凸轮画法

凸轮画法
凸轮画法

3.造型过程

以下就一个盘形凸轮的造型过程详细说明此种凸轮的设计思路。零件如图1所示。

图1 盘形凸轮零件图

步骤1:基础特征造型

使用拉伸命令作一圆柱形基础特征,草图和拉伸后的特征如图2所示。

图2 草图及拉伸特征

步骤2:创建方程曲线

在“基准” 工具栏中单击“插入基准曲线”按钮,在弹出的菜单管理器中选则“从方程”选项,单击“完成”,如图3中所示。弹出“曲线”对话框和次级菜单。根据系统提示选择系统默认坐标系PRT_CSYS_DEF。在下一级菜单中选择“笛卡尔”坐标系(如图5、6所示),随后弹出记事本中定义曲线方程,该方程就是从动件的位移曲线方程,根据设计的不同,可编写不同的曲线方程。

图3 曲线菜单1

图4 “曲线”对话框

图5 曲线菜单2

图6 曲线菜单3在记事本输入图5所示的方程,保存并退出记事本。

图7 曲线方程

图8 生成的曲线(图中红色部分)

选择菜单“文件/保存副本”,保存格式为IGES,给定输出名称“cuve1”,在随后弹出的“输出IGES”对话框中选则“基准曲线和点”复选框,单击确定,完成IGES文件输出。

图9 “输出IGES”对话框

步骤3:创建图形特征

选择菜单“插入/模型基准/图形”选项,根据系统提示在消息输入图形名称cuve2,确定后进入草绘模式。在草绘模式中,在绘图区绘制一个坐标系,同时绘制两条通过此坐标系的中心线。选择菜单“草绘/数据来自文件”选项,选择刚才输出的“cuve1.igs”文件,打开后,在“缩放旋转”对话框输入比例和角度,拖动曲线至适当位置,单击确定按钮推出。在草绘模式中对曲线进行编辑增加,最终结果如图10中所示。

图10 最终曲线

步骤4:创建变剖面扫描特征

选择菜单“插入/可变剖面扫描”命令,单击草绘按钮,进入草绘模式绘制如图11所示的剖面。

图11 剖面

选择菜单“工具/关系”选项,将需要驱动的尺寸附加到上步所建图形上,实现在扫描过程中尺寸的实时驱动。具体方法就是在弹出的“关系”对话框中输入图12中所示的关系式,单击确定按钮退出草绘模式。

图12 “关系”对话框

单击控制板中的确定按钮,则最终完成凸轮轮廓的绘制,如图13所示。

图13 凸轮模型

凸轮轮廓线绘制程序

凸轮轮廓线绘制程序 j=0:1:360; s=rand(1,361); v=rand(1,361); a=rand(1,361); jj=31; w=1; j1=80; j2=20; j3=80; j4=180; j5=360; t=pi/180; for i=1:361 if j(i)<=j1 %升程,余弦加速度运动规律,转过的角度是j1。 s(i)=jj*[1-cos(pi*j(i)/j1)]/2; v(i)=36*(pi*jj*w*sin(pi*j(i)/j1)/(2*j1)); a(i)=36*pi^2*jj*t*w^2*cos(pi*j(i)/j1)/(2*(j1*t)^2); elseif j(i)<=j1+j2 %远休。 s(i)=31; v(i)=0; a(i)=0; elseif j(i)<=j1+j2+j3 %回程,余弦加速度运动规律,转过的角度是j3。 s(i)=jj-jj*[1-cos(pi*(j(i)-90)/j3)]/2; v(i)=-36*(pi*jj*w*sin(pi*(j(i)-90)/j3)/(2*j3)); a(i)=-36*pi^2*jj*t*w^2*cos(pi*(j(i)-90)/j3)/(2*(j3*t)^2); else %推程,余弦加速度运动规律,转过的角度是45。 s(i)=0; v(i)=0; a(i)=0; end end %绘制凸轮理论廓线、实际廓线 r0=39; rr=9; l=36; loa=70;

jj0=23; X=rand(1,361); Y=rand(1,361); Xa=rand(1,361); Ya=rand(1,361); Xaa=rand(1,361); Yaa=rand(1,361); dr=rand(1,361); A=rand(1,361); B=rand(1,361); for i=1:361 %if j(i)<=j1 X(i)=-l*sin((j(i)+s(i)+jj0)*t)+loa *sin(j(i)*t); Y(i)=-l*cos((j(i)+s(i)+jj0)*t)+loa*cos(j(i)*t); dx=loa*cos(j(i)*t)-l*(1+v(i)/10)*cos((j(i)+s(i)+jj0)*t); dy=-loa*sin(j(i)*t)+l*(1+v(i)/10)*sin((j(i)+s(i)+jj0)*t); st=dx/sqrt(dy^2+dx^2); ct=-dy/sqrt(dy^2+dx^2); Xa(i)=X(i)+rr*ct; Ya(i)=Y(i)+rr*st; Xaa(i)=X(i)-rr*ct; Yaa(i)=Y(i)-rr*st; %X(i)=l*sin((j(i)-s(i)-jj0)*t)-loa*sin(j(i)*t); %Y(i)=-l*cos((j(i)-s(i)+jj0)*t)+loa*cos(j(i)*t); %dx=-loa*cos(j(i)*t)-l*(-1+v(i)/10)*cos((-j(i)+s(i)+jj0)*t); %dy=-loa*sin(j(i)*t)+l*(-1+v(i)/10)*sin((-j(i)+s(i)+jj0)*t); %st=dx/sqrt(dy^2+dx^2); %ct=-dy/sqrt(dy^2+dx^2); %Xa(i)=X(i)+rr*ct; %Ya(i)=Y(i)+rr*st; %Xaa(i)=X(i)-rr*ct; %Yaa(i)=Y(i)-rr*st; % else %X(i)=l*sin((j(i)-s(i)-jj0)*t)-loa*sin(j(i)*t); %Y(i)=-l*cos((j(i)-s(i)+jj0)*t)+loa*cos(j(i)*t); %dx=-loa*cos(j(i)*t)-l*(-1-v(i)/10)*cos((-j(i)-s(i)-jj0)*t); %dy=-loa*sin(j(i)*t)+l*(-1-v(i)/10)*sin((-j(i)-s(i)-jj0)*t); %st=dx/sqrt(dy^2+dx^2); %ct=-dy/sqrt(dy^2+dx^2); %Xa(i)=X(i)+rr*ct; %Ya(i)=Y(i)+rr*st; %Xaa(i)=X(i)-rr*ct;

solidworks画凸轮技巧

凸轮。。。应该有。。。升程和回程。。所以你的槽。。应该是围绕圆柱图带旋转切不是标准圆。。。通 俗点就是3坐标都有偏移。 方法还是比较多的。。。。你可以选择。。 1。用包络。画法。。先在平面草绘出槽的中心线。。包络到圆柱体上去后。用扫描切除槽内材料。。即可。。。’ 2。可以用高级功能中的。。。。环形折弯。。。。跟一方法的区别在于这个直接折弯实体。。成一个 也圆柱。。意思就是你先画出槽的平面展开图。。再折弯就行了。 希望对你有所帮助。 直接利用运动曲线画凸轮(上篇) 已有 395 次阅读2012-2-22 15:30|系统分类:技术|曲线, 运动, SolidWorks, 谐波 概述:SolidWorks Toolbox插件里面带有凸轮插件,可以很方便地绘制各种简 单的盘形凸轮和线性凸轮。在此插件里面可以定义:摆线、谐波、正弦等9种运动曲线。但如果我们想利用一些自定义的运动曲线来生成相应的凸轮,应该如何做呢? 下面我将详细介绍如何利用一条已存在的凸轮展开线绘制凸轮。(包括线性凸轮、盘形凸轮和圆柱凸轮) 1.将曲线导入到SolidWorks草图中: 2.直接用此草图拉伸成实体,这是线性凸轮。如下图:

3.做两个坐标系,每个坐标对应另两种凸轮:

4.加入“弯曲”特征。

5.以下分别是盘形凸轮和圆柱凸轮,效果图如下:

6.三种凸轮运动状态见下面的动画。从动画中可以看出,三种凸轮的运动轨迹跟原草图中的运动曲线是一致的。 已同步至香港智诚科技的微博 利用motion生成共扼凸轮(下篇) - 利用跟踪轨迹生成凸轮 已有 235 次阅读2012-2-20 15:15|系统分类:技术|SolidWorks, motion, 共扼凸轮 智诚科技ICT Assistant Technical Manager Lenny Yang 1,概述,在上一篇文章里,我们讲解了如何利用motion生成运动仿真。现在,我将介绍如何使用motion运动仿真进行共扼凸轮的绘制。案例如下图: 2,在motion结果上,我们可以跟踪任意点相对任意物体的运动轨迹。而在凸轮运动中,凸轮的形状跟凸轮中心点相对旋转轴的运动轨迹是相似的。所以我们只要跟踪凸轮中心点的运动轨迹就可以得到正确的凸轮形状。

凸轮曲线设计

凸轮曲线设计 当根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。本节分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。 1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC0开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、C5、C9诸点。将推程运动角和回程运动角分成与从动件位移线图对应的等分,得C1、C2、C3

凸轮轮廓线的绘制(MATLAB)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程名称:精密机械学基础 设计题目:直动从动件盘形凸轮的设计 院系:航天学院控制科学与工程系 班级: 0904102班 设计者:陈学坤 学号: 1090410229 设计时间: 2011年10月

直动从动件盘形凸轮机构的计算机辅助设计 说明: 凸轮轮阔曲线的设计,一般可分为图解法和解析法,尽管应用图解法比较简便,能简单地绘制出各种平面凸轮的轮廓曲线,但由于作图误差比较大,故对一些精度要求高的凸轮已不能满足设计要求。此次应用MATLAB 软件结合轮廓线方程用计算机辅助设计。首先,精确地计算出轮廓线上各点的坐标,然后运用MATLAB 绘制 比较精确的凸轮轮廓曲线以及其S-α曲线、v-t 曲线、a-t 曲线。 。 1 凸轮轮廓方程 *()()*() ()*()*() X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。 E :从动件的偏心距,OC 。 R :凸轮的基园半径,OA 。 J :凸轮的转角。 S :S=f(J)为从动件的方程。 So :22O S R E =-。 H 为从动件的最大位移(mm )。 J1、J2、J3、J4为从动件的四个转角的区域。 S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。 2 实例 R=40,E=10,H=50,J1=J2=J3=J4=900。 3 MATLAB 程序设计 用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组: J=[J1,J2,J3,J4]; S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4]; 用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t ,

巧借Excel在AutoCAD中设计凸轮轮廓曲线

巧借Excel在AutoCAD中设计凸轮轮廓 曲线 摘要:本文介绍一种借用EXCEL应用程序来计算并保存数据,并与CAD精确绘图巧妙地结合,设计凸轮轮廓曲线的方法,该方法也可用于其它二 维或三维曲线的绘制中。论文毕业论文关键词:凸轮轮廓曲 线 AutoCAD 图解法1.问题的提出本文以设计二维凸轮轮廓曲线为例, 介绍一种一般操作者就能方便做到的,借用EXCEL应用程序来计算并保存数据,并与AutoCAD精确绘图巧妙地结合,绘制二维或三维非规则曲线的方法,以供大家参考。2.概述在凸轮机构中,最常用的就是平面凸轮机构,要设计平面凸轮的轮廓曲线。设计方法通常有图解法和解析法两种。作图法简便易行、直观,作图误差较大,精度较低,适用于低速对从动件运动规律要求不高的一般精度凸轮设计;对于精度要求高的高速凸轮、靠模凸轮等,必须用解析法列出凸轮的轮廓曲线方程,用计算机辅助设计精确地设计凸轮机构。我们沿用原有的图解法思路,使用CAD作为工具,两者的联合运用,能产生意想不到的更简单、直接、方便的处理方法。在这种基于AutoCAD的图解法基础上,利用AutoCAD与其它文档交换信息和数据的功能,对于一些计算量较大输入点较多的图形,与EXCEL应用程序相结合,使作图更加简便快捷。如设计下面的偏置滚子从动件盘形凸轮轮廓曲线,已知偏距e=10㎜,基圆半径r0=40㎜,行程h=25㎜,滚子半径rT=10㎜。凸轮以角速度ω顺时针转动,从动件的运动规 律为:运动阶段1,推程Φ=180°、凸轮转角φ(°)为0~180,运动形式:等加速-等减速运动,运动方程方程:s=(2h/Φ2)φ2=(2*25/1802)φ (0≤φ≤90)或s=h-2h(Φ-φ)2/Φ2=25-2*25*(180- φ)2/1802(90≤φ≤180)运动阶段2,远休止ΦS=30°、凸轮转角φ(°)为180~210,运动形式:静止不动,运动方程方程: s=h=25 (180≤φ≤210)运动阶段3,回程Φ=90°、凸轮转角φ(°)为210~300,运动形式:等加速-等减速运动,运动方程方程: s= h-(2h/Φ’2)/φ’2=25-(2*25/180)2/(φ-210)2(180≤φ≤210)或s=2h(Φ’- φ’)2/Φ’2=2*25*(90-(φ-210))2/902(180≤φ≤210)运动阶段4,远休 止ΦS=60°、凸轮转角φ(°)为300~360,运动形式:静止不动,运动方程 方程: s=0(300≤φ≤360)3、解题思路要使基于CAD技术的图解法充分发挥软件精确、高效绘图的作用,就要首先改进原来的作图方法。图解法和解析法其本质完全相同,只是求解手段、求解过程不同,这里我们不用作图法确定曲线上点的方法,而是直接利用解析法里凸轮轮廓曲线的极坐标方程,求出凸轮轮廓曲线上若干个点(越多曲线越准确)的极坐标值(ρ,θ),再用spline (绘制样条曲线)命令,输入各点坐标值,作出凸轮的轮廓曲线。如果是滚子从动件,得到理论轮廓线后,直接用offset(偏移)命令,输入滚子半径即可得到凸轮的实际轮廓曲线。这里有两个问题需要解决。首先是计算,为了得到更为准确的曲线,取点要尽量多,求这些点的极坐标值是一个很大的计算量,如何计算,计算后数据保存在哪里?其次是绘制曲线时点的坐标的输入,如果一个个

cad制作凸轮轮廓曲线

具体作图步骤如下: 1.使用工具栏Circle(圆)命令,绘制直径为200的凸轮基圆。 2.使用工具栏Line(直线)命令,捕捉圆心作凸轮基圆铅垂方向的直线B1B7。注意保持提示直线角度及其前的距离数值(定B1点时应为OB1的长度值,定B7点时应为OB7的长度值)。 3.重复使用Line命令,利用每隔30°呈现的角度提示,保证所绘制直线沿圆周分布每30°一条;利用提示中角度之前的距离数值分别确定样条拟合数据点:OB1、OB2、OB3……、OB11;B0和B12是凸轮轮廓的起讫,也是基圆上的同一点,提示中显示的“交点”即为B0/B12点。 4.使用工具栏中Spline(样条曲线绘制)命令。系统提示输入初始点:用鼠标捕捉B0点;系统要求输入第二点:用鼠标捕捉B1点;如此,系统不停要求输入数据点,用鼠标依次捕捉B2、B3、…、B11、B12(B0)。在完成最后一个数据点的输入时,单击鼠标右键确定即可。 5.使用工具栏中Circle命令,绘制凸轮内小圆,与基圆同心,半径为40。该圆表示凸轮与轴配合的轮廓线。 6.使用工具栏橡皮擦命令,擦除基圆轮廓线和直线段。 7.使用工具栏中ARC(弧线绘制)命令。圆整凸轮轮廓曲线。系统提示弧线起点或中心,即:Specify start point of are or [Center]:c(表示给出圆心)。 Specify center point of are:用鼠标捕捉圆心。 Specify start point of are:鼠标捕捉样条曲线(凸轮轮廓曲线)的起点B0点。 Specify end point of are:鼠标捕捉样条曲线的终点B12点。 8.在下拉菜单中选择Modify→Properties(修改→对象特性)命令。选择所绘制的全部图线,改线宽(Line weight)为0.70mm,打开命令下方开关LWT(打开显示线宽)。 9.凸轮平面绘制完毕。其绘图速度快、图形效果好

按给定运动轨迹反求凸轮轮廓机构

第7章 按给定运动轨迹反求凸轮轮廓机构 按给定运动轨迹反求零件模型,是机构设计的一种常用方法,采用SolidWorks 完成设计,相对于传统计算方法,简单实用,并且可以模拟再现轨迹的实现。本章以应用广泛的凸轮连杆组合机构为例,根据连杆一端点预定轨迹,利用反求法得到凸轮的理论廓线及实际轮廓,并通过运动仿真验证了凸轮连杆组合机构的实际运动轨迹与预定轨迹相符。 7.1工作原理 凸轮连杆组合机构简图如图7.1所示,凸轮1固定,原动件曲柄2匀速转动,带动连杆3运动,此时固定凸轮约束着与连杆端点B 通过铰链结合的滚子4,使连杆的端点C 沿着给定的运动轨迹5运动,从而达到该机构的工作要求。 设计参数: 预定轨迹:长为400mm ,宽为300mm 的长方形,经半径R=100mm 的边角倒圆;各杆长度:OA l =150mm, AB l =80mm, AC l =150mm ;∠BAC=120°,滚子半径Rg =10mm ,曲柄OA 转速n=60r/min 。 图 7.1 凸轮连杆组合机构简图 7.2 零件造型 启动SolidWorks2012,选择【文件】/【新建】/【零件】命令,创建新的零件文件。选择【插入】/【草图绘制】命令,选择一基准面为草绘平面。 根据图7.2~7.5所示,分别绘制机架、曲柄、连杆和滚子的轮廓草图。然后选择【插入】

/【凸台/基体】/【拉伸】命令,分别以距离10mm拉伸机架、曲柄和连杆轮廓草图分别得到其实体零件。选择【插入】/【凸台/基体】/【旋转】命令,以滚子轴线为旋转轴,以360°为旋转角度,旋转后得到滚子实体零件。零件的材质均设置为“普通碳钢”,分别以文件名“机架”、“曲柄”、“连杆”和“滚子”保存。 图7.2 机架草图图7.3 曲柄草图 图7.4 连杆草图图7.5 滚子草图 为了满足装配时的“路径配合”要求,在连杆零件图中,选择【插入】/【参考几何体】/【点】命令,在图7.1所示连杆中的端点C处创建一个参考点。如图7.6所示,在弹出的属 性管理器【选择】栏中,点击【圆弧中心】按钮,然后点击【参考实体】按钮,在视图区选择连杆C端的圆孔边线,点击确定按钮,完成连杆参考点的创建。

凸轮廓线的MATLAB画法

凸轮廓线的MATLAB 画法 1 凸轮轮廓方程 *()()*()()*()*() X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。 E :从动件的偏心距。 R :凸轮的基园半径。 J :凸轮的转角。 S :S=f(J)为从动件的方程。 So :22O S R E =-。 H 为从动件的最大位移(mm )。 J1、J2、J3、J4为从动件的四个转角的区域。 S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。 2 实例 R=40,E=10,H=50,J1=J2=J3=J4=900。

3 MATLAB 程序设计 用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组: J=[J1,J2,J3,J4]; S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4]; 用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t , ds ds ds dt dt V dJ dJ dt ω === 在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以 ds ds ds ds dt dt V dJ dt dJ dt ω==== 速度 同理可得: dJ ds dt dv a 2 2= =加速度 4 程序运行结果 图一:余弦速运动规律下的凸轮轮廓曲线

凸轮轮廓曲线

姓名:雷小舟班级:机制04班学号:1103010411 利用VB绘制凸轮轮廓曲线及计算相关直角坐标和压力角VB程序语言如下: Private Sub Command1_Click() '参数初始化 Dim r0%, r1%, h%, e% Dim a1%, a01%, a2%, a02% r0 = Val(InputBox("请输入基圆半径")) r1 = Val(InputBox("请输入滚子半径")) h = Val(InputBox("请输入升程")) e = Val(InputBox("请输入偏距")) a1 = V al(InputBox("请输入推程运动角")) a01 = Val(InputBox("请输入远休止角")) a2 = V al(InputBox("请输入回程运动角")) a02 = Val(InputBox("请输入近休止角")) Text1.Text = r0 Text2.Text = r1 Text3.Text = h Text4.Text = e Text5.Text = a1 Text6.Text = a01 Text7.Text = a2 Text8.Text = a02 Picture1.Scale (-75, 55)-(75, -55) '建立坐标系 Picture1.Line (0, 50)-(0, -50) Picture1.Line (-55, 0)-(55, 0) '初始化参数 Dim i!, j!, k!, m!, n!, l! Dim a!, b!, c!, d!, f! Const pi = 3.141592653 Dim s#(360), s1#(360) Dim ds#(360), ds1#(360) Dim dx#(360), dy#(360) a = a1 b = a1 + a01 c = a1 + a01 + a2 / 2 d = a1 + a01 + a2 f = 360 j = 0 For i = 0 To a '推程段 s(j) = h * (1 - Cos(pi * i / a1)) / 2

平面槽形凸轮零件加工工艺设计方案及编程JJJ

平面槽形凸轮零件加工工艺设计及编程 摘要:机械制造加工工艺技术是在人类生产实际中产生并不断发展的。机械制 造加工工艺是机械制造业的基础,是生产高科技产品的保障。离开了它就不能开发出先进的产品和保证产品质量,降低成本和缩短生产周期,提高生产率,因此,一个好的加工工艺和程序,决定着一个企业的经济效益。 本设计说明书主要介绍了机械产品平面槽形凸轮零件的加工工艺设计及其程序编辑,其中包括:零件图的分析、零件的工艺分析、设计加工工艺方案、选择机床和加工工艺设备、确定切削用量、确定工序和走刀路线、零件机械加工过程卡、数控加工工序卡片、数控加工刀具卡片、加工工艺过程设计、编写加工工艺文件、以及编写加工程序等。 除了介绍平面类零件的加工工艺设计和孔的加工工艺方案的设计,还介绍了机械制造加工工艺与程序编辑在机械制造工业中的作用以及机械制造加工工艺技术的现状和发展。 在本毕业设计中研究了定位基准的选择,工件的定位方法,箱体零件的结构工艺性分析等。 同时在此次毕业设计中还运用到了MAutoCAD、UG 的画图功能和stercam 的仿真加工和自动编辑程序的功能。 本毕业设计说明书反映了机械制造加工工艺与夹具设计的宗旨是:保证和提高产品质量;提高劳动生产率;提高经济效益。 关键词:数控技术机械制造加工工艺工艺分析机设计加工工艺方案程序的编辑Planar slot cam machining process design and programming Abstract: machinery manufacturing processing technology in human production practice and development.Machinery manufacturing processing machinery manufacturing industry is the foundation, is the production of high-tech products to protect.Left it unable to develop advanced products and ensure the quality of products, reduce the cost and shorten the production cycle, improve productivity, therefore, a good processing technology and program, deciding an enterprise economic benefits. This paper mainly introduces the mechanical product plane groove cam machining process design and program editing, including: parts of the plan, parts of the process analysis, design process, selection of machine tools and processing equipment,

凸轮设计步骤

用几何法和解析法设计凸轮轮廓曲线的原理和步骤2015-11-9 16:28:40 作者:风雨考验人气:1252次评论(0) 所属标签:产品外观设计 根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。下面时间财富网的小编分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。

1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC 开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运 动角(1900)、近休止角(600),在基圆上得C 4、C 5 、C 9 诸点。将推程运动角和回程 运动角分成与从动件位移线图对应的等分,得C 1、C 2 、C 3 和C 6 、C 7 、C 8 诸点。 4) 过C1、C2、C3、...作偏距圆的一系列切线,它们便是反转后从动件导路的一系列位置。 5) 沿以上各切线自基圆开始量取从动件相应的位移量,即取线段C1B1=11' 、C2B2=22'、...,得反转后尖底的一系列位置B1、B2、...。 6) 将B0、B1、B2、...连成光滑曲线(B4和B5之间以及B9和B0之间均为以O 为圆心的圆弧),便得到所求的凸轮轮廓曲线。

巧借Excel在AutoCAD中设计凸轮轮廓曲线

的功能,对于一些计算量较大输入点较 多的图形,与EXCEL应用程序相结合, 使作图更加简便快捷。 如设计下面的偏置滚子从动件盘形 凸轮轮廓曲线,已知偏距e=10mm,基 圆半径r0=40mm,行程h=25mm,滚 子半径rT=10mm。凸轮以角速度ω顺 时针转动,从动件的运动规律为: 运动阶段1,推程Φ=180°、凸 轮转角φ(°)为0~180,运动形式: 等加速-等减速运动,运动方程方 程:s=(2h/Φ2)φ2=(2*25/1802)φ (0≤φ≤90)或s=h-2h(Φ-φ)2/ Φ2=25-2*25*(180-φ)2/1802 (90 ≤φ≤180) 运动阶段2,远休止ΦS=30°、 凸轮转角φ(°)为180~210,运动形 式:静止不动,运动方程方程: s=h=25(180≤φ≤210) 运动阶段3,回程Φ=90°、凸 轮转角φ(°)为210~300,运动形 式:等加速-等减速运动,运动方程 方程: s= h-(2h/Φ’2)/φ’ 2=25-(2*25/180)2/(φ-210)2(180 ≤φ≤210)或s=2h(Φ’-φ’)2/ Φ’2=2*25*(90-(φ-210))2/902 (180≤φ≤210) 运动阶段4,远休止ΦS=60°、 凸轮转角φ(°)为300~360,运动形 式:静止不动,运动方程方程: s=0 (300≤φ≤360) 巧借Excel在 AutoCAD中设计凸轮轮廓曲线 董丽琴 李付有 河北软件职业技术学院 1.问题的提出 本文以设计二维凸轮轮廓曲线为 例,介绍一种一般操作者就能方便做 到的,借用EXCEL应用程序来计算并 保存数据,并与AutoCAD精确绘图 巧妙地结合,绘制二维或三维非规则 曲线的方法,以供大家参考。 2.概述 在凸轮机构中,最常用的就是平 面凸轮机构,要设计平面凸轮的轮廓曲 线。设计方法通常有图解法和解析法两 种。作图法简便易行、直观,作图误差 较大,精度较低,适用于对从动件运动 规律要求不高的一般精度低速凸轮设 计;对于精度要求高的高速凸轮、靠模 凸轮等,必须用解析法列出凸轮的轮廓 曲线方程,用计算机辅助设计精确地设 计凸轮机构。我们沿用原有的图解法思 路,使用CAD作为工具,两者的联合 运用,能产生意想不到的更简单、直接、 方便的处理方法。在这种基于 AutoCAD的图解法基础上,利用 AutoCAD与其它文档交换信息和数据 3、解题思路 要使基于CAD技术的图解法充分 发挥软件精确、高效绘图的作用,就 要首先改进原来的作图方法。图解法 和解析法其本质完全相同,只是求解 手段、求解过程不同,这里我们不用 作图法确定曲线上点的方法,而是直 接利用解析法里凸轮轮廓曲线的极坐标 方程,求出凸轮轮廓曲线上若干个点 (越多曲线越准确)的极坐标值(ρ, θ),再用spline (绘制样条曲线)命 令,输入各点坐标值,作出凸轮的轮 廓曲线。如果是滚子从动件,得到理 论轮廓线后,直接用offset(偏移)命 令,输入滚子半径即可得到凸轮的实 际轮廓曲线。 这里有两个问题需要解决。首先 是计算,为了得到更为准确的曲线, 取点要尽量多,求这些点的极坐标值 是一个很大的计算量,如何计算,计 算后数据保存在哪里?其次是绘制曲线 时点的坐标的输入,如果一个个输入 要输二十多次,非常费时而且很容易 出错。 4、解决办法 4.1数据的计算 EXCEL是我们大家比较熟悉的应 用程序,可以执行计算、分析信息并 管理表格等,我们就用它来进行计算 和保存数据。 按从动件的运动规律所给数据,

凸轮画法

3.造型过程 以下就一个盘形凸轮的造型过程详细说明此种凸轮的设计思路。零件如图1所示。 图1 盘形凸轮零件图 步骤1:基础特征造型 使用拉伸命令作一圆柱形基础特征,草图和拉伸后的特征如图2所示。 图2 草图及拉伸特征 步骤2:创建方程曲线 在“基准” 工具栏中单击“插入基准曲线”按钮,在弹出的菜单管理器中选则“从方程”选项,单击“完成”,如图3中所示。弹出“曲线”对话框和次级菜单。根据系统提示选择系统默认坐标系PRT_CSYS_DEF。在下一级菜单中选择“笛卡尔”坐标系(如图5、6所示),随后弹出记事本中定义曲线方程,该方程就是从动件的位移曲线方程,根据设计的不同,可编写不同的曲线方程。

图3 曲线菜单1 图4 “曲线”对话框 图5 曲线菜单2 图6 曲线菜单3在记事本输入图5所示的方程,保存并退出记事本。 图7 曲线方程

图8 生成的曲线(图中红色部分) 选择菜单“文件/保存副本”,保存格式为IGES,给定输出名称“cuve1”,在随后弹出的“输出IGES”对话框中选则“基准曲线和点”复选框,单击确定,完成IGES文件输出。 图9 “输出IGES”对话框 步骤3:创建图形特征 选择菜单“插入/模型基准/图形”选项,根据系统提示在消息输入图形名称cuve2,确定后进入草绘模式。在草绘模式中,在绘图区绘制一个坐标系,同时绘制两条通过此坐标系的中心线。选择菜单“草绘/数据来自文件”选项,选择刚才输出的“cuve1.igs”文件,打开后,在“缩放旋转”对话框输入比例和角度,拖动曲线至适当位置,单击确定按钮推出。在草绘模式中对曲线进行编辑增加,最终结果如图10中所示。 图10 最终曲线 步骤4:创建变剖面扫描特征

用作图法绘制凸轮靠模的轮廓曲线

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-08-28 作者简介:徐建军(1969—),男,江苏常熟人,一级实习指导教师,研究方向:机械设计与制造.用作图法绘制凸轮靠模的轮廓曲线 徐建军1,包轩庭2 (1.常熟职业教育中心校,江苏常熟215500;2.常熟理工学院机械工程学院,江苏常熟215500) 摘要:提出了一种用作图法来确定凸轮靠模轮廓曲线的方法,比较简便地解决了轮廓为样条曲线的凸轮的磨削问题. 关键词:凸轮;靠模;作图法 中图分类号:TS913文献标识码:B 文章编号:1008-2794(2012)10-0079-03 1引言 某工业缝纫机厂在生产中需要加工一款凸轮,其轮廓形状见图1,该凸轮的 轮廓曲线由样条曲线构成,该曲线是通过三坐标测量仪对凸轮实物采样若干个 点后,用计算机辅助设计软件绘制而成.其加工工艺为:粗加工采用线切割加 工,精加工为磨削加工.由于批量不大,为了降低生产成本,企业没有添置专用 的凸轮磨床,而是对普通的外圆磨床进行改造,采用靠模进行仿形磨削,因此需 要确定该凸轮靠模的轮廓曲线. 2磨削过程分析 凸轮的精加工在外圆磨床上采用仿形磨削完 成.通过靠模控制砂轮架做前后运动,从而控制砂轮 仿形磨削加工出凸轮.靠模导轮安装在砂轮架上,导 轮的中心和砂轮回转中心等高,然后通过强力弹簧将 导轮紧压在靠模上.靠模和凸轮安装在同一芯轴上, 通过电机驱动芯轴回转,从而实现仿形磨削. 由图2可知,假设采用标准形状的凸轮作为靠 模,在磨削凸轮的升程段和降程段时,由于导轮和砂 轮的直径不同,导致导轮与靠模的接触点与砂轮的实 际切削点位置不同.如图2所示,凸轮和靠模的回转 中心是O 1,导轮的回转中心是O 2,砂轮的回转中心是O 3,三点处于同一水平面内 .砂轮与凸轮的接触点是A 点,导轮与靠模 (凸轮标准廓形)的接触点是B 点. 图2凸轮磨削特点分析图图1凸轮外形图

凸轮轮廓曲线的设计

凸輪輪廓曲線的設計 newmaker 當根據使用要求確定了凸輪機構的類 型、基本參數以及從動件運動規律後,即可進行凸輪輪廓曲線的設計。設計方法有幾何法和解析法,兩者所依據的設計原理基本相同。幾何法簡便、直觀,但作圖誤差較大,難以獲得凸輪輪廓曲線上各點的精確坐標,所以按幾何法所得輪廓數據加工的凸輪只能應用於低速或不重要的場合。對於高速凸輪或精確度要求較高的凸輪,必須建立凸輪理論輪廓曲線、實際輪廓曲線以及加工刀具中心軌蹟的坐標方程,並精確地計算出凸輪輪廓曲線或刀具運動軌跡上各點的坐標值,以適合在數控機床上加工。 圓柱凸輪的廓線雖屬空間曲線,但由於圓柱面可展成平面,所以也可以藉用平面盤形凸輪輪廓曲線的設計方法設計圓柱凸輪的展開輪廓。本節分別介紹用幾何法和解析法設計凸輪輪廓曲線的原理和步驟。 1幾何法 反轉法設計原理: 以尖底偏置直動從動件盤形凸輪機構為例: 凸輪機構工作時,凸輪和從動件都在運動。為了在圖紙上畫出凸輪輪廓曲線,應當使凸輪與圖紙平面相對靜止,為此,可採用如下的反轉法:使整個機構以角速度(-w)繞O轉動,其結果是從動件與凸輪的相對運動並不改變,但凸輪固定不動,機架和從動件一方面以角速度(-w)繞O轉動,同時從動件又以原有運動規律相對機架往復運動。根據這種關係,不難求出一系列從動件尖底的位置。由於尖底始終與凸輪輪廓接觸,所以反轉後尖底的運動軌跡就是凸輪輪廓曲線。

1).直動從動件盤形凸輪機構 尖底偏置直動從動件盤形凸輪機構: 已知從動件位移線圖,凸輪以等角速w順時針迴轉,其基圓半徑為r0,從動件導路偏距為e,要求繪出此凸輪的輪廓曲線。 運用反轉法繪製尖底直動從動件盤形凸輪機構凸輪輪廓曲線的方法和步驟如下: 1)以r0為半徑作基圓,以e為半徑作偏距圓,點K為從動件導路線與偏距圓的切點,導路線與基圓的交點B0(C0)便是從動件尖底的初始位置。 2)將位移線圖sf的推程運動角和回程運動角分別作若干等分(圖中各為四等分)。 3)自OC 0開始,沿w的相反方向取推程運動角(180 0)、遠休止角(30 0)、回程運動角(190 0)、近休止角(60 0),在基圓上得C 4、C 5、C 9諸點。將推程運動角和回程運動角分成與從動件位移線圖對應的等分,得C 1、C 2、C 3和C 6、C 7、C 8諸點。 4)過C1、C2、C3、...作偏距圓的一系列切線,它們便是反轉後從動件導路的一系列位置。 5)沿以上各切線自基圓開始量取從動件相應的位移量,即取線段C1B1=11' 、C2B2=22'、...,得反轉後尖底的一系列位置B1、B2 、...。 6)將B0、B1、B2、...連成光滑曲線(B4和B5之間以及B9和B0之間均為以O為圓心的圓弧),便得到所求的凸輪輪廓曲線。

凸轮机构图解法

滚子从动件凸轮机构设计 当根据使用场合和工作要求选定了凸轮机构的类型和从动件的运动规律后,即可根据选定的基圆半径着手进行凸轮轮廓曲线的设计。 凸轮廓线的设计方法有图解法和解析法,其依据的基本原理相同。 凸轮机构工作时,凸轮和从动件都在运动,为了在图纸上绘制出凸轮的轮廓曲线,可采用反转法。下面以图示的对心尖端移动从动件盘形凸轮机构为例来说明其原理。 从图中可以看出: 凸轮转动时,凸轮机构的真实运动情况: 凸轮以等角速度ω绕轴O 逆时针转动,推动从动件在导路中上、下往复移动。 当从动件处于最低位置时,凸轮轮廓曲线与从动件在A点接触,当凸轮转过φ1角时,凸轮的向径OA 将转到OA′的位置上,而凸轮轮廓将转到图中兰色虚线所示的位置。这时从动件尖端从最低位置A 上升到B′,上升的距离s1=AB′。 采用反转法,凸轮机构的运动情况: 现在设想凸轮固定不动,而让从动件连同导路一起绕O点以角速度(-ω)转过φ1角,此时从动件将一方面随导路一起以角速度(-ω)转动,同时又在导路中作相对移动,运动到图中粉红色虚线所示的位置。此时从动件向上移动的距离与前相同。此时从动件尖端所占据的位置B 一定是凸轮轮廓曲线上的一点。若继续反转从动件,可得凸轮轮廓曲线上的其它点。 由于这种方法是假定凸轮固定不动而使从动件连同导路一起反转,故称反转法(或运动倒置法)。 凸轮机构的形式多种多样,反转法原理适用于各种凸轮轮廓曲线的设计。

一、直动从动件盘形凸轮廓线的设计 (1)尖端从动件 以一偏置移动尖端从动件盘形凸轮机构为例。设已知凸轮的基圆半径为rb,从动件轴线偏于凸轮轴心的左侧,偏距为e,凸轮以等角速度ω顺时针方向转动,从动件的位移曲线如图(b)所示,试设计凸轮的轮廓曲线。 依据反转法原理,具体设计步骤如下: 1)选取适当的比例尺,作出从动件的位移线图。将位移曲线的横坐标分成若干等份,得分点1,2, (12) 2)选取同样的比例尺,以O 为圆心,rb为半径作基圆,并根据从动件的偏置方向画出从动件的起始位置线,该位置线与基圆的交点B0,便是从动件尖端的初始位置。 3)以O 为圆心、OK=e 为半径作偏距圆,该圆与从动件的起始位置线切于K点。 4)自K点开始,沿(-ω)方向将偏距圆分成与图(b)横坐标对应的区间和等份,得若干个分点。过各分点作偏距圆的切射线,这些线代表从动件在反转过程中从动件占据的位置线。它们与基圆的交点分别为C1,C2,…,C11。 5)在上述切射线上,从基圆起向外截取线段,使其分别等于图(b)中相应的坐标,即C1B1=11',C2B2=22', …,得点B1,B2,…,B11,这些点即代表反转过程中从动件尖端依次占据的位置。 6)将点B0,B1,B2,…连成光滑的曲线,即得所求的凸轮轮廓曲线。

matlab解析法画凸轮轮廓线

班级:姓名:学号: 基于matlab的凸轮轮廓设计 一、设计凸轮机构的意义 在工业生产中,经常要求机器的某些部件按照规定的准确路线运动,仅应用连杆机构已难以满足这个要求,所以需要利用工作表面具有一定形状的凸轮。凸轮在所有基本运动链中,具有易于设计和能准确预测所产生的运动的优点。如果设计其他机构来产生给定的运功、速度、和加速度,其设计工作是很复杂的,但是设计凸轮机构则比较容易,而且运动准确、有效。所以在许多机器中,如纺织机、包装机、自动机床、自动化专用机床、数控机床、印刷机、内燃机、建筑机械、矿山机械、计算机的辅助装备及农业机具等,都可以找到凸轮机构。 在进行研究时,先设计一个简单的凸轮,在给定的旋转角度内有一定的总升距。设计凸轮轮廓的基本方法是把凸轮固定,使从动件以其与凸轮的相关位置绕凸轮回转而形成凸轮轮廓。因此设计凸轮时,必须画出足够多的点,使凸轮轮廓平滑可靠。 Matlab软件提供了强大的矩阵处理和绘图功能,具有核心函数工具箱。其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好。因此,基于matlab软件进行凸轮机构的设计可以解决设计工作量大的问题。运用解析法进行设计,matlab可以精确的计算出轮廓上每一点的坐标,然后更为精确的绘制出凸轮轮廓曲线。

二、设计凸轮机构的已知条件 凸轮做逆时针方向转动,从动件偏置在凸轮轴心右边。从动件在推程做等加/减速运动,在回程做余弦加速运动。基圆半径rb=50mm,滚子半径rt=10mm,推杆偏距e=10mm,推程升程h=50mm,推程运动角ft=100o,远休止角fs=60o,回程运动角fh=90o。 三、分析计算 1、建立坐标系 以凸轮轴心为坐标原点建立平面直角坐标系XOY,取杆件上升方向为Y轴正方向。 2、推杆运动规律计算 凸轮运动一周可分为5个阶段:推程加速阶段、推程减速阶段、远休止阶段、回程阶段、进休止阶段。 根据已知条件,推程阶段为等加/减速,故推程阶段的运动方程为: 推程加速阶段(0~)

相关文档
最新文档