MATLAB黄金分割法求一元函数极小值

MATLAB黄金分割法求一元函数极小值
MATLAB黄金分割法求一元函数极小值

MATLAB黄金分割法求一元函数极小值

%This function is used to find a function's minimum by Golden Section. %.注:用于一元函数极小值问题

%Nov.27th,2009

%Miniment------最小值

%array---------迭代变化数组

%k-------------迭代次数

function [Miniment,array,k]=GoldenSection(y,a,b,E,Flag)

if(nargin==0)

y=sym('3*x^4-16*x^3+30*x^2-24*x+8');

a=0;b=3;E=0.00000001;Flag=1;

end

%如果Flag==1,程序将给出迭代步骤值和次数值

%如果Flag==0,程序将不给出迭代步骤值和次数值

clc;symsx;formatlong;lemda=0.618;%清屏,准备数据

u=b-lemda*(b-a);%首次插入的左置换区间边界点

v=a+lemda*(b-a);%首次插入的右置换区间边界点

k=0;%记录迭代次数

array(k+1,1)=a;array(k+1,2)=b;%记录迭代的区间

%while结构控制在达到输出精度时返回!

while(b-a>=E)

Yu=subs(y,x,u);

Yv=subs(y,x,v);

if(Yu==Yv)

a=u;b=v;%左右同时缩小搜索区间

u=b-lemda*(b-a);

v=a+lemda*(b-a);

k=k+1;

elseif(Yu

b=v;%从右缩小搜索区间

v=u;

u=b-lemda*(b-a);

k=k+1;

elseif(Yu>Yv)

a=u;%从左缩小搜索区间

u=v;

v=a+lemda*(b-a);

k=k+1;

end

array(k+1,1)=a;array(k+1,2)=b;

end

%显示输出控制

if(Flag==1)

fprintf('迭代边界变化过程\n\ta\t\t\t\t\tb');array

fprintf('迭代次数k=%d\n',k);

end

%%绘制动画以方便观察!必须位于输出语句前,否则得不到执行!figure(1);clf(1);

plot(0:0.1:3,subs(y,x,[0:0.1:3]));

hold on;

ASize=size(array);

h1=plot(array(1,1),0,'r.');

h2=plot(array(1,2),0,'r.');

for index=1:ASize(1,1);

pause(0.5);

set(h1,'xdata',array(index,1));

set(h2,'xdata',array(index,2));

drawnow;

end

%以下是输出语句

Miniment = (a+b)/2;

黄金分割法求极值(c编程)

流程图: C程序: #include <> #include <> double f(double x) {double y; y=*x**x*x+; return(y); }

void main() {double a,b,x1,x2,w,s,min,x0; int i=1; double h; w=(sqrt(5)-1)/2; s=1e-5; printf("input a,h:\n"); scanf("%lf,%lf",&a,&h); do /*确定初始区域[a,b]*/ {b=a+i*h; i++; printf("i=%d,b=%lf\n",i,b); }while (f(a)>f(b)); x1=a+(1-w)*(b-a); x2=a+w*(b-a); printf("[%lf,%lf]\n",a,b); loop:if(f(x1)s) {x2=x1; x1=a+(1-w)*(b-a); printf("x1=%lf,x2=%lf\n",x1,x2); goto loop; } else f((a+b)/2); } else {a=x1; if(fabs(b-a)>s) {x1=x2; x2=a+w*(b-a); printf("x1=%lf,x2=%lf\n",x1,x2); goto loop; } else f((a+b)/2); } x0=(a+b)/2; min=f(x0); printf("x0=%lf,min=%lf\n",(a+b)/2,f((a+b)/2)); }

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码

用二 4224min ()f t t t t =--[,.]t ∈内的极小值点,要求准 1. function [t d]=erfenfa(a,b) k=1; %记录循环次数 while abs(a-b)>0.0005 c=(a+b)/2; C(k)=c; %存储每次循环中点c 的值 if ff(c)<0 a=c; end if ff(c)==0 t1=c; break ; end if ff(c)>0 b=c; end k=k+1; end t=(a+b)/2; %最终符合要求的值 d=f(t); %最优解 C k function y=f(t) y=t^4-2*t^2-4*t; function y=ff(t) y=4*t^3-4*t-4; 运行结果 >> [t d]=erfenfa(1,1.5) C = Columns 1 through 9 1.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.3262 1.3252 Column 10 1.3247 k = 11

t = 1.3250 d = -5.7290 2.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5 function [t,f]=huangjinfenge(a,b) m=1-(sqrt(5)-1)/2; t2=a+m*(b-a) f2=g(t2); t1=a+b-t2 f1=g(t1); while abs(t1-t2)>0.5 if f1 [t,f]=huangjinfenge(0,3) t2 = 1.1459 t1 = 1.8541

黄金分割用法和实战 (1)汇总

股市活雷锋经验分享制作 https://www.360docs.net/doc/7012896292.html,/cctv1717

黄金分割由来 ?黄金分割点约等于0.618:1 ?是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 ?利用线段上的两黄金分割点,可作出正五角星,正五边形。 ? 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比 2/3,3/5,4/8,8/13,13/21,...近似值的。 ?黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 ?其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 ?因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

0.618法的matlab实现

实验报告 实验题目: 0.618法的MATLAB实现学生姓名: 学号: 实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点 二.实验目的及要求: 1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现. 2. 运用0.618法解单峰函数的极小点. 三.实验内容: 1. 0.618法方法原理: 定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤, 则对每一个] ,[) 2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x f x f >, 则],[)1(b x x ∈; 如果)()() 2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似. 0.618 法计算试探点的公式: ). (618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤: ①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是 ).(618.0 ),(382.011111111a b a a b a -+=-+=μλ 令1=k . ②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④. ③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

matlab编程实现求解最优解

《现代设计方法》课程 关于黄金分割法和二次插值法的Matlab语言实现在《现代设计方法》的第二章优化设计方法中有关一维搜索的最优化方法的 一节里,我们学习了黄金非分割法和二次插值法。它们都是建立在搜索区间的优先确定基础上实现的。 为了便于方便执行和比较,我将两种方法都写进了一个程序之内,以选择的方式实现执行其中一个。下面以《现代设计方法》课后习题为例。见课本70页,第2—7题。原题如下: 求函数f(x)=3*x^2+6*x+4的最优点,已知单谷区间为[-3,4],一维搜索精度为0.4。 1、先建立函数f(x),f(x)=3*x^2+6*x+4。函数文件保存为:lee.m 源代码为:function y=lee(x) y=3*x^2+6*x+4; 2、程序主代码如下,该函数文件保存为:ll.m clear; a=input('请输入初始点'); b=input('请输入初始步长'); Y1=lee(a);Y2=lee(a+b); if Y1>Y2 %Y1>Y2的情况 k=2; Y3=lee(a+2*b); while Y2>=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a+k*b); end A=a+b;B=a+k*b; elseif Y1=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a-k*b); end A=a-k*b;B=a; else A=a;B=a+b; %Y1=Y2的情况 end disp(['初始搜索区间为',num2str([A,B])])%输出符合的区间 xuanze=input('二次插值法输入0,黄金分割法输入1');%选择搜索方式 T=input('选定一维搜索精度'); if xuanze==1 while B-A>T %一维搜索法使精度符合要求 C=A+0.382*(B-A);D=A+0.618*(B-A); %黄金分割法选点

黄金分割点---0.618无处不在

黄金分割点---0.618无处不在 黄金分割概述 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是 0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(golden section ratio通常用φ表示)这是一个十分有趣的数字,我们以0.618来近似表示,通过简单的计算就可以发现:(1-0.618)/0.618=0.6一条线段上有两个黄金分割点。 人与黄金分割 在人体中包含着多种“黄金分割” 的比例因素,至少可以找出18个“黄金点”(如:脐为头顶至脚底之分割点、喉结为头顶至脐分割点、眉间点为发缘点至颏下的分割点等)几乎身体相邻的每一部分都成黄金比,随着人类对自然界(动物、植物、宇宙、人类自身)的认识的日益深入,人类关于“黄金分割比” 这一神奇比例的了解也越来越丰富 人体最适应的温度乃是用黄金分割率切割自身的温度,因为人正常体温是37.5度,它和0.618的乘积为23.175℃,

在这一环境温度中,机体的新陈代谢、生理节奏和生理功能均处于最佳状态。 人们发现自然界中这一神奇比例几乎无所不在。从低等的动植物到高等的人类,从数学到天文现象中,几乎都暗含着这种比例结构。 养生学中的黄金率 几千年前古希腊学者提出的“黄金分割率”(0.618),在保健养生方面也有许多适用价值,甚至能帮助我们破译养生学中许多难解之谜。1、舒适温度人体在环境温度为22℃~24℃时,感觉最舒适。因为人的正常体温37℃与0.618的乘积为22.8℃,在这一环境温度中,机体的新陈代谢和生理节奏均处于最佳状态。 2、理想睡眠 近来科学家研究证实,每天7.5小时是最理想的睡眠时间,长期这样睡眠的人大多既健康又长寿。一天中白昼和夜晚各为12小时,人最理想的睡眠刚好是夜晚12小时的0.618(7.416),即近7.5小时。 3、愉快起床 如果估计早起穿衣服的时间要两分钟,那么躺在床上睁开眼睛的“预备时间”应为三分钟;若刷牙三分钟,洗脸应两分钟。整个过程利用黄金分割率,前段事情与

优化设计黄金分割法实验报告

机械优化设计黄金分割法实验报告 1、黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 2 黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

湖南省蓝山二中高二数学《第一讲 优选法 三、黄金分割法0.618法》教案 新人教A版

湖南省蓝山二中高二数学《第一讲 优选法 三、黄金分割法0.618 法》教案 新人教A 版 一、黄金分割常数 对于一般的单峰函数,如何安排试点才能迅速找到最佳点? 假设因素区间为[0, 1],取两个试点102、101 ,那么对峰值在)10 1,0(中的单峰函数,两次试验便去掉了长度为 54的区间(图1);但对于峰值在)1,102(的函数,只能去掉长度 为 10 1的区间(图2),试验效率就不理想了. 怎样选取各个试点,可以最快地达到或接近最佳点? 在安排试点时,最好使两个试点关于[a ,b ]的中心 2 b a + 对称. 为了使每次去掉的区间有一定的规律性,我们这样来考虑:每次舍去的区间占舍去前的区间的比例数相同. 黄金分割常数:2 51+-,用ω表示. 试验方法中,利用黄金分割常数ω确定试点的方法叫做黄金分割法.由于 21 5-是无理数,具体应用时,我们往往取其近似值0.618.相应地,也把黄金分割法叫做0.618

法. 二、黄金分割法——0.618法 例.炼钢时通过加入含有特定化学元素的材料,使炼出的钢满足一定的指标要求.假设为了炼出某种特定用途的钢,每吨需要加入某元素的量在1000g 到2000g 之间,问如何通过试验的方法找到它的最优加入量? 人 我们用存优范围与原始范围的比值来衡量一种试验方法的效率,这个比值 叫做精度,即n 次试验后的精度为 原始的因素范围 次试验后的存优范围n n =δ 用0.618法确定试点时,从第2次试验开始,每一次试验都把存优范围缩小为原来的0.618.因此, n 次试验后的精度为 1618.0-=n n δ 一般地,给定精度δ,为了达到这个精度,所要做的试验次数n 满足,1618.01<≤-δn

fortran 编程黄金分割法求极小值

Program ljhjfg Implicit none Real x10,x20,a,b,z1,z2,fz1,fz2,m,n,e Write(*,*)"请输入搜索区间端点a,b:" Read(*,*)a,b Write(*,*)"请输入探索方向(m,n):" Read(*,*)m,n Write(*,*)"请输入迭代精度e:" Read(*,*)e Write(*,*)"请输入初始点坐标值(x10,x20):" Read(*,*)x10,x20 Do while(abs(b-a)>e) Z1=a+0.382*(b-a) Z2=a+0.618*(b-a) Fz1=(x10+m*z1)**2+(x20+m*z1)**2-8*(x10+m*z1)-12*(x20+m*z1)+52 Fz2=(x10+m*z2)**2+(x20+m*z2)**2-8*(x10+m*z2)-12*(x20+m*z2)+52 If(fz1>=fz2)then a=z1 z1=z2 fz1=fz2 z2=a+0.618*(b-a) fz2=(x10+m*z2)**2+(x20+m*z2)**2-8*(x10+m*z2)-12*(x20+m*z2)+52 else b=z2 z2=z1 fz2=fz1 z1= a+0.382*(b-a) Fz1=(x10+m*z1)**2+(x20+m*z1)**2-8*(x10+m*z1)-12*(x20+m*z1)+52 end if end do write(*,*)"q=",(a+b)/2 write(*,*)"X点各分量:",x10+m*(a+b)/2,x20+m*(a+b)/2 write(*,*)"最小值为:",(x10+m*(a+b)/2)**2+(x20+m*(a+b)/2)**2-8*(x10+m*(a+b)/2)-12*(x20+m*(a+b)/2 )+52 stop end program

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

用MATLAB实现最速下降法-牛顿法和共轭梯度法求解实例

题目和要求 最速下降法是以负梯度方向最为下降方向的极小化算法,相邻 两次的搜索方向是互相直交的。牛顿法是利用目标函数)(x f 在迭代点k x 处的Taylor 展开式作为模型函数,并利用这个二次模型函数的极小 点序列去逼近目标函数的极小点。共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向k d 仅仅是负梯度方向k g -与上一次接待 的搜索方向1-k d 的组合。 运行及结果如下: 最速下降法: 题目:f=(x-2)^2+(y-4)^2 M 文件: function [R,n]=steel(x0,y0,eps) syms x ; syms y ; f=(x-2)^2+(y-4)^2; v=[x,y]; j=jacobian(f,v); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=0; syms kk ; while (temp>eps) d=-T; f1=x1+kk*d(1);f2=y1+kk*d(2); fT=[subs(j(1),x,f1),subs(j(2),y,f2)]; fun=sqrt((fT(1))^2+(fT(2))^2); Mini=Gold(fun,0,1,0.00001); x0=x1+Mini*d(1);y0=y1+Mini*d(2); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=n+1;

end R=[x0,y0] 调用黄金分割法: M文件: function Mini=Gold(f,a0,b0,eps) syms x;format long; syms kk; u=a0+0.382*(b0-a0); v=a0+0.618*(b0-a0); k=0; a=a0;b=b0; array(k+1,1)=a;array(k+1,2)=b; while((b-a)/(b0-a0)>=eps) Fu=subs(f,kk,u); Fv=subs(f,kk,v); if(Fu<=Fv) b=v; v=u; u=a+0.382*(b-a); k=k+1; elseif(Fu>Fv) a=u; u=v; v=a+0.618*(b-a); k=k+1; end array(k+1,1)=a;array(k+1,2)=b; end Mini=(a+b)/2; 输入: [R,n]=steel(0,1,0.0001) R = 1.99999413667642 3.99999120501463 R = 1.99999413667642 3.99999120501463 n = 1 牛顿法: 题目:f=(x-2)^2+(y-4)^2 M文件:

黄金分割的正确计算方法

黄金分割的正确计算方法 1.618减去基数1,得0.618,1再减去0.618得0.382,黄金分割在个股当中的应用方式有一派观点认为是:直接从波段的低点加上0.382倍、0.618倍、1.382倍、1.618倍……作为其涨升压力。或者直接从波段的高点减去0.382倍及0.618倍,作为其下跌支撑。 另一派观点认为不应以波段的高低点作为其计算基期。而应该以前一波段的涨跌幅度作为计算基期,黄金分割的支撑点可分别用下述公式计算:(抄底不可盲目,要抓住真正机会!) 1、某段回档高点支撑=某段终点-(某段终点-某段最低点)0.382 2、某段低点支撑=某段终点-(某段终点-某段最低点)0.618 如果要计算目标位:则可用下列公式计算 3、前段最低点(或最高点)=(前段最高点-本段起涨点)1.382(或1.618) 上述公式有四种计算方法,根据个股不同情况分别应用。 案例分析托普软件(000583) 该股的走势颇为符合黄金分割原则,1999年3月份,该股从14.31元起步,至6月底,该股拉升到34.31元,完成这一波的涨升,随后我们来看该股的支撑价位: 根据公式:下跌低点支撑=34.31-(34.31-14.35)0.618=22元事实上该股1999年11月份回调最低点为22.48元,误差极小,投资者只要在22元一线附近吸纳,就可以找到获利机会。目标价位也可通过公式计算。 上升上涨压力=21.97+(34.31-21.97)1.618=42元 该股在今年二月份摸高至45元后回落,投资者在42元可以从容卖出获利。 该股走势说明了如果对黄金分割掌握透彻,可以成功利用它来捕捉黑马。使用时要注意。 1、买点在回调到0.618处比较安全,回调到0.382处对于激进型投资者较适合,稳健型投资者还是选择回调到0.618处介入。

第二章 第一节 黄金分割(第二课时)

黄金分割(第二课时) 教学目标 理解黄金分割在现实中的应用 教学重点 优选法及其应用 教学过程 一、复习 1.什么叫做斐波那契数列?它有哪些性质? 2.什么叫做黄金分割?它有哪些应用? 二、新授 (一) 华罗庚的优选法(“0.618法”) 二十世纪六十年代,华罗庚先生着力推广的优选法,在全国产生了很大的影响。 “优选法”,即对某类单因素问题(且是单峰函数),用最少的试验次数找到“最佳点”的方法。 例如,炼钢时要掺入某种化学元素加大钢的强度,掺入多少最合适?假定已经知道每吨钢加入该化学元素的数量大约应在1000克到2000克之间,现求最佳加入量,误差不得超过1克。最“笨”的方法是分别加入1001克,1002克,…,2000克,做1千次试验,就能发现最佳方案。 一种动脑筋的办法是二分法,取1000克2000克的中点1500克。再取进一步二分法的中点1250克与1750克,分别做两次试验。如果1750克处效果较差,就删去1750克到2000克的一段,如果1250克处效果较差,就删去1000克到1250克的一段。再在剩下的一段中取中点做试验,比较效果决定下一次的取舍,这种“二分法”会不断接近最好点,而且所用的试验次数与上法相比,大大减少。 表面上看来,似乎这就是最好的方法。但华罗庚证明了,每次取中点的试验方法并不是最好的方法;每次取试验区间的0.618处去做试验的方法,才是最好的,称之为“优选法”或“0.618法”。 华罗庚证明了,这可以用较少的试验次数,较快地逼近最佳方案。

2. 黄金分割点的再生性和“折纸法” ① 黄金分割点的再生性 即: 如果C 是AB 的黄金分割点, 是BA 的黄金分割点, 与 C 当然关于中点 对称。 特殊的是, 又恰是AC 的黄金分割点。同样,如果 是CA 的黄金分 割点,则 又恰是 的黄金分割点,等等,一直延续下去 。(再生) ② 寻找最优方案的“折纸法” 根据黄金分割点的再生性,我们可以设计一种直观的优选法——“折纸法”。 仍以上边“在钢水中添加某种元素”的问题为例。 用一个有刻度的纸条表达1000克—2000克。在这纸条长度的0.618的地方划一条线,在这条线所指示的刻度上做一次试验,也就是按1618克做第一次试验。 然后把纸条对折,前一条线落在下一层纸的地方,再划一条线(黄金分割点),这条线在1382克处,再按1382克做第二次试验。 把两次试验结果比较,如果1618克的效果较差,我们就把1618克以外的短的一段纸条剪去(如果1382克的效果较差,就把1382克以外的一段纸条剪去)。 再把剩下的纸条对折,纸条上剩下的那条线落在下一层纸的地方,再划一条线(黄金分割点),这条线在 1236克处。 按1236克做第三次试验,再和1382克的试验效果比较,如果1236克的效果较差,我们就把1236克以外的短的一段纸条剪去。再对折剩下的纸条,找出第四次试验点是1472克。 按1472克做试验后,与1382克的效果比较,再剪去效果较差点以外的短的一段纸条,再对折寻找下一次试验点,一次比一次接近我们的需要,直到达到我们满意的精确度。(需要时可以换纸条) 注意,每次剪掉的都是效果较差点以外的短纸条,保留下的是效果较好的部分,而每次留下纸条的长度是上次长度的0.618倍。因此,纸条的长度按0.618 的 C 'C 'O C ' C ' AC '

黄金分割法及其代码

线性搜索之黄金分割法及其应用 摘要 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通讯和政府机关等领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB 软件已经成为最优化领域应用最广的软件之一。有了MATLAB这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 在最优化计算中一维最优化方法是优化设计中最简单、最基本的方法。一维搜索,又称为线性搜索,一维问题是多维问题的基础,在数值方法迭代计算过程中,都要进行一维搜索,也可以把多维问题化为一些一维问题来处理。一维问题的算法好坏,直接影响到最优化问题的求解速度。而黄金分割法是一维搜索方法中重要的方法之一,它适用于任何单峰函数求最小值的问题,甚至于对函数可以不要求连续,是一种基于区间收缩的极小点搜索算法。 关键词:最优化、黄金分割法、MATLAB软件、一维搜索 引言 数学科学不仅是自然科学的基础,也是一切重要技术发展的基础。最优化方法更是数学科学里面的一个巨大的篇幅,在这个信息化的时代,最优化方法广泛应用于工业、农业、国防、建筑、通信与政府机关、管理等各领域;它主要解决最优计划、最优分配、最优决策、最佳设计、最佳管理等最优化问题。而最优解问题是这些所有问题的中心,是最优化方法的重中之重,在求最优解问题中,有多种方法解决,我们在这里着重讨论无约束一维极值问题,即非线性规划的一维搜索方法之黄金分割法。黄金分割法也叫0.618法,属于区间收缩法,首先找出包含极小点的初始搜索区间,然后按黄金分割点通过对函数值的比较不断缩小搜索区间。当然要保证极小点始终在搜索区间内,当区间长度小到精度范围之内时,可以粗略地认为区间端点的平均值即为极小值的近似值。所以用0.618法得出的

最优化方法之修正牛顿法matlab源码(含黄金分割法寻找步长)

revisenewton.m syms x1 x2 x3 xx; % f = x1*x1 +x2*x2 -x1*x2 -10*x1 -4*x2 + 60 ; % f = x1^2 + 2*x2^2 - 2*x1 *x2 -4*x1 ; f = 100 * (x1^2 - x2^2) + (x1 -1 )^2 ; hessen = jacobian(jacobian(f , [x1,x2]),[x1,x2]) ; gradd = jacobian(f , [x1,x2]) ; X0 = [0,0]' ; B = gradd' ; x1 = X0(1); x2 = X0(2); A = eval(gradd) ; % while sqrt( A(1)^2 + A(2)^2) >0.1 i=0; while norm(A) >0.1 i = i+1 ; fprintf('the number of iterations is: %d\n', i) if i>10 break; end B1 = inv(hessen)* B ; B2= eval(B1); % X1 = X0 - B2 % X0 = X1 ; f1= x1 + xx * B2(1); f2= x2 + xx* B2(2); % ff = norm(BB) ? syms x1 x2 ; fT=[subs(gradd(1),x1,f1),subs(gradd(2),x2,f2)]; ff = sqrt((fT(1))^2+(fT(2))^2); MinData = GoldData(ff,0,1,0.01); x1 = X0(1); x2 = X0(2); x1 = x1 + MinData * B2(1) x2 = x2 + MinData * B2(2) A = eval(gradd) End GoldData.m function MiniData = GoldData( f,x0,h0,eps) syms xx;

黄金分割法、斐波那契法求极值

function y=fx(x) if nargin==1 y=x+20/x; end end %a为区间下限,b为区间上限,e为精度; %fx(x)为原方程函数; function [xj,yj]=huangjin(a,b,e) a=input('Please enter the value of a:'); b=input('Please enter the value of b:'); e=input('Please enter the value of e:'); while b-a>e x1=a+*(b-a); x2=a+*(b-a); if fx(x1)

fn=y(n); end end %求解应计算次数的函数; %s为(b-a)/e的值,其中(a,b)为单峰区间,e为精度; function n=cishu(s) if nargin==1 n=1; while F(n)e if fx(x2)>=fx(x1) b=x2; x2=x1; x1=a+b-x2; else a=x1; x1=x2; x2=a+b-x1; end end xj=(a+b)/2; yj=fx(xj); end 此题中,a=-10,b=10,e=,程序运行结果为:xj =, yj =,若原方程改变,只需改变原方程函数即可。

MATLAB黄金分割法课程论文--分析

中南林业科技大学 本科课程论文 学院:理学院 专业年级:14级信息与计算科学2班 学生姓名:邱文林学号:20144349 课程:MATLAB程序设计教程 设计题目:基于MATLAB的黄金分割法与抛物线插值法指导教师:龚志伟

2016年4月

中文摘要 为了求解最优化模型的最优解,可使用基于MATLAB算法编程的黄金分割法与抛物线插值法,来实现求解的过程。黄金分割法是通过所选试点的函数值而逐步缩短单谷区间来搜索最优点,利用迭代进而得出结论。抛物线插值法亦称二次插值法,是一种多项式插值法,逐次以拟合的二次曲线的极小点,逼近原寻求函数极小点的一种方法。通过将MATLAB与最优化问题相结合,不仅可以加深对黄金分割法、抛物线插值法的基本理解和算法框图及其步骤的全面理解,也有利于帮助我们掌握MATLAB的使用方法。 关键词:MATLAB,黄金分割法,抛物线插值法,最优解,迭代

英文摘要 In order to solve the optimization model of the optimal solution, using MATLAB algorithm based on the golden section method and the parabola interpolation method, to realize the process of solving. The golden section method is used to search the most advantage through the function value of the selected pilot, which can be used to search for the most advantage. Parabolic interpolation method, also known as the two interpolation method, is a polynomial interpolation method, successive to fit the two curve of the minimum point, the original search function to find a very small point of the method. By combining MATLAB and optimization problems can not only deepen the comprehensive understanding of the golden section method, the parabola interpolation basic understanding and block diagram of the algorithm and steps, but also conducive to help us to grasp the method of using MATLAB. Key words: MATLAB, golden section method, parabolic interpolation method, optimal solution, iteration

优选法与二分法、黄金分割间的联系

优选法与二分法、黄金分割间的联系 优选法概述优选法,是以数学原理为指导,用最可能少的试验次数,尽快找到生产和科学实验中最优方案的一种科学试验的方法。例如:在现代体育实践的科学实验中,怎样选取最合适的配方、配比;寻找最好的操作和工艺条件;找出产品的最合理的设计参数,使产品的质量最好,产量最多,或在一定条件下使成本最低,消耗原料最少,生产周期最短等。把这种最合适、最好、最合理的方案,一般总称为最优;把选取最合适的配方、配比,寻找最好的操作和工艺条件,给出产品最合理的设计参数,叫做优选。也就是根据问题的性质在一定条件下选取最优方案。最简单的最优化问题是极值问题,这样问题用微分学的知识即可解决。实际工作中的优选问题,即最优化问题,大体上有两类:一类是求函数的极值;另一类是求泛函的极值。如果目标函数有明显的表达式,一般可用微分法、变分法、极大值原理或动态规划等分析方法求解(间接选优);如果目标函数的表达式过于复杂或根本没有明显的表达式,则可用数值方法或试验最优化等直接方法求解(直接选优)。优选法是尽可能少做试验,尽快地找到生产和科研的最优方案的方法,优选法的应用在我国从70年代初开始,首先由我们数学家华罗庚等推广并大量应用,优选法也叫最优化方法。二分法一般地,对于函数f(x),如果存在实数c,当x=c时f(c)=0,那么把x=c叫做函数f(x)的零点。解方程即要求f(x)的所有零点。先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2], 现在假设f(a)<0,f(b)>0,aa,从①开始继续使用中点函数值判断。如果f[(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,(a+b)/2=>b,从①开始继续使用中点函数值判断。这样就可以不断接近零点。通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“菲波那契数列”,这些数被称为“斐波那契数”。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。不仅这个由1,1,2,3,5....开始的“菲波那契数”是这样,随便选两个整数,然后按照菲波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的。一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。利用线段上的两黄金分割点,可作出正五角星,正五边形。2000多年前,古希腊雅典学派的第三大算学家欧道克

相关文档
最新文档