Notch stress intensity factors and fatigue strength of aluminium

Notch stress intensity factors and fatigue strength of aluminium
Notch stress intensity factors and fatigue strength of aluminium

International Journal of Fatigue23(2001)

225–232

https://www.360docs.net/doc/7011882718.html,/locate/ijfatigue

Notch stress intensity factors and fatigue strength of aluminium

and steel welded joints

https://www.360docs.net/doc/7011882718.html,zzarin a,*,P.Livieri b

a Department of Management and Engineering,University of Padova,Stradella S.Nicola3,36100Vicenza,Italy

b Department of Engineering,University of Ferrara,Via Saragat1,44100Ferrara,Italy

Received12June2000;received in revised form21September2000;accepted21September2000

Abstract

According to a recent and appropriate de?nition,stress?eld parameters,namely notch stress intensity factors(N-SIFs),can be used to predict the fatigue behaviour of mechanical components weakened by V-shaped re-entrant corners,where the singularity in the stress distribution makes any failure criterion based on elastic peak stress no longer https://www.360docs.net/doc/7011882718.html,monly thought of as parameters able to control the fatigue crack initiation life,N-SIFs are,under certain circumstances,also useful for predicting the component total fatigue life.The fatigue strength of aluminium welded joints with different geometries and thicknesses are summar-ised in a single scatter band by using an N-SIF-based approach.The statistical analysis is carried out taking into account experimental data already reported in the literature,referring to welded joints with a thickness ranging from3to24mm.Results of steel and aluminium welded joints are then compared:at high number fatigue life,the relative fatigue strength is slightly greater than2,in agreement with the value previously reported in the literature for butt spliced bolted joints.The value of the theoretical exponent quantifying the scale effect(0.326against0.25suggested by Eurocodes)is discussed.?2001Published by Elsevier Science Ltd. Keywords:Fatigue;Welded joints;Notch stress intensity factors

1.Introduction

Williams[1]was able to demonstrate that in the con-text of the elasticity theory,the asymptotic stress state near a re-entrant corner is singular and its degree of singularity is a function of the only notch opening angle. The stress?eld intensity depends on the overall geometry of the component and the far-?eld loading.In the context of a stress?eld theory,a?eld parameter called the“notch stress intensity factor”(hereafter N-SIF)was explicitly de?ned by Nui et al.[2]and applied

to the fracture toughness of brittle materials.Afterwards, the N-SIF concept was used by Boukharouba et al.and

by Verreman and Nie for fatigue crack initiation esti-mates at notches[3]and weld toes[3,4].Recently,an analytical background able to quantify different stress components,such as the in?uence of symmetric and

*Corresponding author.Tel.:+39-0444-998-711;fax:+39-0444-

998-888.

E-mail address:plazzarin@gest.unipd.it(https://www.360docs.net/doc/7011882718.html,zzarin).

0142-1123/01/$-see front matter?2001Published by Elsevier Science Ltd. PII:S0142-1123(00)00086-4anti-symmetric stress?elds,supported the N-SIF de?-nition[5].Due to weld geometry,both components are always present at the weld toe,also under a remote uni-axial load,and vary from case to case according to the global geometry of the joint.Thus,two notch stress intensity factors K N1and K N2(for opening and sliding modes)were determined by means of a?nite element analysis and then plotted as a function of the main geo-metrical parameters of the joints[5].So,in the highly stressed region in the neighbourhood of the weld toe, stress components can be predicted on the basis of a linear combination of K N1and K N2;this could be useful, particularly along the virtual direction of fatigue crack propagation(when a well-established linear elastic frac-ture mechanics approach is used to predict the fatigue life of the joints[6–9])and on the surface free edge (where strain gauges are generally placed in experi-mental approaches).

It has already been shown in[5,10]that the total fatigue life of transverse non-load-carrying?llet welded joints could be ef?ciently predicted by using only the K N1factor,the contribution due to the sliding mode being

https://www.360docs.net/doc/7011882718.html,zzarin,P.Livieri/International Journal of Fatigue23(2001)225–232

non singular for that type of joint.Note that most of the weld details classi?ed by Eurocode3and other national standards in force exhibit mean values of the V-shaped notch opening angles close to135°.Thus,neglecting the in?uence of K N2in the fatigue failure criterion should be reasonable in all these cases,while comparing the K N1 of different units(due to variations of the opening angles)is not[5,10,11].It was already highlighted[12] that a precise theoretical link exists(due to Bueckner’s superposition principle)between the conventional MFLE stress intensity factor K I and the N-SIFs K N1and K N2. The aims of this paper are as follows:

?to extend the N-SIF-based approach,previously applied only to steel weldments,to aluminium welded joints;

?to compare the fatigue strength of steel and alu-minium welded joints of different geometry on the basis of the relevant N-SIFs;

?to brie?y discuss the exponent quantifying the size effect by comparing theoretical predictions(based only on Williams’Mode I singularity)and results of

a statistical re-analysis involving all the experimental

data considered herein.The theoretical penalty exponent is more penalising than that suggested by Eurocodes.

2.Singular stress?elds due to sharp corners

Williams[1]stated that,even in a re-entrant V-shaped corner,as happens in a crack,the Mode I(and often Mode II)stress?eld is singular close to the tip.Then, in a polar frame of reference(r,J)(see Fig.1),the stress ?eld is de?ned within two constants(a1and a2)and can always be written as the sum of the symmetric?eld,with stress singularity of the1/r1?l1type,and the anti-sym-metric?eld,with stress singularity of the1/r1?l2type:

?s J s r t r J??l1r l1?1a1?f1,J(J)f1,r(J)f1,r J(J)??l2r l2?1a2?f2,J(J)f2,r(J)f2,r J(J)?(1)

where l1and l2are,as is well known,the?rst eigen-values for Mode I and Mode II,respectively,in Willi-ams’equations[1].Obviously,when l2is greater than 1.0,only Mode I is singular.This happens when2a is greater than102°.

It is possible to present Williams’formulae for stress components as explicit functions of the N-SIFs[5].For Mode I stress distributions

are:Fig.1.Coordinate system and geometrical parameters for the analy-ses of the welded joints.

?s J s r t r J?r=0?1?2p r l1?1K N1(1+l1)+c1(1?l1)??(1+l1)cos(1?l1)J

(3?l1)cos(1?l1)J

(1?l1)sin(1?l1)J???c1(1?l1)?cos(1+l1)J?cos(1+l1)J sin(1+l1)J??(2) For Mode II:

?s J s r t r J?r=0?1?2p r l2?1K N2(1?l2)+c2(1+l2)???(1+l2)sin(1?l2)J

?(3?l2)sin(1?l2)J

(1?l2)cos(1?l2)J??

227

https://www.360docs.net/doc/7011882718.html,zzarin,P.Livieri /International Journal of Fatigue 23(2001)225–232?c 2(1?l 2)

?

?sin(1+l 2)J sin(1+l 2)J cos(1+l 2)J

??

(3)

General expressions of the coef?cients in Eqs.(2)and (3)are reported in [5,10].Since all the series of welded joints considered in the present analyses will be charac-terised by an opening angle 2a =135°,it is suf?cient to give here only the parameter values associated with this particular angle:l 1=0.674,l 2=1.302,c 1=4.153,c 2=?0.569.

Two convenient expressions of N-SIFs for welded joints are the following [5]:K N 1

?k 1s n t

1?l 1

(4a)K N 2?k 2s n t

1?l 2

(4b)

where k i are non-dimensional coef?cients analogous to the theoretical stress concentration factors K t ,s n is the remotely applied nominal stress and t is the main plate thickness.Looking at Eqs.(2)and (3),it is worth noting that when q =0,s r and s q depend only on Mode I distri-bution while,on the contrary,the t r q component is asso-ciated with Mode II.So,by plotting stress distributions along the bisector of a particular geometry,there is a zone in the neighbourhood of the weld toe where the s ij /r l i ?1ratios have a constant value (Fig.2).As a conse-quence,K N 1and K N

2can be univocally determined since,on the basis of Eqs.(2)and (3),the intensities of the stress distributions are ruled just on such parameters.It is worth noting that only Mode I stress distribution is singular in Fig.2while,in contrast,Mode II stress components are null when r =0.

As soon as K N 1and K N

2are known,the relevant non-dimensional coef?cients k 1and k 2can easily be com-puted by means of Eq.

(4a,b).

Fig.2.Plots of stresses along the bisector.

Expressions for k 1and k 2have already been reported for transverse non-load carrying ?llet welded joints sub-jected to tensile stresses [5]or bending stresses [10].It is useful to report here such expressions,since most welded details considered herein refer to just such types of joints.Traction:

k 1?1.212?0.495e ?0.985(2h /t )

(5a)?1.259e ?1.120(2h /t )?0.485(L /t )k 2?0.508?0.797e ?1.959(2h /t )

(5b)

?2.723e ?1.126(2h /t )?0.769(L /t )Bending:

k 1?0.900?0.326e ?5.289(2h /t )

(6a)

?0.474e ?3.064(2h /t )?1.420(L /t )k 2?0.818?1.760e ?5.356(2h /t )

(6b)?1.851e ?2.982(2h /t )?1.026(L /t )

According to symbols shown in Fig.1,h is the height of the weld bead and L the transverse plate thickness.Estimates based on Eqs.(5a,b)are accurate when 0?L /t ?3.0and 0.25?2h /t ?2.5[5]while limits for Eqs.(6a,b)are 0.2?L /t ?5.0and 0.25?2h /t ?2.5[10].Out of these geometrical conditions,a ?nite element analysis should be carried out,according to the procedures detailed in [5].

3.Fatigue strength data in terms of N-SIFs Tables 1and 2summarise geometrical and fatigue

strength data related both to steel and aluminium welded joints,respectively.Those pertinent to steel joints have already been partly analysed in [5,10].

Table 3reports materials,welding processes and post-welding conditions for all the series considered.Original data are reported in the well-known books by Maddox [6]and Gurney [7,9]as well as in two papers by Kihl and Sarkani [13,14].Most data refer to transverse non-load-carrying ?llet joints;some series,however,con-sider welded joints of a different type.In all cases,the nominal value of the notch tip radius is to be considered null (as the weld toes are always represented by sharp V-shaped notches in the original papers),while the opening angle 2a is 135°.The relevant k 1coef?cients are sum-marised in Tables 1and 2.It is worth noting that the main plate thickness ranges between 6and 100mm in steel welded joints,and between 3and 24mm in alu-minium welded joints.The variability of the transverse plates is even more pronounced (3–200mm).

https://www.360docs.net/doc/7011882718.html,zzarin,P.Livieri/International Journal of Fatigue23(2001)225–232

Table1

Geometrical and fatigue strength properties of steel welded joints(nominal load ratio R?0)a

Welded joint geometry?K N1,50%[MPa Series Load type t[mm]L/t2h/t k1?s n,50%[MPa] [Ref.No.]mm0.326]

N=5·106N=5·106

St-1cruciform-nlc[6]T130.769 1.231 1.1479.5209.4

St-2cruciform-nlc[6]T50 1.0000.640 1.1059.6234.2

St-3cruciform-nlc[6]T1000.5000.3200.8855.5219.8

St-4cruciform-nlc[7]T130.2310.7690.9791.7204.8

St-5cruciform-nlc[7]T130.769 1.231 1.1476.7202.0

St-6cruciform-nlc[7]T250.1200.4000.7993.9211.1

St-7cruciform-nlc[7]T25 1.2800.720 1.1566.0217.4

St-8cruciform-nlc[7]T258.800 1.200 1.3659.7231.8

St-9cruciform-nlc[7]T380.3420.4210.8768.7196.3

St-10cruciform-nlc[7]T38 5.7890.789 1.4145.5209.5

St-11cruciform-nlc[7]T1000.0300.1000.5595.7236.6

St-12cruciform-nlc[7]T100 2.2000.300 1.2740.1228.7

St-13cruciform-nlc[7]B250.1200.4000.7987.9198.6

St-14cruciform-nlc[7]B500.0600.2000.6698.1232.4

St-15cruciform-nlc[7]B1000.0300.1000.59b94.5248.1

St-16cruciform-nlc[7]B1000.1300.1600.6875.1230.6

St-17cruciform-nlc[13]T6 1.0000.750 1.11103.1205.7

St-18cruciform-nlc[13]T19 1.0000.750 1.1177.8226.0

St-19cruciform-nlc[13]T25 1.0000.750 1.1157.4182.2

St-20cruciform-nlc[13]T11 1.0000.750 1.11107.4261.0

St-21cruciform-nlc[14]T11 1.0000.750 1.1193.6227.3

St-22cruciform-nlc[9]T6 1.000 2.000 1.2093.6201.4

St-23T-nlc[9]B6 1.000 2.000 1.07b111.3213.5

St-24cruciform-lc[9]T6 1.000 2.000 1.45b98.6255.8

a Type of test:T=traction;B=bending.Type of?llet:nlc=non-load carrying?llet weld;lc=load-carrying?llet weld.

b For the series1–14,16–22,k1has been determined by means of Eqs.(5a)–(6a).In the remaining cases,k1has been determined by means of an“ad hoc”?nite element analysis.

Table2

Geometrical and fatigue strength properties of aluminium welded joints(nominal load ratio R?0.1)a

Welded joint?K N1,50%

?s n,50%

Series geometry[Ref.Load type t[mm]L/t2h/t K m k1[MPa

[MPa] No.]mm0.326]

N=5·106N=5·106

AL1cruciform-nlc[8]T3 1.000 3.000 1.14 1.2259.3103.2

AL2cruciform-nlc[8]T6 1.000 2.333 1.09 1.2145.397.8

AL3cruciform-nlc[8]T12 1.000 1.667 1.08 1.1940.5108.6

AL4cruciform-nlc[8]T24 1.000 1.708 1.01 1.1929.197.7

AL5cruciform-nlc[8]T240.2500.583 1.050.9140.9105.0

AL6cruciform-nlc[8]T120.500 1.167 1.25 1.1038.094.1

AL7T-nlc[17]T120.833 1.333 1.000.93b43.189.7

AL8T-nlc[16]T12 1.000 1.333 1.000.93b53.0110.3

AL9cruciform-lc[16]T12 1.000 1.333 1.00 1.73b28.0108.8

AL10cruciform-lc[15]T12 1.000 1.060 1.00 2.07b26.3122.5

a Type of test:T=traction;B=bending.Type of?llet:nlc=non-load carrying?llet weld;lc=load-carrying?llet weld.

b For the series AL1–AL6,k1has been determined by means of Eqs.(5a)–(6a).In the remaining cases,k1has been determined by?nite element analyses.

Fig.3summarises steel welded joint data,all referring to a nominal load ratio R?0,in a single scatter band (mean values±two standard deviations),of which the top and bottom lines refer to a probability of survival equal to 2.3and97.7%,respectively.At N ref=5·106cycles to failure,the mean value of?K N1is211 MPa·mm0.326while the T K scatter index(T K= K N1,Ps=2.3%/K N1,Ps=97.7%)is1.85.

As far as the aluminium welded joints are concerned, six series were reported in a well-documented contri-

229 https://www.360docs.net/doc/7011882718.html,zzarin,P.Livieri/International Journal of Fatigue23(2001)225–232

Table3

Steel and aluminium welding material type and welding conditions

Series Material Yield stress[MPa]Welding process Conditions

St-1÷St-3BS4360:50360÷398Manual metal arc welding As-welded

St-4÷St-16BS4360:50290÷405Manual metal arc welding As-welded with spot-heated

St-17÷St-20HSLA-80598÷671Gas metal arc welding(pulse)As-welded

St-21HSLA-80?671Gas metal arc welding As-welded

St-22÷St-24Steel UTS515MPa412Metal inert gas As-welded

AL1÷AL66061-T6277÷298Gas metal arc welding As-welded

AL75083-H3255Metal inert gas As-welded

AL8,AL96061-T651?250Metal inert gas As-welded

AL10Al Zn Mg1304Metal inert gas

As-welded

Fig.3.Fatigue strength of aluminium and steel welded joints as a function of Mode I N-SIFactor.Scatter band related to mean values±2standard deviations.

bution due,once again,to Maddox[8].In this paper,all ?gures of the joint geometry are interested by sharp V-shaped notches,the total fatigue life being thought of as fatigue crack propagation life.The remaining four series are due to Jacoby[15],Ribeiro et al.[16]and Meneghetti [17].Also,for such series it is not possible to give an upper bound for the real weld toes,since this information is not explicitly given in the original papers.All fatigue tests were carried out with a nominal load ratio R about equal to0.1.

Under the hypothesis of log-normal distributions of the number of cycles to failure,the mean values of ?s n,50%have been determined by a least-square method.

One might note that?s n,50%values pertinent to the series tested by Maddox are slightly different from the values tabled in[8].This is because Maddox performed a best-?tting analysis of fatigue data by imposing a Wo¨hler curve slope equal to4.0for all the series tested by him. Maddox’data also take into account secondary bending effects,quanti?ed by the experimental coef?cient K m, determined in[8]by means of strain gauge measure-ments.For the remaining series in Table2,K m is equal to unity.Aluminium welded joints show a mean value of?K N1=99MPa·mm0.326at5·106cycles to failure,while the T K index practically coincides with the steel joint value(1.80against1.85).

Due to the limited number of experimental data con-sistent with those shown in Fig.3,for the time being it is not possible to extend the approach to different nomi-

nal load ratios,with the aim of quantifying the differ-ences with respect to the R?0case.However,two series of experimental data reported in[14]and not considered

in Table1show that:(a)the mean?K N1curve goes down slightly when R=0.33(with a decrease in strength of

about5%at5million cycles);(b)conversely,the mean ?K N1curve goes up in the presence of negative mean stresses(R=?2),the difference in strength being more

pronounced with respect to the former case.It is natural to think that these trends will be con?rmed,being in agreement with the results obtained with the conven-tional nominal stress approach.

Finally,it might be useful to note that the mean ?K N1values for steel and aluminium joints are in a ratio of2.1.The same ratio had been shown for butt splice bolted joints[19](nominal stress amplitude equal to88 MPa for steel;41MPa for aluminium),where such a geometry made a comparison still possible in terms of nominal stresses.

3.1.Size effect

The size effect is predicted by Eq.(2),where the pen-alty exponent g=1?l1is different from that reported in the Eurocodes(0.326against0.25,where,as far as the authors are aware,the latter value is empirical in nature). Due to the availability of experimental data and the accuracy of the sources considered,we have looked for the value of the exponent g which minimises q,q being de?ned as follows:

q??

??s n j

?s nref?

k1ref

k1j?t ref t j

?g?2(7)

As reference values,we have chosen t=25mm for steel welded joints(and,in particular,the series St-6has been taken as the reference series)and t=12mm for alu-

https://www.360docs.net/doc/7011882718.html,zzarin,P.Livieri /International Journal of Fatigue 23(2001)225–232

minium welded joints (series AL-3).Fig.4plots the ratio q /q min against g .It is interesting to note that,at least for the joints considered herein,characterised by a nomi-nal value of the notch tip radius equal to zero,the scatter is minimised corresponding to the theoretical value based on Williams’eigenvalue for steel,at g =0.30for aluminium.

Support for the present analysis is given in a recent contribution by Macdonald and Haagensen [18]who emphasise the fact that assessment of recent research data has indicated the in?uence of a thickness stronger than g =0.25,so that in the latest HSE and API/ISO revision for offshore structures,a higher penalty factor of g =0.30is imposed.

4.Further developments of the N-SIF-based approach and some answers to reviewers

Due to lucky circumstances,the paper was reviewed by two anonymous referees whose suggestions and care-ful judgements (both those favourable and those quite critical)have been greatly appreciated by the authors.Some problems raised by the referees are intriguing,needing further investigation to be fully clari?ed and so they are surely of interest for many researchers engaged in fatigue design of components weakened by sharp stress raisers.For this reason,we have decided to report faithfully the referees’opinions here.

Reviewer A wrote that “the conservative assumption that the weld toe radius is equal to zero is helpful,because weld toe radius is not easy to measure,needs time and is affected by a large scatter”.Nevertheless,“this presentation of the fatigue resistance of the welded joints is of limited interest”for two reasons:

(a)“it not easy to use the fatigue resistance curve for a weld toe geometry with an included angle different from 135°”(in that units for K N 1are no longer

MPa·mm 0.326

);

(b)“it is not possible to appreciate directly the fatigue reduction factor in presence of smooth welded

joints”.

Fig.4.Minimum values of q for aluminium and steel welded joints.

Reviewer A also wrote that the discussion “about the thickness effect is a more interesting contribution.It is based on the assumption that thickness effect is due to the stress gradient precisely described by the exponent of singularity”.In his opinion,the N-SIF-based analysis implies that:

(c)“the thickness effect depends on the weld toe angle (so a universal value cannot be accepted)”;(d)“loading modes have no direct effect (which is not a true assumption)”.

Only point (d)can be easily confuted.Different expressions are used in the paper for welded joints sub-jected to tensile loading and bending loading.This sim-ply means that loading modes (and not only the global geometry)in?uence the intensity of the stress distri-butions in the neighbourhood of the sharp notch (but not the degree of singularity [20],which depends only on 2a ).When given in terms of nominal stress ranges,the fatigue strength of welded joints subjected to bending loads is generally recognised as greater than that exhib-ited by the same joint under tensile loads.A reduction of 13%in averaged terms is reported by Hobbacher [21],a reduction ranging from 0%to 25%is shown in [20].This scatter is no longer statistically signi?cant if N-SIFs are used instead of nominal stresses for the simple reason that N-SIFs include the loading mode effect.Note that series St-11,12,15,16in Table 1(t =100mm)show a ?K N 1value that ranges,for bending and tensile loads,from 229to 248MPa·mm 0.326.

Point (c)re?ects exactly the authors’opinion when the geometry is weakened by sharp V-shaped notches.However,as soon as a notch with a tip radius r constant and different from zero is present,the situation becomes more complex.Obviously,stress distribution due to a rounded notch does not coincide with that of the sharp V-notch.A small zone exists in the close neighbourhood of the notch tip where the stress distribution substantially depends only on r ,so that its features can be considered to a certain degree “universal”.Moreover,the stress gradient is not constant but varies as a function of the distance from the notch tip.Outside this limited zone,of which the dimensions are about 0.3r ,the in?uence of the opening angle becomes important and the stress gradient coincides with that related to the corresponding sharp V-shaped notch.The properties of the material determine whether the fatigue strength is controlled by the former or the latter zone.

With regard to point (a),the authors agree with the reviewer.However,it is evident that an opening angle of about 135°represents the most common geometry and that small variations of the angle could be tolerated by engineers engaged in fatigue problems.One should also note that in a very accurate multi-parameter design optimisation of load-carrying ?llet cruciform joints car-

231 https://www.360docs.net/doc/7011882718.html,zzarin,P.Livieri/International Journal of Fatigue23(2001)225–232

ried out by Radaj and Zang[22](see also Radaj and

Sonsino[23]),the only geometrical parameter con-

sidered constant is the opening angle.Conversely,there

is no doubt that,from a theoretical point of view,the

complex units of K N1do not allow a direct comparison

between joints with different opening angle.The prob-

lem,already highlighted by Hasebe et al.[24],can be

overcome either by introducing a virtual crack at the

notch toe[24,12]or by using,perhaps by taking a small

step forward,Eqs.(2)and(3)to determine the energy

in a small sector of radius R surrounding the sharp notch

[25].Such energy is strictly correlated to K N1and K N2but

it obviously has the merit to be expressed in Nmm/mm3.

As regards point(b),Hasebe et al.[24]were able to

demonstrate that a precise analytical link exists between

the N-SIF(determined for sharp-V-shaped notches under

Mode I conditions)and the elastic peak stress value of

a rounded V-shaped notch,the notch tip radius being

small but different from zero.More precisely,Hasebe et

al.wrote[24]:

K N1?lim r→0C?r1?l1s q,max(8)

where symbols of the original paper have been upgraded

to current symbols.The parameter C?was summarised

for several notch opening angles in[24].Eq.(8)makes

it evident that using K N1or s q,max(after having intro-

duced a small notch tip radius r)results in exactly the

same fatigue predictions.Obviously,in real cases,one

would use Eq.(8)in the presence of a well-de?ned value

of r(for example r f=1,according to Radaj’s?ctitious

weld toe/root radius[26]).By using a complex potential

function and Neuber’s conformal mapping,an equation

analogous to Eq.(8)was reported also in[27]:

K N1??2p[1+l1+c1(1?l1)]

4?q?1q

?1?l1r1?l1s q,max(9)

?1.22·r1?l1·s q,max

where,on the right side of Eq.(9),a coef?cient valid for the2a=135°case is introduced.In Eq.(9),due to the absence of the limit condition r→0,K N1was not thought of as numerically coincident with the value per-tinent to the r=0case.Eq.(9),without upgrading K N1, results in a strong simpli?cation in the peak stress evalu-ation,but also some degree of inaccuracy.The problem is that of de?ning this degree of inaccuracy.Table4 gives a precise idea of the errors for two geometries with L/t=0.5and1.0.The differences between analytical and?nite element results vary from case to case,their mean value being about10%.Note that some formulae summarised in[28],and suitable for estimating peak stress in cruciform welded joints,are acknowledged as being able to provide a substantially equivalent degree of accuracy[23].

It is evident that Eqs.(8)and(9)provide a bridging Table4

Stress concentration factor K t of transverse non-load-carrying?llet welded joints under tensile loads(in all FE analyses t=20mm, 2h/t=1,see Fig.1).Values of k1determined according to Eq.(5a))

r/t L/t k1Eq.(5a)K t Eq.(9)K t FEM

0.020.5 1.075 3.43 3.83

0.050.5 1.075 2.54 2.85

0.10.5 1.075 2.03 2.30

0.20.5 1.075 1.62 1.88

0.021 1.144 3.65 4.02

0.051 1.144 2.71 3.00

0.11 1.144 2.16 2.41

0.21 1.144 1.72 1.95 between the N-SIF approach and Radaj’s notch stress approach for welded joints[26,23],where fatigue predic-tions can be performed on the basis of s q,max(that is on the basis of the theoretical stress concentration factor K t),but only after having introduced a precise value of the?ctitious notch tip radius(r f=1mm in most welded details of practical interest,but also r f=0.25mm for spot-welded overlap joints made in rolled steels, r f=0.2mm for cruciform joints in the presence of longi-tudinal shear loading[23]).

Reviewer B“fully agrees with the N-SIF approach”since it“is based on a principle of similitude and over-comes problems encountered with predictions using a local strain approach and/or an integration of Paris’relationship”.He has been“convinced for years that this is the best way for predicting the life of welded joint (as-welded)and that it should be included in codes”. Asking the authors to discuss the fatigue fracture of welded joints and to explain why the approach works, he helps them by providing the following convincing explanation:“A severe notch with a very small toe radius results in a short microstructural initiation life—even without toe‘defects’—and in an immediate crack propagation;this explains why the in?uence of a micro-structure is weak.Furthermore,most of the life is con-sumed at short crack depth,within the singularity;that explains why good correlation is obtained with total fatigue life.”

In addition,it might be useful to remember that LEFM stress intensity factor K I is analytically correlated to N-SIFs[12].A conventional evaluation of residual life from an initial crack value of0.3mm(the crack being thought of as through the thickness)turned out to be in a ratio of1:3to experimental total life,having assumed the exponent in the Paris law as being equal to3.0[12]. In conclusion,N-SIF is easy to calculate,and plays an essential role in short microstructural initiation life,short crack life and crack propagation life.

https://www.360docs.net/doc/7011882718.html,zzarin,P.Livieri/International Journal of Fatigue23(2001)225–232

5.Conclusions

Notch stress intensity factors(N-SIFs)have been used,in a single scatter band,to summarise fatigue properties of aluminium welded joints(cruciform and T non-load-carrying or load-carrying?llet weld joints). More precisely,fatigue total life(and not only fatigue crack initiation life)has been correlated to the relevant Mode I N-SIFs,i.e.?K N1.Welded joints were character-ised by a thickness ranging between3and24mm,able to put in evidence any scale effect.Fatigue properties of aluminium welded joints have been compared with those related to steel welded joints(of which the main plate thickness varied from6to100mm).The mean?K N1 values turn out to be in a ratio slightly greater than2.0, while the scatter band size(mean value±2standard deviations)practically coincides.

Taking into account the only singular stress distri-bution(associated to Mode I fracture),the exponent quantifying the scale effect penalty is0.326,which is quite different from the0.25value suggested by the Eur-ocodes.In the presence of a weld toe radius approaching zero,a statistical re-analysis of all fatigue data showed that a value equal to0.3was more realistic both for alu-minium and steel welded joints.It is worth noting that in some recent standards on off-shore structures,the exponent0.3has already substituted the0.25value present in Eurocodes.

Finally,the link between Mode I N-SIF and the peak value of the maximum linear elastic stress(determined in the presence of a small weld toe radius)was discussed. References

[1]Williams ML.Stress singularities resulting from various bound-

ary conditions in angular corners of plates in extension.J Appl Mech1952;19:526–8.

[2]Nui LS,Chehimi C,Pluvinage G.Stress?eld near a large blunted

tip V-notch and application of the concept of the critical notch stress intensity factor(NSIF)to the fracture toughness of very brittle materials.Engng Fract Mech1994;49:325–35.

[3]Boukharouba T,Tamine T,Nui L,Chehimi C,Pluvinage G.The

use of notch stress intensity factor as a fatigue crack initiation parameter.Engng Fract Mech1995;52:503–12.

[4]Verreman Y,Nie B.Early development of fatigue cracking at

manual?llet welds.Fatigue Fract Engng Mater Struct 1996;19:669–81.

[5]Lazzarin P,Tovo R.A notch stress intensity factor approach to

the stress analysis of welds.Fatigue Fract Engng Mater Struct 1998;21:1089–103.

[6]Maddox SJ.The effect of plate thickness on the fatigue strength

of?llet welded joints.Abington,Cambridge:Abington Pub-lishing,1987.

[7]Gurney TR.The fatigue strength of transverse?llet welded joints.

Abington,Cambridge:Abington Publishing,1991.

[8]Maddox SJ.Scale effect in fatigue of?llet welded aluminium

alloys.In:Proceedings of the Sixth International Conference on Aluminium Weldments;Cleveland,Ohio,1995:77–93.

[9]Gurney TR.Fatigue of thin walled joints under complex loading.

Abington,Cambridge:Abington Publishing,1997.

[10]Atzori B,Lazzarin P,Tovo R.Stress?eld parameters to predict

the fatigue strength of notched components.J Strain Anal 1999;34:437–53.

[11]Dunn ML,Suwito W,Cunningham SJ,May CW.Fracture

initiation at sharp notches under mode I,mode II,and mild mixed mode loading.Int J Fract1997;84:367–81.

[12]Atzori B,Lazzarin P,Tovo R.From the local stress approach to

fracture mechanics:a comprehensive evaluation of the fatigue strength of welded joints.Fatigue Fract Engng Mater Struct 1999;22:369–81.

[13]Kihl DP,Sarkani S.Thickness effects on the fatigue strength of

welded steel cruciforms.Int J Fatigue1997;19:S311–6. [14]Kihl DP,Sarkani S.Mean stress effects in fatigue of welded steel

joints.Prob Engng Mech1999;14:97–104.

[15]Jacoby G.U¨ber das verhalten von schweissverbindungen aus alu-

miniumlegierungen bei schwingbeanspruchung.Dissertation, Technische Hochschule,Hannover;1961.

[16]Ribeiro AS,Gonc?alves JP,Oliveira F,Castro PT,Fernandes AA.

A comparative study on the fatigue behaviour of aluminium alloy

welded and bonded joints.In:Proceedings of the Sixth Inter-national Conference on Aluminium Weldments,Cleveland,Ohio, 1995:65–76.

[17]Meneghetti G.PhD Thesis,University of Padua;1998.

[18]Macdonald KA,Haagensen PJ.Fatigue design of welded alu-

minium rectangular hollow section joints.Engng Failure Anal 1999;6:113–30.

[19]Lazzarin P,Milani V,Quaresimin M.Scatter bands summarizing

the fatigue strength of aluminium alloy bolted joints.Int J Fatigue 1997;19:401–7.

[20]Lazzarin P.Effect of bending loads on stress?elds and fatigue

strength of welded joints.Riv Ital Saldatura1999;2(March/April): 137–43[in Italian].

[21]Hobbacher A.Stress intensity factors of welded joints.Engng

Fract Mech1993;46:173–82[and Corrigendum1994;49:323].

[22]Radaj D,Zang S.Multiparameter design optimisation in respect

of stress concentrations.In:Engineering optimisation design pro-cesses1991.Berlin:Springer,1991:181–9.

[23]Radaj D,Sonsino CM.Fatigue assessment of welded joints by

local approaches.Abington,Cambridge:Abington Publishing, 1998.

[24]Hasebe N,Nakamura T,Iida J.Notch mechanics for plate and

thin plate bending problems.Engng Fract Mech1990;37:87–99.

[25]Lazzarin P,Zambardi R.A?nite-volume-energy based approach

to predict the static and fatigue behavior of components with sharp V-shaped notches.Submitted for publication.

[26]Radaj D.Design and analysis of fatigue resistant welded struc-

tures.Abington,Cambridge:Abington Publishing,1990. [27]Lazzarin P,Tovo R.A uni?ed approach to the evaluation of linear

elastic stress?elds in the neighborhood of cracks and notches.

Int J Fract1996;78:3–19.

[28]Iida K,Uemura T.Stress concentration factor formulae widely

used in Japan.Fatigue Fract Engng Mater Struct 1996;19(6):779–86.

肺癌干细胞的研究现状

肺癌干细胞的研究现状 发表时间:2011-06-24T10:37:06.280Z 来源:《中国健康月刊(学术版)》2011年第2期供稿作者:梁冬马秀梅[导读] 肺癌已成为世界上发病率和死亡率增长最快,严重危害人类健康和生命的恶性肿瘤。 梁冬马秀梅黑龙江省青年科学基金项目编号QC2009C95 【摘要】肺癌已成为世界上发病率和死亡率增长最快,严重危害人类健康和生命的恶性肿瘤。最近,科学家们提出“肿瘤干细胞”理论,认为肿瘤组织由异质性的细胞群体组成,其中很小部分细胞具有干细胞特性,是恶性肿瘤发生、耐药、复发及转移的根源。因此人们希望从肿瘤干细胞的角度找到根治肺癌的途径。 【关键词】肺癌;干细胞;肿瘤干细胞 【中图分类号】R725【文献标识码】A【文章编号】1005-0515(2011)02-0227-02 目前,肺癌已成为世界上发病率和死亡率增长最快,严重危害人类健康和生命的恶性肿瘤,5年生存率低于15%。科学家们通过总结大量肿瘤细胞和干细胞的生物学相似性后,提出“肿瘤干细胞” (TSC)理论。该理论的提出为肺癌的治疗带来曙光。 1干细胞 干细胞(SC)是指具有自我更新和分化潜能的细胞。干细胞的自我更新和分化在其内在机制和周围环境中的信号调控下处于动态平衡状态,维持了干细胞的数量稳定。一旦干细胞发生基因突变或信号传导途径发生错误,将导致这一平衡被打乱,引起高度协调的干细胞分裂增殖过程失调,导致肿瘤发生。 2肿瘤干细胞 2001年,科学家们提出了TSC理论,认为肿瘤组织由异质性的细胞群体组成,其中很小部分细胞具有干细胞特性,决定肿瘤的发生、侵袭、转移、播散和对各种治疗是否敏感[1~3]。TSC的最早报道见于白血病。Ai-Hajj等发现乳腺癌干细胞,首次证明了在实体瘤中TSC的存在。目前已成功分离并鉴定的实体TSC包括脑肿瘤、结肠癌、前列腺癌、黑色素瘤及胰腺癌等,肺癌TSC的研究也取得很大进展。 3肺癌干细胞 3.1肺癌干细胞的发现 2005年Kim等从大鼠细支气管、肺泡管结合部分离出Sca-1+CD45-Pacam-CD34- 细胞,其有很强的自我更新和分化能力, 称之为支气管肺泡干细胞(BASCs),并认为BASCs可能是肺腺癌的起源细胞。2006年,黄盛东等发现,A549细胞悬浮培养可形成3种类型的克隆集落,其中Holoelone型克隆体具有干细胞特性。2007年,Summer等从鼠的肺组织中分离出肺内源的间充质干细胞。Ho等发现肺癌SP细胞较非SP细胞具有更强的致瘤性, 表达乳腺癌耐药蛋白(ABCG2)等多种ABC家族膜转运蛋白。Eramo等在人的肺癌组织中发现一群具有自我更新、多向分化能力的CD133+细胞,其具有肿瘤细胞的恶性特征,被命名为肺癌干细胞。 3.2肺癌干细胞的分选方法:肺癌干细胞的分选主要采用三种方法:A.应用细胞表面特异性标记进行分选;B.根据SP表型进行TSC的分选;C.利用干、祖细胞中ALDH的含量较高进行分选。 细胞表面标志物是分选肺癌肿瘤干细胞的关键。Kim等应用流式细胞仪分选出Sca+/CD45-/Pecam-/CD34+的支气管肺泡干细胞,肺腺癌肿瘤干细胞亦存在与BASCs相似的表面标志物。另一表面标志物是CD133。Eramo等发现CD133+细胞在肺癌标本中普遍存在,但含量较低。科学家们还发现,CD133+肺癌细胞可无血清悬浮培养,含血清培养出现分化; CD133+细胞比CD133-细胞更易形成与原发瘤表型一致的肿瘤,更具耐药性。上述研究显示CD133+细胞可能包含了肺癌干细胞,且和肺癌化疗耐药密切相关。但Meng等[19]对肺癌细胞株中的CD133+及CD133-细胞进行对比,发现二者均可形成移植瘤,故CD133+细胞是否代表肺癌干细胞,仍存在争议。 人们发现造血干细胞具有将荧光染料泵出细胞外的特性,即SP特性[23]。目前利用这一特性进行纯化已成为一种常用的分离方法。SP 细胞表面表达ABCG2等ABC家族膜转运蛋白,因此,也可应用ABCG2作为标记分选TSC。利用干、祖细胞中ALDH的含量较高进行分选肺癌干细胞。在造血系统、神经系统的干、祖细胞、乳腺癌中ALDH含量很高。在乳腺癌中发现ALDH1+肿瘤细胞具有干细胞特性,且与乳腺癌不良预后相关。美国学者应用流式细胞仪从人类肺癌细胞系中分选出ALDH1阳性细胞,发现其具备诸多干细胞特征,并表达CD133,并与肺癌患者的预后呈负相关。 3.3肺癌干细胞的鉴定方法:目前研究认为TSC鉴定必须通过一些经典的干细胞实验进行鉴定。自我更新是干细胞的三大重要特性之一,如 CD133+肺癌细胞能够在含生长因子的无血清培养基中以细胞球的方式悬浮生长,这是鉴定其具有自我更新的能力,也是鉴定其是为TSC的重要方法。致瘤能力是鉴定TSC的最重要环节,目前多通过裸鼠致瘤实验进行检验。分化潜能是TSC的重要特征之一,可通过单克隆实验进行检验,以此鉴定其干细胞特性。 4肺癌干细胞的展望 进入21世纪以来,肺癌的治疗已经进入分子时代,对肺癌干细胞的研究越来越受到重视。直接靶定肺癌干细胞,通过寻找特异性的表面分子标志识别肺癌干细胞,制备单克隆抗体,携带放射性物质或化疗药物,靶向放化疗,最终促使肺癌干细胞凋亡,使肿瘤失去生成新的肿瘤细胞的能力,争取达到根治的目的。这些方法将为肺癌的治疗带来了新的曙光。参考文献 [1]Reya T.Stem cells,cancer,and cancer stem cells.Nature 2001;414(6859):105~111 [2]Wicha MS,Liu S,Dontu G.Cancer stem cells:an old idea a paradigm shift Cancer Res 2006;66(4):1883~1890 [3]Al-Hajj M.Cancer stem cells and oncology therapeutics.Current Opinion in Oncology 2007;19(1):61~64作者单位:154002黑龙江省佳木斯市中心医院

肺癌干细胞的研究进展

肺癌干细胞的研究进展 摘要: 肿瘤起源于干细胞,肿瘤干细胞是肿瘤转移、复发的根源。肺癌肿瘤干细胞研究相对滞后,目前为止尚未能获得公认的肺癌肿瘤干细胞数据,但动物实验模型提示肺癌肿瘤干细胞的存在。应用流式细胞仪可分选支气管肺泡干细胞,针对肺癌干细胞的治疗可能是肺癌治疗的新策略。 关键词:肺癌;肿瘤干细胞;支气管肺泡干细胞 Abstract: Tumors come of stem cells,cancer stem are the source of metastasis and recurrent of tumors.The reseaches of lung cancer stem cells relatively fall behind and have not got received data about lung cancer stem cells,but animal experiment models indicate the existence of lung cancer stem https://www.360docs.net/doc/7011882718.html,e flow cytometer can separate bronchioalveolar stem cells,the treatment to aim directly at lung cancer stem cells may be the new strategy of lung cancer heal. Key words: lung cancer: cancer stem: bronchioalveolar stem cell

目录 摘要 (1) 关键词 (1) Abstract (1) Key word (1) 前言 (1) 1肿瘤干细胞 (1) 1.1干细胞和肿瘤干细胞 (1) 1.2肿干细胞 (2) 2肺癌干细胞 (2) 2.1肺癌干细胞的研究现状 (2) 2.2肺癌干细胞的分选方法 (2) 2.3 肺癌干细胞的鉴别方法 (3) 3肺癌干细胞的研究意义及展望 (3) 参考文献 (4)

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

肺癌干细胞 (归纳概括)

lung cancer stem cells(肺癌干细胞)应用流式细胞仪可分选支气管肺泡干细胞,针对肺癌干细胞的治疗可能是肺癌治疗的新策略。 1、肿瘤干细胞(CSCs)具有自我更新能力。起源于正常干细胞。 干细胞和肿瘤干细胞的相同点:都有无限增殖的能力,可以产生相同的表型和生物学特征不同的子代细胞,有一些相同的信号转导通路,如:WNT、PTEN、Nouth、Hedgehog和BMI1信号通路。 2、正常干细胞——肿瘤干细胞:Wnt、Shh和Notch信号转导异常。它能够使肿瘤不断地繁殖,而且保留原有肿瘤的特征。 3、肿瘤干细胞具有异质性。他们还高表达药物耐药蛋白(如:可以诱导凋亡的蛋白)。 胚胎干细胞也可以无限增殖。 4、肺干细胞( lung stem cells)是指在特定条件下能分化为功能性肺组织,在维持肺组织更新和肺损伤修复中起着重要作用的细胞。具有分化潜能。具有自我更新和高度增值能力。可分为全能干细胞、多能干细胞、胚胎干细胞。 5、支气管肺泡干细胞( bronchioalveolar stem cells,BASC) 该细胞具备克隆增殖、自我更新的能力,同时具有强大的分化能力。 发现一些基因和细胞因子在BASCs恶性转化为肺癌干细胞的过程中起到重要作用: Bmi1(Polycomb家族成员之一)在大多数的上皮肿瘤中都呈现过表达状态,而在肺腺癌中Bmi1的缺失或不足能够通过限制BASCs的扩张潜能从而抑制肿瘤的最初形成[15];肿瘤抑制基因PTEN在正常肺的形态发生、BASCs内环境稳态的维持中发挥作用并能抑制肺腺癌的形成[16]。 6、靶向治疗如果瞄准肺癌干细胞,针对肺癌干细胞的特异性药物的发现将从根本上减少肿瘤复发,提高肿瘤治愈率。 在肿瘤组织中存在少量肿瘤干细胞(cancer stemcells,CSCs),大多处于细胞周

肿瘤常见信号通路

1 JAK-STAT 信号通路 1) JAK 与STAT 蛋白 JAK-STAT 信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体( tyrosine kinase associated receptor ) 许多细胞因子和生长因子通过JAK-STAT 信号通路来传导信号,这包括白介素2?7 (IL-2?7 )、GM-CSF (粒细胞/巨噬细胞集落刺激因子)、GH (生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN (干扰素)等等。这些细胞 因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK 的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK ( Janus kinase ) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体( receptor tyrosine kinase, RTK ),而JAK 却是一类非跨膜型的酪氨酸激酶。JAK 是英文Janus kinase 的缩写,Janus 在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定 SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH ),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT ( signal transducer and activator of transcription ) STAT 被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性 的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具 有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“ GTFLLRFSS ”。 2) JAK-STAT 信号通路 与其它信号通路相比,JAK-STAT 信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残 基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位

国内近期干细胞研究进展

干细胞研究进展消息 干细胞是人体及其各种组织细胞的最初来源, 具有高度自我复制、高度增殖和多向分化的潜能。干细胞研究正在向现代生命科学和医学的各个领域交叉渗透, 干细胞技术也从一种实验室概念逐渐转变成能够看得见的现实。干细胞研究已成为生命科学中的热点。介于此, 本刊将就干细胞的最新研究进展情况设立专栏, 为广大读者提供了解干细胞研究的平台。 干细胞专题近期国外干细胞研究进展 Geron抗癌药GRN163L选择性瞄准癌症干细胞据美国BussinessWire 1月10日报道称, 杰隆(Ge-ron)发表临床前研究数据显示, 其端粒酶抑制剂药物imetelstat (GRN163L)在小儿科神经肿瘤当中可选择性瞄准癌症干细胞, 这一发现为儿童肿瘤的临床试验提供了支持。该研究发表于2011年1月1日的Clinical Cancer Research杂志上。近年来有关端粒酶抑制的研究日益增多, 成为癌症治疗的一个热点方向, GRN163L是此类药物开发中最前沿的一个候选药物。2002年3月, Geron从Lynx Therapcutics获得了用GRN163和GRN163L两种化合物的核心专利。早期研究显示, GRN163对十四种不同癌症细胞均表现出有意义的端粒酶活性抑制作用, 它可以抑制黑色素瘤等细胞的生长。因脂质修饰物GRN163L更易进入细胞发挥端粒酶抑制作用, 后续临床前及临床试验均为GRN163L。2005年, FDA同意GRN163L在患慢性淋巴细胞白血病患者的临床实验。2007年, Geron公司开始GRN163L单独治疗多发性骨髓瘤的I期临床试验。2008年开始了GRN163L治疗乳腺癌的I期临床试验。同年12月, Geron发布了有关GRN163L治疗再发的和难治的多发性骨髓瘤的暂时性临床试验数据。2009年, Geron发布了Geron163L对抗癌症干细胞的实验活动, 包括非小型细胞肺癌、乳癌、胰脏炎、前列腺癌、小儿科神经肿瘤。公司发表Geron163L治疗乳癌的假定癌症干细胞与胰脏炎症系数据。数据显示, 在以Geron163L治疗后, 人类乳癌细胞MCF7的假定干细 胞数量与自我再生的能力大幅减弱。目前Geron163L正处于临床II期试验中。(来源: 生物谷2011-01-11)Cell Stem Cell: iPS细胞具更高基因畸变频率加州大学圣地亚哥分校医学院及斯克里普斯研究所的干细胞科学家领导的跨国研究团队, 记录了在人类胚胎干细胞(hESC)和诱导功能干细胞(iPSC)系中特殊的基因畸变, 研究结果在1月7日的Cell Stem Cell上发表。该公布的发现强调了需要对多能干细胞进行频繁的基因检测以保证其稳定性和临床安全性。该研究的第一作者, 加州大学圣地亚哥分校再生医学系的路易斯·劳伦特博士认为, 人类多能干细胞(hESC和iPSC)比其他类型细胞有更高的基因畸变频率。最令人吃惊的是, 与其他非多能干细胞样本相比较, 观察到hESC的基因扩增和iPSC的缺失方面出现的频率更高。人类多能干细胞在人体内具有发展成其他类型细胞的能力, 可成为细胞替换治疗的潜在来源。斯克里普斯研究员再生医学中心主任珍妮·罗伦教授谈到, 由于基因畸变常常与癌症相关联, 免受癌症相关的基因突变对于临床使用的细胞系来说至关重要。研究团队确认了在多能干细胞系中可能发生突变的基因区域。对于hESC而言, 可观察到的畸变大多是靠近多潜能相关基因区域的基因扩增; 对于iPSC而言, 扩增主要涉及细胞增殖基因及与肿瘤 抑制基因相关的缺失。传统的显微技术, 如染色体组型分析可能无法检测到这些变化。研究组使用一种高分辨率的分子技术, 称为“单核苷酸多态性(SNP)”, 能观察到人类基因组里一百多万个位点里的基因变化。 劳伦特说, 我们惊喜地发现在较短时间培养中的基因变化, 例如在体细胞重编程为多能干细胞的343过程以及在培养中细胞的分化过程。我们不知道这会有怎样的影响, 如果有的话, 这些基因畸变都会对基础研究或者临床应用的结果产生影响, 对此应当深究。劳伦特总结到, 该研究结果解释了有必要对多能干细胞培养进行经常性的基因监控, SNP分析仍不失为人类胚胎干细胞和多能干细胞日常监控的一部分, 但是这一结果提醒我们应当予以重视。(来源: 中国干细胞网2011-01-12)美用胚胎干细胞制造出血小板美国先进细胞技术公司的实验证明, 使用人类胚胎干细胞研制出的血小板可修复实验鼠的受损组织, 人类未来有望源源不断地

肿瘤常见信通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。(3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2) JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK

肿瘤细胞信号转导

摘要 细胞信号转导的存在及其过程是近年细胞生物学、分子生物学和医学领域的研究热点之一。细胞信号转导异常与肿瘤等多种疾病的发生、发展和预后直接相关。综述与肿瘤发生相关的几条主要信号通路, 阐明它们的作用机制对于探索肿瘤发病机制并最终攻克肿瘤具有重要的意义。 关键词:肿瘤;细胞信号转导

Abstract The existence and the process of cell signal transduction is one of the hot topics in cell biology, molecular biology and medicine. Cell signal transduction is directly related to the occurrence, development and prognosis of many diseases, such as cancer. Summary of several major signaling pathways associated with tumor development, to clarify their role in the pathogenesis of cancer and to explore the ultimate tumor has important significance. Key word: tumor cell signal transduction

前言 信号转导(signal transduction)是20世纪90年代以来生命科学研究领域的热点问题和前沿。信号转导的基本概念是细胞外因子通过与受体(膜受体或核受体)结合,所引发细胞内的一系列生物化学反应,直至细胞生理反应所需基因的转录表达开始的过程[1]。随着癌基因和抑癌基因的发现,细胞信号转导通路的阐明,极大地丰富了人们对细胞癌变机制的认识。通过对癌基因产物(癌蛋白,oncopro- tein)功能的分析,发现许多癌蛋白位于正常细胞信号转导通路的不同部位,对促进细胞分裂增殖起着重要的作用。在肿瘤发生发展的过程中,由于正常的基因调控紊乱,可导致细胞信号传递网络的异常。与正常细胞相比,往往一些通路处于异常活跃状态, 而有一些通路却传递受阻。 1与肿瘤发生相关的几条主要信号通路 1.1 Hedgehog信号通路:Hedgehog信通路是近年来备受关注的一个调控胚胎发育的信号转导途径,而且与人类肿瘤的发生与发展紧密相关。Hedgehog信号通路的异常激活可以导致多种肿瘤的形成, 如基底细胞癌、髓母细胞瘤、肺小细胞癌、胰腺癌、前列腺癌、胃肠道恶性肿瘤等[2]。Hedgehog信号通路主要由3部分组成:Hh信号肽(Shh、Ihh、Dhh)、跨膜受体(Ptch、Smo)和下游转录因子(Gli)。在正常状态下,Hh蛋白由其经过自我裂解产生的N末端裂解物(Hh-N)与胆固醇或脂酰基结合, 附着于细胞模表面。Hh信号通路的激活是通过配体Hh与跨膜蛋白Ptch结合, 进而解除Ptch对另一跨膜蛋白Smo的抑制作用,Smo再通过下游转录 因子Gli来调控基因转录。Hedgehog信号通路成员Shh、Ptch、Smo和Gli-1在结肠癌、胰腺癌及结肠腺瘤细胞中有不同程度的表达, 环靶明(Smo受体特异性小分子抑制剂)对Smo高表达细胞的生长有明显抑制作用,从而说明Hedgehog信号通 路可能在部分消化道肿瘤细胞中被活化[3]。在肝癌组织和肝癌细胞系中,Ihh、Ptch、Smo、Gli基因的转录和蛋白表达可检测到差异,环靶明可使Hedgehog信号转导通路各成员的表达出现不同程度的降低,从而说明原发性肝癌中Hedgehog 信号转导通路是活化的,并且环靶明有阻断Hedgehog信号转导通路的作用[4]。 1.2 Wnt信号通路:Wnt信号通路是一条在进化上保守的信号途径,在胚胎发育和中枢神经系统的形成中起关键作用,可调控细胞的生长、迁移和分化。目前研究表明,在乳腺癌、结直肠癌、胃癌、肝癌、黑色素瘤及子宫内膜癌、卵巢癌中都存在Wnt信号通路异常[5]。Wnt信号通路主要分为3种类型:(1)经典的Wnt 信号途径:通过β-连环蛋白(β-catenin)核易位。激活靶基因的转录活性。(2)细胞平面极性途径:此途径涉及RhoA蛋白和Jun激酶,主要控制胚胎的发育时间和空间。在细胞水平上,此途径通过重排细胞骨架来调控细胞极性。(3)Wnt/Ca2+途径:此途径可诱导细胞内Ca2+浓度增加并激活Ca2+敏感的信号转导组分,如信赖钙调蛋白的蛋白激酶Ⅱ、钙调蛋白敏感的蛋白磷酸酶和活化T细胞核因子NF-AT。在Wnt通路中任何一步发生障碍都可致癌。一是组成Wnt信号途径的蛋白、转录因子或基因被破坏或变异导致该途径关闭或局部途径异常活跃;二是过多的Wnt

干细胞及其研究进展

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 干细胞及其研究进展 1 干细胞及其研究进展姓名: 曹晶晶导师: 邓锦波专业: 神经生物学学号: 104753130913 2 干细胞及其研究进展摘要: 干细胞是一类具有自我更新能力的多向分化潜能细胞,在一定 条件下可以分化为多种功能的组织和器官,具有重要的理论研究意 义和临床应用价值。 近年来的研究成果不仅揭示了许多有关细胞生长发育的基础理 论难题,也在创伤修复、神经再生、抵抗衰老、糖尿病、帕金 森氏症、老年痴呆、白血病、肿瘤等疾病的治疗方面显示了巨大 的应用潜力,是应用生物学进入一个崭新的领域。 关键词: 干细胞;分化;诱导性多能干细胞;糖尿病;肿瘤;伦理 争议;正文: 1. 干细胞在人类生命形成的开始,单个受精卵可以分裂发 育形成不同的组织和器官,并通过进一步分裂分化,形成生命个体。 在成体细胞中,大部分高度分化的细胞则失去了再分化的能力, 而特定组织正常的生理代谢或病理损伤也会引起组织或器官的修复 再生,这种具有在分化能力的细胞,即为干细胞。 1 / 17

在一定的条件下,它可以分化成多种功能的器官组织。 这些细胞呈圆形或椭圆形,体积较小,核质比大,具有较强的端粒酶活性,因此具有较强的增殖能力。 干细胞是一种未充分分化、尚不成熟的细胞,其再生各种组织器官和人体的潜在功能,吸引着越来越多人的眼球。 2. 干细胞的研究历史干细胞的研究被认为起始于二十世纪六十年代,加拿大科学家 James E. Till 和 Ernest A. McCulloch 发现并命名造血干细胞之后。 60 年代,几个近亲种系的小鼠睾丸畸胎瘤的研究表明,其来源于胚胎干细胞,确立了胚胎癌细胞是一种干细胞; 1968 年,Edwards 和 Bavister 在体外获得了第一个人卵子; 1978 年,第一个试管婴儿 Louise Brown 在英国诞生。 1981 年, Evan, Kaufman 和 Martin 从小鼠胚泡内细胞群分离出小鼠 ES 细胞,建立了小鼠干细胞体外培养条件,将干细胞注入上鼠,能诱导形成畸胎瘤。 1984-1988 年, Anderews 等人从人睾丸畸胎瘤细胞系 Tera-2 中产生出多能的、克隆化的胚胎癌细胞,克隆的干细胞在视黄酸的作用下分化形成神经元细胞和其他类型的细胞。 1992年, Reynolds和Richards先后在成年鼠的纹状体和海马中分离出神经干细胞。 1996年,轰动世界的polly羊诞生,引发了干细胞研究的热潮。

肿瘤干细胞标志物ABCG2在肺癌中的表达及意义

肿瘤干细胞标志物ABCG2在肺癌中的表达及意义 发表时间:2013-10-24T10:39:06.983Z 来源:《医药前沿》2013年第28期供稿作者:蔡培培田广玉茅国新 [导读] 收集2007年09月~2010年05月间经纤支镜或经皮肺穿刺活检有组织学诊断的Ⅲb期、Ⅳ期的初治肺癌患者的资料,挑选出临床及随访资料完整的病例50例,其中包括非小细胞肺癌43例和小细胞肺癌7例。 蔡培培1 田广玉1 茅国新2(通讯作者) (1扬州市江都人民医院肿瘤科江苏扬州 225200) (2南通大学附属医院肿瘤科江苏南通 226001) 【摘要】目的观察肿瘤干细胞标志物ABCG2在肺癌患者癌组织中的表达情况,并探讨其表达与化疗疗效和预后的关系。方法收集50例 ⅢB或Ⅳ期初治住院肺癌患者的临床资料,其中包括非小细胞肺癌43例和小细胞肺癌7例。应用免疫组化方法检测50例肺癌患者癌组织标本中ABCG2的表达,并分析其表达水平与化疗疗效及无进展生存期(PFS)和总生存期(OS)的关系。结果免疫组化染色显示:ABCG2在非小细胞肺癌中的阳性表达率为62.8%(27/43) 明显高于小细胞肺癌14.3%(1/7)(P<0.05),4种不同组织类型肺癌之间比较差异无显著性 (P=0.060)。ABCG2表达阳性组RR明显高于阴性组(P=0.009)。ABCG表达阳性组PFS、OS均显著长于阴性组(P=0.001,P=0.002)。结论肿瘤干细胞标志物ABCG2表达与NSCLC患者预后密切相关,表达阳性提示预后不良,而且ABCG2表达还与化疗疗效有关,ABCG2在NSCLC的发生、发展过程中可能起着重要作用,它有可能成为治疗NSCLC临床耐药的分子靶标。 【关键词】肿瘤干细胞 ABCG2/BCRP1 肺癌 NSCLC 化疗疗效预后 【中图分类号】R730.23 【文献标识码】A 【文章编号】2095-1752(2013)28-0033-02 NCCN推荐含铂类的联合化疗方案为晚期NSCLC的标准治疗方案,但有效率仅为40%左右,且中位生存期<1年[1-2]。原发或继发性耐药的产生是化疗效果不佳的主要原因[3]。许多证据已表明,肿瘤是一种干细胞疾病,干细胞和肿瘤之间有着十分密切的联系,肺癌干细胞及相关研究在肺肿瘤的病因、发病机制、临床诊治及抗肿瘤药物的研究方面具有重要意义。在干细胞和肿瘤细胞中都存在有极少量的侧群(SP) 细胞,SP细胞具备干细胞的多种特性且易于分离,是一个浓缩的干细胞群体,是利用Hoechst染料和流式细胞术进行造血干/祖细胞分离时发现的一群特殊细胞,其表型是由ABC转运蛋白家族介导的,其中一个主要的介导分子为ATP结合转运蛋白G超家族成员2(ABCG2)/乳腺癌耐药蛋白(BCRP1)[4],可能是肿瘤产生耐药和复发的原因。本研究采用免疫组织化学方法检测正常肺组织和肺癌组织标本中ABCG2的表达情况,并探讨其表达与肺癌临床病理因素之间的相关性及与化疗疗效和预后的关系,以进一步证实肿瘤干细胞学说,从而为肿瘤的靶向治疗提供一定的参考和依据。 1.材料与方法 1.1 研究资料与评析方法 1.1.1 临床资料 收集2007年09月~2010年05月间经纤支镜或经皮肺穿刺活检有组织学诊断的Ⅲb期、Ⅳ期的初治肺癌患者的资料,挑选出临床及随访资料完整的病例50例,其中包括非小细胞肺癌43例和小细胞肺癌7例。并符合以下条件: (1)年龄18~75岁, PS评分≤2分。(2)具有临床可测量病灶。(3)综合胸部CT、腹部CT或腹部B超、骨骼ECT、头颅MRI或PET/CT等全身检查的结果,根据国际抗癌联盟(UICC)提出的TNM分期(2003年修订版)标准对其进行分期,分期为ⅢB或Ⅳ期的不能手术的初治肺癌病人。(4)经纤维支气管镜或CT引导下经皮NCCN推荐含铂类的联合化疗方案为晚期NSCLC的标准治疗方案,但有效率仅为40%左右,且中位生存期<1年[1-2]。原发或继发性耐药的产生是化疗效果不佳的主要原因[3]。许多证据已表明,肿瘤是一种干细胞疾病,干细胞和肿瘤之间有着十分密切的联系,肺癌干细胞及相关研究在肺肿瘤的病因、发病机制、临床诊治及抗肿瘤药物的研究方面具有重要意义。在干细胞和肿瘤细胞中都存在有极少量的侧群 (SP) 细胞,SP细胞具备干细胞的多种特性且易于分离,是一个浓缩的干细胞群体,是利用Hoechst染料和流式细胞术进行造血干/祖细胞分离时发现的一群特殊细胞,其表型是由ABC转运蛋白家族介导的,其中一个主要的介导分子为ATP结合转运蛋白G超家族成员2(ABCG2)/乳腺癌耐药蛋白(BCRP1)[4],可能是肿瘤产生耐药和复发的原因。本研究采用免疫组织化学方法检测正常肺组织和肺癌组织标本中ABCG2的表达情况,并探讨其表达与肺癌临床病理因素之间的相关性及与化疗疗效和预后的关系,以进一步证实肿瘤干细胞学说,从而为肿瘤的靶向治疗提供一定的参考和依据。 1.材料与方法 1.1 研究资料与评析方法 1.1.1 临床资料 收集2007年09月~2010年05月间经纤支镜或经皮肺穿刺活检有组织学诊断的Ⅲb期、Ⅳ期的初治肺癌患者的资料,挑选出临床及随访资料完整的病例50例,其中包括非小细胞肺癌43例和小细胞肺癌7例。并符合以下条件: (1)年龄18~75岁, PS评分≤2分。(2)具有临床可测量病灶。(3)综合胸部CT、腹部CT或腹部B超、骨骼ECT、头颅MRI或PET/CT等全身检查的结果,根据国际抗癌联盟(UICC)提出的TNM分期(2003年修订版)标准对其进行分期,分期为ⅢB或Ⅳ期的不能手术的初治肺癌病人。(4)经纤维支气管镜或CT引导下经皮肺穿刺获得足够大小的肿瘤组织块。(5)均经病理学检查确诊的肺癌。(6)接受含铂类为基础联合第三代化疗新药化疗方案经静脉滴注至少2个周期,或化疗至病情进展。 记录符合条件的患者姓名、住院号、性别、年龄、组织学类型、TNM分期、分化程度、治疗经过、无进展生存期(PFS)及总生存时间(OS)等临床资料。 1.1.2 疗效评价 疗效评价在化疗2周期后进行,按WHO疗效评价标准评价疗效。完全缓解(CR):全部可测量病灶完全消失持续至少4周;部分缓解(PR):病灶的最大直径与最大垂直横径乘积总和减少50%以上,持续至少4周;病灶稳定(SD):各病灶的最大直径与最大垂直横径乘积总和减少<50%,或增大<25%,持续至少4周且无新病灶出现;疾病进展(PD):各病灶的最大直径与最大垂直横径乘积总和增大>25%,或出现新的病灶。有效率RR定义为CR、PR病例所占所有病例百分比。CR和PR为有效,SD和PD为无效。无进展生存期(PFS)是指从患者开始化疗至PD或最后一次随访的时间(失访患者)。总生存期(OS)是指从从患者开始化疗至患者死亡或最后一次随访的时间(失访患者)。

靶向ERK信号转导通路抗肿瘤的研究进展

第26卷第3期2006年6月国际病理科学与临床杂志 In ternati onal Journal ofPat h ol ogy and C li n i calM ed ici ne Vo.l 26 N o .3Jun . 2006 y 靶向ERK 信号转导通路抗肿瘤的研究进展 罗 威 综述 曹 亚 审校 (中南大学湘雅医学院肿瘤研究所分子生物室,长沙410078) [摘要] R as ,R af 基因突变及MA PK 的过度激活与人类肿瘤的发生密切相关,而且由于ERK 通路在细胞信 号转导中的枢纽地位,其作为抗肿瘤的分子靶受到基础研究与药物开发工作者的广泛关注,为肿瘤治疗提供了可 喜的前景。 [关键词] M APK; ERK; 蛋白激酶; 抑制剂; 肿瘤 [中图分类号] R 73 3 [文献标识码] A [文章编号] 1673 2588(2006)03 0200 04 Advance in anti cancer therapy targeted the ERK signal transducti on pathway LUO W e,i CAO Ya (Cancer R esearc h In stit u te ,C entra l Sou t h Un i versit y,Chang s ha 410078,China ) [Abstract] The m utati o n o fRas and Raf gene and the over activation ofMAP K are closely re lated w it h the occurrence o f hum an cancers i n recent years .B ecause of the pivota l status of ERK pathw ay i n cell signal transduction,m any basic sc i e ntific researchers and dr ug deve l o pers who regar d ERK pathw ay as anti cancer m o lecu lar targets pay m ore attention to it and present a pro m isi n g future . [Key w ords] MAPK; ERK; pr o te i n k i n ase ; i n h i b itor ; cancer [Int J Pathol C li n M ed,2006,26(3):0200 04] 丝裂原活化蛋白激酶通路(m itogen activated pro tein k i n ase pathw ay ,MAP K pathw ay )代表了一连串磷酸化级联事件,涉及3种关键激酶,即MAPK 激酶的激酶(MAPKKK ),MAPK 激酶(MAP KK ),MAPK 。真核细胞中,已确定出ERK (p42/p44MAPK),J NK /SAPK,p38MAPK 及ERK5四条MAPK 信号转导通路。J NK 和p38MAPK 两条通路主要与细胞的应激和凋亡有关,而在细胞信号转导网络中处于枢纽地位的ERK 通路主要与细胞的增殖和分化密切相关。MAP K 通路是一重要信号转导通路,近年来发现Ras ,Raf 基因突变及MAPK 的过度激活与肿瘤发生有关,以这些激酶作为肿瘤治疗的靶点 来阻断增殖信号的传递,显示出多效性[1,2] 。1 ERK 信号通路 上游激活蛋白R as 为21kD 的小G 蛋白;Raf/MAPKKK 是40~75kD 的Ser /Thr 蛋白激酶,有Raf 1/C Ra,f A R a,f B Raf 3种类型;ERK 激酶(M EK )/MAPKK 有分子量为44kD 和45kD 的M E K1和MEK2两种,属于少有的双重特异性蛋白激酶(dua l specificity pr o te i n kinase),既为Tyr 蛋白激酶,又为Ser /Thr 蛋白激酶;胞外信号调节激酶(ex tracell u lar si g na l regulated k i n ase ,ERK )/M AP K 是一种Ser /Thr 蛋白激酶,有ERK1和ERK2两个亚族。R as 被生长因子、细胞因子激活,由失活态Ras GDP 结合构象转变为活化态Ras GTP 结合构象,招募Ra f 激酶家族到胞膜并激活Ra,f 启动Ras 通路。Raf 通过其C 端的激酶功能域催化MEK1/2的丝氨酸残基磷酸化而激活,其中M E K1的两个丝氨酸活化位点是S217和S221;继而MEK1/2的激酶功能域催化ERK1/2亚功能区8中的酪氨酸和苏氨酸残基磷酸化而激活,ERK1的酪氨酸和苏氨酸活化位点分别是Y204和T202,以及ERK2的Y186和T184;ERK1/2由胞浆 200 y 收稿日期:2006 03 22 修回日期:2006 04 19 作者简介:罗威(1981 ),女,湖南湘潭人,硕士研究生,主要从事分子癌变机制的研究。

相关文档
最新文档