多的干扰因素。

三轴加速度传感器使用说明

三轴加速度传感器模块使用说明 概述 H48C三轴加速度传感器能测量在三个轴(X、Y、Z)方向上的±3g的加速度值,模块板载一个自动负载调节器,为H48C提供3.3V的电源,H48C输出的模拟信号(电压)由模块上的MCP3204(四通道,12-bit)读取并转换为数字信号输出。 特点 ●测量范围±3g(每个轴) ●使用MEMS (微型机电系统) 技术,实现自动补偿 ●板载自动负载调节器,和高解析度的ADC ●体积小巧:0.7" x 0.8" (17.8 mm x 20.3 mm) ●工作温度范围广-25° to 75° C 基本连线图 H48C连接到C51上只需要直接选择任意三个脚连接连接即可,如图1 图 1 * 与单片机连接的引脚可以任意选择 工作原理 通过MEMS技术,和内置的补偿H48C加速度传感器通过MCP3204模数转换器实现同步输出,要获取指定轴加速度的值,实际上是读取指定轴的电压在通过下面的公式计算出加速度的值,公式如下: G = ((axis – vRef) / 4095) x (3.3 / 0.3663) 在这个公式中axis和vRef表示通过AD转化得到的计数值,4095是一个12-bitADC的最大计数输出,3.3是H48C提供给内部的电压,0.3663是加速度1g的时候H48C输出的电压。我们可以把公式简化成如下表达式。 G = (axis – vRef) x 0.0022

引脚的定义以及说明 (1)CLK 同步时钟输入 (2)DIO 双向数据/从主机通信 (3)Vss 电源地(0V) (4)Zero-G “自由落体”输出, 高电平有效 (5)CS\ 片选信号,低电平有效 (6)Vdd 电源+5v

加速度传感器原理以及选用

加速度传感器原理以及选用 什么是加速度传感器? 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度传感器一般用在哪里? 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 加速度传感器是如何工作的? 多数加速度传感器是根据压电效应的原理来工作的。 所谓的压电效应就是 "对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应 "。 一般加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。当然,还有很多其它方法来制作加速度传感器,比如电容效应,热气泡效应,光效应,但是其最基本的原理都是由于加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出。 在选购加速度传感器的时候,需要考虑什么? 模拟输出 vs 数字输出:这个是最先需要考虑的。这个取决于你系统中和加速度传感器之间的接口。一般模拟输出的电压和加速度是成比例的,比如2.5V对应0g的加速度,2.6V对应于0.5g的加速度。数字输出一般使用脉宽调制(PWM)信号。 如果你使用的微控制器只有数字输入,比如BASIC Stamp,那你就只能选择数字输出的加速度传感器了,但是问题是你必须占用额外的一个时钟单元用来处理PWM信号,同时对处理器也是一个不小的负担。 如果你使用的微控制器有模拟输入口,比如PIC/AVR/OOPIC,你可以非常简单的使用模拟接口的加速度传感器,所需要的就是在程序里加入一句类似"acceleration=read_adc()"的指令,而且处理此指令的速度只要几微秒。 测量轴数量: 对于多数项目来说,两轴的加速度传感器已经能满足多数应用了。对于某些特殊的应用,比如UAV,ROV控制,三轴的加速度传感器可能会适合一点。 最大测量值: 如果你只要测量机器人相对于地面的倾角,那一个±1.5g加速度传感器就足够了。

相关文档
最新文档