异面直线距离的多种求法

异面直线距离的多种求法
异面直线距离的多种求法

名师讲座 异面直线距离的多种求法

湖南省洞口一中高考研究学会数学理事 曾维勇

求异面直线的距离向来被同学们视为“拦路虎”,但若能很好地把“向量法”与“传统法”有机地结合起来,往往会起到“事半功倍”之效!

例. 如图,已知正方体1111ABCD A BC D -的棱长

为a ,求两异面直线BD 、1B C 的距离.

解法一(面面平行法) 如附图,两异面直线BD 、

1B C 间的距离 ? 两平行平面1BDA 、面11B CD 间的

距离d,且由三垂线定理知1AC 与这两个平行平面垂直。

由平面几何知识易证1AC 被这两平行平面三等分,

∴d =. 解法二(公垂线段法) 由上可知,两异面直线BD 、1B C 的公垂线段平行且等于131AC ,由13

这一特殊的比例关系联想到三角形的重心,启发我们去构造重心!故找寻交线BC 的中点P ,设11,PC B C M PA BD N == ,易证M 、

N 分别为1BCC ?和ABC ?的重心,由1PM PC =13=PN PA

得MN 平行且等于131AC ,则MN 即为两异面直线BD 、1B C 的公垂线段!

思维发散:空间四边形的四个内角中,最多有多少个直角呢? 如附图,在空间四边形CMNO 中CMN MNO NOC ∠=∠=∠=90 ,但对于OCM ∠是否为直角呢?不妨假设90OCM ∠= ,则异面直线BD 、1B C 将有两条公垂线段MN 、OC ,这与公垂线段的唯一性矛盾! ∴直角最多只能有3个。

解法三(最小值法):在1B C 上任取点M ,在面1BC 内作MH BC ⊥,再在底

面ABCD 内作HN BD ⊥,连MN ,设,MH x =

?),B H a x H a x =--,

则在直角三角形MHN 中,有:()22222132233

a a MH x a x x ??=+-=-+ ???, 当3a x =,即点M 为1B C

的一个三等分点时,min d = . 解法四(线面平行、等积法):?1B C // 面1A BD ,则两异面直线BD 、1B C 间的距离?直线1B C 到面1A BD 的距离?点1B 到面1A BD 的距离

故可由等积法得:V11B A BD -=V11D A BB - ?113A BD S d ???=1113

A B

B S a ??? 即

32)346d a ?= ∴

3

d =. 解法五(垂面法即射影法):?1A D ⊥面11ABC D ? 面1A DB ⊥面11ABC D ,由1B C //1A D 得 1B C ⊥面11ABC D , 设1111,A D AD G B C BC K == , BD 在面11ABC D 上的射影为BG ,过K 在面11ABC D 内作KQ BG ⊥,由于1B C // 面1A DB , 则: 两异面直线1B C 与BG 间的距离?直线1B C 到面1A DB 的距离? 两异面直线1B C 、BD 间的距离 ∴ KQ 即为所求!

在Rt BKG ?

中,a a BK GK KQ BG ??=== . 解法六(法向量法):分别以DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系,则:()0,0,0D 、(),,0B a a 、()1,,B a a a 、()0,,0C a

?()()1,,0,,0,DB a a B C a a ==-- ,

设两异面直线BD 、1B C 的法向量为(),,n x y z = , ?

n ?DB =0xa ya += ? y x =- n ?1BC =

0ax az --= z x =

取1x =,则n ()1,1,1=-,再在BD 、1B C 上各取一点D 、C

得DC ()0,,0a =,∴d=DC n n ?

= . 解法七(分解定理法):设1n xBA yBC BB =++ 是BD 、1B C 的公垂线段 上的向量(在空间向量基本定理中不妨取1z =)

?

n 1B C ? =()()()21110xBA yBC BB BC BB a y ++?-=?-= n BD ? =()()()210xBA yBC BB BA BC a x y ++?+=?+=

? 1y = 则n =-BA +BC +1BB

1x =- ∴ d=1BB n n ?= 2= . 解法八(向量法): (,,0)DB a a = 、()1,0,B C a a =--

设 (,,0)(,,0)DN xDB xa xa N ax ax ==? 11

(,0,)(,,)B M yBC ay ay M a ay a a ay ==--?++ 则 (1,1,1)MN a x y x y =-----

22(1)(1)0DB MN a x y a x ?=--+-= ? 23x = 221(1)(1)0BC MN a x y a y ?=-+++= 23y =- ∴ 111(,,)333

MN a =-- 所以 d M N a == .

求异面直线间距离的几种常用方法

求异面直线间距离的几种常用方法 1 辅助平面法 (1)线面垂直法,用于两条异面直线互相垂直情况.若已知两条异面直线互相垂直,那么可以寻找一个辅助平面,使它过其中一条直线且垂直于另一条直线,在辅助平面上,过垂足引前一条直线的垂线,就得到这两条异面直线的公垂线,并求其长度. 例1 如图1所示正三棱锥V-ABC的底面边长为a,侧棱为b,求AB与VC的距离. 解:在正三棱锥V-ABC中,△AVC≌△BVC,作BE⊥VC,连AE,则AE⊥VC,且AE =BE, ∴VC⊥平面AEB ∴VC⊥AB 取AB中点D,连DE,则DE⊥AB,又VC⊥DE. ∴DE是异面直线AB与VC的公垂线. 分析:这样求异面直线间距离就化为平面几何中求点到直线的距离了. 作VF⊥BC,则有

(2)线面平行法,用于一般情况.其用法为:过其中一条直线作与另一条直线平行的平面,这样可把求异面直线间的距离转化为求点到面的距离. 例2 如图2所示,长方体ABCD-A1B1C1D1中,AB=a,BB1=a,BC=b,试求异面直线AB与A1C之间的距离. 解:∵AB∥A B,∴AB∥平面A B C,于是AB与平面A B C间的距离即为异面 直线AB与A C之间的距离. (3)面面平行法,求两异面直线的距离,除了上面(2)介绍的转化为线面的距离外,还可以转化为面面的距离,即作两平行的辅助平面,分别过其中的一条,两平行平面间的距离就为此两异面直线的距离. 例3 如图3所示,夹在两平行平面α和β间的异面直线AB、CD,在平面β的射影分别是12cm和2cm,它们与平面β的交角之差是45°,求AC与BD之间的距离.

异面直线所成的角求法总结加分析

异面直线所成的角求法 总结加分析 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF = 3 ,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF = 3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA = 2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角

A B C D A 1 B 1 C 1 D 1 E F 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2 a BQ = a 4 14 ∴COS∠QNB= 5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若 BC =CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN = 5 ,GN =BM = 6 , cos∠GNA= 10 30 5 62556= ??-+。 5.如图,在正方体1111D C B A ABCD -中,E 、F 分别是1BB 、CD 的中点.求AE 与F D 1所 成的角。 证明:取AB 中点G ,连结A 1G ,FG , 因为F 是CD 的中点,所以GF ∥AD , 又A 1D 1∥AD ,所以GF ∥A 1D 1, 故四边形GFD 1A 1是平行四边形,A 1G∥D 1F 。 设A 1G 与AE 相交于H ,则∠A 1HA 是AE 与D 1F 所成的角。

点到平面的距离的几种求法 高中数学 高考 立体几何教学内容

点到平面的距离的几种求法 求‘点到平面的距离’是立体几何学习中不可忽视的一个基本问题,是近几年高考的一个热点.本文试通过对一道典型例题的多种解法的探讨,结合《立体几何》(必修本)中的概念、习题,概括出求‘点到平面的距离’的几种基本方法. 例:已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在平面,且GC=2,求点B到平面EFG的距离. 一、直接通过该点求点到平面的距离 1.直接作出所求之距离,求其长. 解法1.如图1,为了作出点B到平面EFG的距离,延长FE交CB的延长线于M,连结GM,作BN⊥BC,交GM于N,则有BN∥CG,BN⊥平面ABCD.作BP⊥EM,交EM于P,易证平面BPN⊥平面EFG.作BQ⊥PN,垂足为Q,则BQ⊥平面EFG.于是BQ是点B到平面EFG 的距离.易知BN=,BP=,PZ=,由BQ·PN=PB·BN,得BQ =. 图1 图2 2.不直接作出所求之距离,间接求之. (1)利用二面角的平面角. 课本P.42第4题,P.46第2题、第4题给出了“二面角一个面内的一个点,它到棱的距离、到另一个面的距离与二面角的大小之间所满足的关系”.如图2,二面角M-CD-N的大小为α,A∈M,AB⊥CD,AB=a,点A到平面N的距离AO=d,则有d=asinα.① ①中的α也就是二面角的大小,而并不强求要作出经过AB的二面角的平面角. 解法2.如图3,过B作BP⊥EF,交FE的延长线于P,易知BP=,这就是点B到二面角C-EF-G的棱EF的距离.连结AC交EF于H,连结GH,易证∠GHC就是二面角C-EF-G的平面角.∵ GC=2,AC=4,AH=,∴CH=3,GH=,sin∠GHC=2/,于是由①得所求之距离d=BP·s in∠GHC=·=.解略.

异面直线间的距离(高中全部8种方法详细例题)

异面直线间的距离 求异面直线之间距离的常用策略:求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。 常用方法有: 1、定义法 2、垂直平面法(转化为线面距) 3、转化为面面距 4、代数求极值法 5、公式法 6、射影法 7、向量法 8、等积法 1 定义法就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。

例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。在⊿ADE 中,∠ADE=1200,AD=DE=a ,DH=2 a 。即异面直线CD 与AE 间的距离为2 a 。 2 垂直平面法:转化为线面距离,若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作

如何求异面直线所成的角

如何求异面直线所成的角 立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。其中“作”是关键,那么如何作两条异面直线所成的角呢?本文就如何求异面直线所成的角提出了最常见的几种处理方法。 Ⅰ、用平移法作两条异面直线所成的角 一、端点平移法 例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若 1AB BC CC ==,求CD 与AF 所成的角的余弦值。 解:取BC 的中点E ,连结EF ,DF , //DF EC Q 且DF EC = ∴四边形DFEC 为平行四边形 //EF DC ∴ EFA ∴∠(或它的补角)为CD 与AF 所成的角。 设2AB =, 则EF = AF = EA = 故2222EF FA EA EFA EF FA +-∠==g arccos 10 EFA ∴∠= 二、中点平移法 例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。 解:连结MD ,取MD 的中点O ,连结NO , Q O 、N 分别MD 、AD 为的中点, ∴NO 为DAM ?的中位线, ∴//NO AM , ONC ∴∠(或它的补角)为AM 与CN 所成的角。 设正四面体ABCD 的棱长为2 ,则有2NO = ,CN = ,2CO =, 故2222 cos 23 NO CN CO ONC NO CN +-∠= =g 2 arccos 3 ONC ∴∠= 1 B D C

面间距的计算

面间距的计算 该文主要探讨三个方面的问题: 1 面指数为(123h h h )的晶面族的面间距的计算 2 密勒指数指数为(h k l )的晶面族的面间距的计算 3 复式格子中指定的两族相互平行的晶面之间面间距的多值性分析 第一个问题的分析 同老师课堂上所讲,正格子中的一族晶面(123 h h h )与一个倒格矢点 123112233h h h K h b h b h b =++ 相对应;正格子中的一族晶面(123h h h ) 与倒格矢 1 2 311 22 33h h h K h b h b h b =++ 正交;并且正格子(123h h h )晶面系的面间距为123 123 2h h h h h h d K π=。 第二个问题的分析 首先明确密勒指数与面指数的区别。两者均可以用来标志不同族的晶面,且标志方法相 同。即取定原点和坐标轴,找出晶面族中任一晶面在轴矢上的截距,截距取倒数,再化为互质的整数。两者的区别在于表示晶面时的参考坐标系不同,即选取坐标轴的基矢不同:面指数取原胞的基矢方向为坐标轴的方向,密勒指数取晶胞的基矢方向为坐标轴的方向。原胞是晶体的最小重复单元,而晶胞则是对称性较高的单元,通常比原胞大。同一个晶面,参考坐标系不同,面指数与密勒指数一般不相同。例如对于面心立方晶格,密勒指数为(100)和(001)的面,其面指数分别为(101)和(110)。相同的指数,不同的参考坐标系,晶面一般不同,面间距也有差别。 对于简单格子,它的晶胞即原胞,所以密勒指数(h k l )的晶面族的面间距的计算即面指数(h k l )的晶面族的面间距计算,此时可用公式2hkl hkl d K π= 来计算。 然而对于非简单格子(即体心,面心,底心格子),晶胞除顶角位置(可设想为基元的位置)有原子外,非顶角的面心(体心,底心)还有原子。所有原子的位置不能全用 R h a k b lc =++ (h, k, l 取整数)去概括。这样再用公式2hkl hkl d K π=来计算就会出现问题。 从图一可以很清楚地说明这个问题。 如果晶体是简立方晶体,则在一个立方体内(即在一个晶胞内)只能画出一个(110)面ABCD , 这时的面间距为 110 2a K π=个(110)晶面A ’B ’C ’D ’和A ”B ”C ”D ”,这时其面间距仅是前者的1/2 ,即/a

异面直线所成的角求法 答案

异面直线所成的角的两种求法 初学立几的同学,遇到的第一个难点往往便是求异面直线所成的角。难在何处?不会作! 下面介绍两种求法 一.传统求法--------找、作、证、求解。 求异面直线所成的角,关键是平移点的选择及平移面的确定。 平移点的选择:一般在其中一条直线上的特殊位置,但有时选在空间适当位置会更简便。 平移面的确定:一般是过两异面直线中某一条直线的一个平面,有时还要根据平面基本性质将直观图中的部分平面进行必要的伸展,有时还用“补形”的办法寻找平移面。 例1 设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB =122,CD =4 2,且四边形EFGH 的面积为12 3, 求AB 和CD 所成的角. 解? 由三角形中位线的性质知,HG∥AB,HE∥CD, ∴ ∠EHG 就是异面直线AB 和CD 所成的角. ∵? EFGH 是平行四边形,HG =2 1 AB =62, H G F E D C B A

HE =2 1 ,CD =23, ∴? S EFGH =HG·HE·sin∠EHG=126 sin∠EHG,∴ 12 6sin∠EHG=123. ∴? sin∠EHG= 2 2 ,故∠EHG=45°. ∴? AB 和CD 所成的角为45° 注:本例两异面直线所成角在图中已给,只需指出即可。 例2.点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=2 2 AD ,求异面直线AD 和BC 所成的角。(如图) 解:设G 是AC 中点,连接DG 、FG 。因D 、F 分别是AB 、CD 中点,故EG∥BC 且EG= 2 1 BC ,FG∥AD,且FG=2 1 AD ,由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为 所求。由BC=AD 知EG=GF=2 1 AD ,又EF=AD ,由余弦定理可得cos∠EGF=0,即∠EGF=90°。 注:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角。通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系。 例3.已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 与CN 所成的角的余弦值; A B C G F E D

异面直线所成角求法-总结加分析

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF =3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和 AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2a BQ = a 4 14 ∴COS∠QNB=5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC = CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6 , cos∠GNA= 10 305 62556=??-+。 B M A N C S

点面距离的几种求法

点面距离的几种求法 距离的计算是历年高考的重点与热点,求距离问题可以和多种知识相结合,是诸多知识的交汇点。而点到平面的距离是是距离问题中的重中之重,线到面的距离及面到面的距离都转化为点到面的距离,线面角、二面角,多面体的体积等都可以借助点面距离使之得以解决。 求点到面的距离方法多而且灵活,可以根据定义从改点作平面的 垂线,有时直接利用已知点求距离比较困难,我们可以把点到平面的距离转化到其它点到面的距离或用空间向量法、或利用三棱锥等体积法等。下面通过几道例题介绍常用的点到面的距离求法: 1、 利用定义作垂线,解三角形。 例1, 在棱长为1的正方体1111D C B A ABCD -中,点P 在棱1CC 上,且 1CC =4CP ,求点P 到平面1ABD 的距离。 解: ∵!DC //AB ,∴平面1ABD 与平面D ABC 1是一个平面,∴点P 到平面11D ABC 的距离即为所求。过点P 作PM ⊥!BC 于M ,∵AB ⊥面 C C BB 11,PM ?面C C BB 11,∴AB ⊥PM 。AB 1C B ?=B , 1 C 1 D 1 A P M D A B C 1 B ,

∴PM ⊥1!D ABC ,∴PM 就是所求的距离,又∵ 0!45=∠BCC ,4 3!= P C ,在PM C R t !?中, 8 2 343224510= ?=?= PM P C PM Sin . 2、 转化成其它点到面的距离: 2 C A A

、向量法: 例3、 在棱长为1的正方体1111D C B A ABCD -中,点E, F 分别是 11,D A BC 的中点,求点A 到平面EDF B 1的距离。∥⊥ 解: 建系,如图,设点A 到平面EDF B 1的距离为 d , 平面EDF B 1的法 向量 =(x,y,z),则: AB → →?, y n → )1,2 1,0(),0,2 1,1(=→-=→DF DE

点到平面的距离的几种求法_人教版

点到平面的距离的几种求法 2 基本概念 从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.这点和垂足间的线段叫做这点到平面的垂线段.其实点到平面的距离就是这点到平面的垂线段长. 例:(如图1)若PA ⊥α于A ,则P 点到平面α的距离就是线段PA 的长. 点到平面的距离有如下三条性质: (1)存在性 对于任意一个平面和这个平面外任意一点 都存在着距离. (2)唯一性 一个平面和平面外一点间的距离是唯一的. (3)最小性 平面外一点的距离是这点到这个平面内任意一点的连接线段长度的最小值. 3 例题求解 已知ABCD是边长为4的正方形,E、F分别是AB、A D的中点,GC垂直于ABCD所在平面,且GC=2,求点B 到平面EFG的距离. 3.1 直接用定义求点到平面的距离 3.1.1 直接作出所求距离求其长 解法一:(如图2)为了作出点B 到平面EFG 的距离,延长FE 交CB 的延长线于M, 连 结GM ,作BN⊥BC,交GM于N,则有BN∥CG ∴BN⊥平面ABCD ∴BN⊥EM 作BP⊥EM,交EM 于P ∴平面BPN⊥平面EFG 作BQ⊥PN,垂足为Q ∴BQ⊥平面EFG ∴BQ是点B到平面EFG 的距离 易求出BN=2/3,BP= 2, 32222=+=BN BP PN 在PBN Rt ?中 BN PB BQ PN ?=? 11112=∴BQ 图 1

3.1.2 不直接作出所求距离间接求之 (1) 利用二面角的平面角 引理1:(如图3)若二面角N CD M --的大小为α,M A ∈,CD AB ⊥,a AB =点A到平面N的距离AO=d, 则有 αsin a d = (1) 其中的α也就是二面角的大小,而并不强 求要作出经过AB的二面角的平面角. 解法二:(如图4)过点B作EF BP ⊥,交FE的延长线 于P,易知 2=BP ,这就是点B到二面角C-EF-G 的棱EF的距离.连结AC交EF于H,连结GH 易证∠GHC就是二面角C-EF-G的平面角. ∵ GC=2,AC=24,AH=2, ∴ CH=23 ,GH=22 ∴ 222 sin =∠GHC , 于是由(1)得所求之距离 11112222 2sin =?=∠?=GHC BP d (2) 利用斜线和平面所成的角 引理2 (如图5)OP 为平面α的一条斜线,OP A ∈,l OA =,OP 与α所成的角为θ,A到平面α的距离为d,则有 θsin l d = (2) 注:经过OP 与α垂直的平面与α相交,交线 与OP 所成的锐角就是θ,这里并不强求要作出点A在α上的射影B,连结OB 得θ. 解法三:(如图6),设M为FE与CB的延长线的交点,作 GM BR ⊥,R为垂足. 图3 图 4 图 5

求两条异面直线之间距离的两个公式

求两条异面直线之间距离的两个公式 王文彬 (抚州一中 江西 344000) 本文介绍求异面直线距离的两个简捷公式,以及如何定量地确定异面直线公垂线的方法. 1.公式一 如图1,1l 、2l 是异面直线,2l ?平面α,1l A α?=,1l 在α内的射影为l ,设2l l B ?=,且12,l l 与l 所成的角分别为12,θθ,AB m =,则1l 与2l 之间的距离为 d = (1) 证明:设1l 与2l 的公垂线为MN ,如 图1所示,过M 作MH l ⊥于H ,由于1l 在平面α内的射影为l ,故MH ⊥平面α, NM 在α内的射影为NH .由2MN l ⊥知 2NH l ⊥. 在Rt BNH ?中 22cos ()cos BN BH AB AH θθ==- 12(cos )cos m AM θθ=-……………………………① 同理21(cos )cos AM m BN θθ=-…………………② 联立①②解得 212 22 12cos sin 1cos cos m AM θθθθ=- (1.1) 221 22 12 cos sin 1cos cos m BN θθθθ=- (1.2) 图1

从而 212 1122 12cos sin sin sin 1cos cos m MH AM θθθθθθ==?- 221 222212 cos sin tan tan 1cos cos m NH BN θθθθθθ==?- () () 2 2 2 2 2 4 22421 212122 2 2 1 2 cos sin sin cos sin tan 1cos cos m MN MH NH θθθθθθθθ∴=+= +- () () 2 2 4242 12112 2 2212sin sin cos sin sin 1cos cos m θθθθθθθ= +- () ()2 22222 121212 2 2 1 2 sin sin cos sin sin 1cos cos m θθθθθθθ= ?+- () ()2 2222221212122 2 2221212sin sin sin sin sin sin sin sin sin sin m θθθθθθθθθθ= ?+-+- 22212 2222 1212sin sin sin sin sin sin m θθθθθθ=+-22212csc csc 1m θθ=+-. 即有公式(1)成立. 运用公式(1)求1l 与2l 之间的距离时,无需知道它们公垂线的位置,但如果要确定公垂线的位置,则可根据公式(1.1)和公式(1.2)分别计算出AM 和BN 的值,进而确定公垂线MN 具体位置. 2.公式二 如图2,1l 、2l 是异面直线,1A l ∈,2AH l ⊥于H ,1l 与AH ,1l 与2l 所成的角分别为,αθ, AH m =,则1l 与2l 之间的距离为 d = (2) 证明:过A 作2//l l ,设由l 与2l 确定的

补充构造异面直线所成角的几种方法

一. 异面直线所成角的求法 1、正确理解概念 (1)在异面直线所成角的定义中,空间中的点O 是任意选取的,异面直线a 和b 所成角的大小,与点O 的位置无关。 (2)异面直线所成角的取值范围是(0°,] 90? 2、熟练掌握求法 (1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一作二证三计算。 (2)求异面直线所成角的步骤: ①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊点。 ②求相交直线所成的角,通常是在相应的三角形中进行计算。 ③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。 3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 例1如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线B 1E 与GF 所成角的余弦是 。 E F 1 A 1 B 1 C 1 D A B C D G E F 1 A 1 B 1 C 1 D A B C D G

例 2 已知 S 是正三角形ABC所在平面外的一点,如图SA=SB=SC, 且∠ASB=∠BSC=∠CSA= 2 π ,M、N分别是AB和SC的中点. 求异面直线SM与BN所成的角的余弦值. 例3长方体ABCD—A1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的大小。 B M A N C S B M A N C S B M A N C S

“点面距离”的常用解法(文科)

“点面距离”常见求法(文科) ------南安新营中学李志参 背景: 在学生全面复习点、线、面的关系下讲,也是其它距离的基础,求点到平面的距离是立体几何教学中一个非常重要的基本问题,也是近几年文科高考的热点、难点。 教学目标:掌握点面距离常见求法 教学重、难点:点面距离的定义,求点面距离几种常见方法的综合运用 教学过程: 一:复习求点面距离常见求法 1:直接法(本质特征是证线面垂直,步骤是:找------证------求) 2:间接法(1)线面法 (2)等体积法(3)比例法 (4)面面法 二:典例分析 已知四边形ABCD 是边长为4的正方形,四边形ABCD 的对角线相交于点O ,AC 与EF 交于H ,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,GC=2,求 (1)点E 到平面CHG 的距离(2)点O 到平面 EFG 的距离. (3)点B 到平面EFG 的距离 .(4)点A 到平面EFG 的距离. 解: (1) 直接法:证EH ⊥平面CHG 即可,∴EH 为 点E 到平面CHG 的距离,易求EH=2 (2) 直接法:∵ EG=FG , ∴ GH ⊥EF. 又ABCD 是正方形,故BD ⊥AC ,从而EF ⊥AC. 所以EF ⊥平面GHO. 在平面GHO 内,过点O 作OK ⊥GH 于点K ,则由EF ⊥平面GHO 得EF ⊥OK ,从而OK ⊥平面EFG , ∴OK 为点O 至平面E FG 的距离 在△GHO 中,OH ×GC=GH ×OK , 得即点O 到平面EFG 的距离为 (3) 解法1:(线面法) ∵ EF ∥BD , ∴ BD ∥平面EFG , ∴ 点B 到平面EFG 的距离等于点O 到平面EFG 的距离,由上知为 解法2:(等体积法) 设四边形ABCD 的对角线相交于点O ,AC 与EF 交于H ,则H 是EF 的中点. C G B D E F H O

立体几何——求异面直线距离

异面直线距离 一. 直接法 直接法就是根据定义,直接找出公垂线段,再求其长,这是解题时首先要考虑的方法。 例1. 如图1所示,已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC//D 1B ,且平面EAC 与底面ABCD 所成的角为45°,AB=a ,求异面直线A B 11与AC 之间的距离。 解:连结DB ,设DB 交AC 于点O 由题设知ABCD A B C D -1111是正四棱柱 则A A ABCD A A AC A A A B 11111⊥⊥⊥底面,即,而 所以A A 1是异面直线A B 11与AC 的公垂线段 由题意分析知∠为平面与底面DOE EAC ABCD 所成的角 则∠DOE=45° 又∵截面EAC//D 1B ,且平面D 1BD 与平面EAC 的交线为EO ∴D 1B//EO ,∠DBD 1=∠DOE=45° ∴D 1D=DB=2a ∵AA 1=D 1D ∴异面直线A 1B 1与AC 之间的距离为2a

二. 间接法 间接法就是当采用直接法不便于求解或证明时,可利用已知条件进行间接求解或证明的方法。 (1)线面距离法 线面距离法就是选择异面直线中的一条,过它作另一条直线的平行平面,则此直线与平行平面的距离即为异面直线间的距离。 例2. 在长方体ABCD—A1B1C1D1中,AB=2,AD=3,AA1=4,求异面直线AB与A1C间的距离。 解:如图2所示,连结A1D 由AB//DC,得AB//平面A1DC 故AB到平面A1DC的距离即为AB与A1C间的距离 又平面A1D⊥平面A1DC及平面A1D⊥AB 故可在平面A1D内过A作AE⊥A1D于点E 则AE为AB到平面A1DC的距离即为异面直线AB与A1C间的距离。 由AD AA A D AE ·· 11 = 可得AE=12 5 图2 (2)面面距离法 面面距离法就是把所求异面直线间的距离转化为分别过两条异面直线的两个平行平面间的距离。 例3. 如图3所示,正方体ABCD A B C D - 1111 的棱长为1,求异面直线A1D与

异面直线所成角的几种求法(最新编写)

异面直线所成角的几种求法 异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。 一、向量法求异面直线所成的角 例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。求A 1E 和B 1F 所成的角的大小。 解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线 到某个点上。作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。过F 作CD 的平行线RS ,分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。 由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。在△GHS 中,设正方体边长为a 。GH=a (作直线GQ//BC 交BB 1于点Q ,46连QH ,可知△GQH 为直角三角形),HS=a (连A 1S ,可知△HA 1S 为直角三角形),2 6GS=a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。426∴Cos ∠GHS=。6 1所以直线A 1E 与直线B 1F 所成的角的余弦值为。61解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。 以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。 B A C D F E B 1A 1D 1C 1 G H S R P Q 1

求异面直线之间距离的常用策略

求异面直线之间距离的常用策略 求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转化为求一元二次函数的最值问题,或用等体积变换的方法来解。 1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。 例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂 线。在⊿ADE 中,∠ADE=1200 ,AD=DE=a ,DH=2a 。即异面直线CD 与AE 间的距离为2 a 。 2 转化为线面距离 若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例2 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作 AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD 交于D ,连结CD 。设A 到平面BCD 的距离为h 。由体积法V A-BCD =V C-ABD , 得 h= β αβα2 2 cos cos 1sin sin -d 3转化为面面距离 若a 、b 是两条异面直线,则存在两个平行平面α、β,且a ∈α、b ∈β。求a 、b 两条异面直线的距离转化为平行平面α、β间的距离。 例3已知:三棱锥S-ABC 中,SA=BC=13,SB=AC=14,SC=AB=15,求异面直线AD 与BC 的距离。 思路分析:这是一不易直接求解的几何题,把它补成一个易求解的几何体的典型例子,常常有时还常把残缺形体补成完整形体;不规则形体补成规则形体;不熟悉形体补成熟悉形体等。所以,把三棱锥的四个面联想到长方体割去四个直三棱锥所得,因此,将三棱锥补形转化为长方体, 设长方形的长、宽、高分别为x 、y 、z ,

异面直线所成的角的求法

异面直线所成的角的求法 法一:平移法 例1:在正方体1111ABCD A B C D -中,求下列各对异面直线所成的角。 (1)1AA 与BC ; (2)1DD 与1A B ; (3)1A B 与AC 。 法二:中位线 例2:在空间四边形ABCD 中,AB =CD ,且AB ⊥CD ,点M 、N 分别为BC 、AD 的中点,求直线AB 与MN 所成的角。 变式:在空间四边形ABCD 中,点M 、N 分别为BC 、AD 的中点,AB =CD =2,且MN = ,求直线AB 与CD 所成的角。 习题1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3, 求AD 、BC 所成角的大小.

2.正?ABC的边长为a,S为?ABC所在平面外的一点,SA=SB=SC=a,E,F分别是SC和AB的中点.求异面直线SA和EF所成角. 3.S是正三角形ABC所在平面外的一点,如图SA=SB=SC,且∠ASB=∠BSC=∠CSA= 2 π ,M、N分别是AB和SC的中点.求异面直线SM与BN所成的角的余弦值. 4.如图,在直三棱柱ABC-A1B1C1中,∠BCA=90°,M、N分别是A1B1和A1C1的中点,若BC=CA=CC1,求BM与AN所成的角. 5.如图1—28的正方体中,E是A′D′的中点 (1)图中哪些棱所在的直线与直线BA′成异面直线? (2)求直线BA′和CC′所成的角的大小; (3)求直线AE和CC′所成的角的正切值; (4)求直线AE和BA′所成的角的余弦值 B M A N C S B' (图1-28) A' A B C' D' C D F E

等体积法求点到平面距离

等体积法求点到平面距离 用等体积法求点到平面的距离主要是一个转换的思想,即要将所要求的垂线段置于一个四面体中,其中四面体的一个顶点为所给点,另外三点位于所给点射影平面上,这里不妨将射影平面上的三点构成的三角形称为底面三角形。先用简单的方法求出四面体的体积,然后计算出底面三角形的面积,再根据四面体体积公式 1 3 V Sh =求出点到平面的距离h 。在常规方法不能轻松获得结果的情况下,如果能用 到等体积法,则可以很大程度上提高解题效率,达到事半功倍的效果。特别是遇到四面体的有一条棱垂直于其所相对的底面时,首选此方法。下面用等体积法求解例子. 例:所示的正方体ABCD A B C D ''''- 棱长为a ,求点A '到平面ABD ''的距离 解法(等体积法):如图所示,作AH '垂直于平面ABD ''于点H ,则AH '长度为所求。对于四面体AABD ''',易见底面ABD ''的高为AH ',底面ABD '''的高为AA '。对四面体AABD '''的体积而言有: A A B D A AB D V V ''''''--= 即有: 1133A B D AB D AA S A H S '''''??''?=?,也即: A B D AB D AA S A H S ''' ?'' ?'?'= 由AB B D D A ''''===,从而ABD ''?为正三角形,060AB D ''∠=,进而可求得 202 11sin )sin60222 AB D S AB AD AB D a ''?''''= ?∠==

又易计算得到Rt A B D '''?的面积为212 A B D S a '''?= 所以2 13A B D AB D a a AA S A H a S ''' ?'' ??'?'= = 从上面的解答过程知道,我们在使用等体积法求点到平面距离时使用的点与平面间的垂线段只是概念上的,并不一定要知道点在平面射影的具体位置,从而也就不需要使用几何方法寻找或者求作垂线段,垂线段的长度在这种方法上只是作为几何体高的意义而存在的。 练习:1、如图所示,棱长均为a 的正三棱柱中,D 为AB 中点,连结 A 1D ,DC ,A 1C . (1) 求BC 1到面A 1DC 的距离. 2、如图所示,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .求点C 到平面APB 的距离. 3、如图,在长方体1111ABCD ABC D -,中,11 ,2AD AA AB ===,E 为AB 的中点,求

高中数学总结归纳 点面距离的几种求法

1 点面距离的几种求法 立体几何中的距离种类很多,最常见的也是最重要的当数点面距离.这里就对点面距离的求法进行一些探讨,供同学们参考. 一、直接法:即直接由点向面作垂线,求出垂线段的长度. 例1 如图1,PA 垂直于边长为4的正方形ABCD 所在的平面 求点A 到平面PBD 的距离. 解析:连结AC 、BD 交于点O,连结PO,则AC ⊥BD.又PA ⊥面则PA ⊥BD,BD ⊥面PAO.过A 作AH ⊥PO 于H,则BD ⊥AH,AH ⊥面即AH 就是点A 到平面PBD 的距离.在Rt △PAO 中,PA=3,AO=22,则 PO=17,∴ AH=1734 617 223= ?=?PO AO PA ,即点A 到平面PBD 的距离为17346. 二、间接法:即直接求解相对困难时,可采用间接转化的办法. 例2 如图2,正方体ABCD-A 1B 1C 1D 1的棱长为a ,求点A 1到面AB 1D 1的距离. 解析: ∵AB 1=B 1D 1=AD 1=2a , ∴= ?11D AB S 2 22 3)2(43a a =?. 由1111 11D AB A B AA D V V --=,易得 A 1到面A B 1D 1a 3 3 . 例3 如图3,已知斜三棱柱ABC-A 1B 1C 1的侧面AA 1C 1C ABC 垂直,∠ABC=90°,BC=2,AC=23,且AA 1⊥A 1C,AA 1=A 1C. (1)求侧棱A 1A 与底面ABC 所成角的大小; (2)求侧面A 1ABB 1与底面ABC 所成二面角的大小;

2 (3)求CC 1到侧面A 1ABB 1的距离. 解析:(1)问,(2)问解析略.(3)问因为CC 1∥面A 1ABB 1 ,所以CC 1到面A 1ABB 1的距离就等于点C 到面A 1ABB 1的距离.由B AA C ABC A V V 11--=,可得点C 到面A 1 ABB 1 的距离为 3,所以CC 1到侧面A 1ABB 1的距离为3. 总之,我们在求点面距离时,一方面注意能否直接求解,另一方面多从转化入手,增强转化意识,问题就一定能迎刃而解.

(完整版)异面直线间的距离(全部方法详细例题)

异面直线间的距离 求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。 常用方法有: 1、 定义法 2、 垂直平面法(转化为线面距) 3、 转化为面面距 4、 代数求极值法 5、 公式法 6、 射影法 7、 向量法 8、 等积法 1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。 例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。在⊿ADE 中,∠ADE=1200 ,AD=DE=a ,DH= 2 a 。即异面 直线CD 与AE 间的距离为 2 a 。 2 垂直平面法:转化为线面距离,若a 、 b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作 AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD 交于D , 连结CD 。设A 到平面BCD 的距离为h 。由体积法V A-BCD =V C-ABD , 得 h= β αβα2 2 cos cos 1sin sin -d 3转化为面面距离 若a 、b 是两条异面直线,则存在两个平行平面α、β,且a ∈α、b ∈

相关文档
最新文档