三相四线电度表错误接线分析

三相四线电度表错误接线分析
三相四线电度表错误接线分析

三相四线电度表错误接线分析

1 前言

三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接入法。采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。

2 三相四线有功电度表经电流互感器间接接入正确接线

正确接线图及向量图如图1所示,

此时三相有功功率的计算式为:

P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COSΦc

假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。B、C 相CT接反与A相接反结果相同。

3.1.2 2CT接反

3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示:

此时三相有功功率的计算式为:

P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+ U c I c COS(180°-Φc)

假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。

3.2电压、电流回路不同相

3.2.1两元件电压、电流不同相

假设A相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图5所示。

图6所示接法中有功功率的计算式为

P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)+ U c I a COS(120°+Φa)

假设三相负载对称,则此时有功功率为:P=3UICOS(120°+Φ),此时电度表反转,计量值为正确接法的-1/(1/2+ tanΦ* /2)

图7所示接法中有功功率的计算式为

P=U a I c COS(120°-Φc)+ U b I a COS(120°-Φa)+ U c I b COS(120°-Φb)

假设三相负载对称,则此时有功功率为:P=3UICOS(120°-Φ)

当0°<Φ<30°时,电度表反转,当Φ=30°时,电度表不转,当Φ>30°时,电度表正转,但比正确接线时慢,此时计量值为正确接法的1/(-1/2+ tanΦ* /2)

3.4电压回路断线

3.4.1一相电压断线

假设为A相断线,其接线图如图8所示

此时第一元件不计量,有功功率计算式为:

P= U b I b COSΦb+ U c I c COSΦc

假设三相负载对称,则此时有功功率为:P=2UICOSΦ,此时计量值为正确接法的2/3,电度表走慢。

3.4.2两相电压断线

此时第一、第二元件均不计量,有功功率计算时为P=UICOSΦ,此时计量值为正确接法的1/3,电度表明显走慢。

3.4.3三相电压均断线

此时三个元件均不计量,电度表不走。

3.5根据以上几种类型的错误接线分析,将其总结为判断依据,如表1所示

4 应用

某车间一三相四线有功电度表经电流互感器接入用户回路,连续两个月抄表发现,电度表均未走字,检查未发现电压回路有断线情况,用钳形电流表测试,有电流显示。根据现象,从表1中判断为两元件电压、电流不同相所致,后经停电检查确认为B、C相电压、电流不同相导致电度表不走。

5 结论

本文对三相四线有功电度表经电流互感器接入用户回路时,常见的几种错误现象进行了分析,得出判断依据(表1),可帮助计量部门快速判断电度表的错误接线,挽回一定的计量损失。在三相四线有功电度表的

日常维护中,应加强对表计接线端子的确认,谨防电流回路接线松动或开路,此时电流互感器二次测产生的高电压将是非常危险的。

表1 三相四线有功电度表经电流互感器间接接入时错误接法电度表转动情况汇总

序号接线类型有功功率计算公式三相对称时与

正确接法的比

较值

电度表

转动情况

1 1CT接反A相CT 接反P=U a I a COS(120°-Φa)+ U b I b COSΦb+ U c I c COSΦc

1/3 明显走慢B相CT 接反P=U a I a COSΦa+ U b I b COS(120°-Φb)+ U c I c COSΦc

C相CT 接反P=U a I a COSΦa+ U b I b COSΦb+U c I c COS(120°-Φc)

2 2CT接反A、B相CT 接

P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)

+ U c I c COSΦc

-1/3 电度表反转B、C相CT 接

P=U a I a COSΦa+ U b I b COS(180°-Φb)+ U c I c COS

(180°-Φc)

C、A相CT 接

P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COS

(180°-Φc)

3 3CT接反P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)

U c I c COS(180°-Φc)

-1 电度表反转

4 两元件电

压、电流

不同相

B、C相电压、

电流不同相

P=U a I a COSΦa + U b I c COS(120°+Φc)+ U c I b COS

(120°-Φb)

电度表不转

A、C相电压、

电流不同相

P=U a I c COS(120°-Φc)+ U b I b COSΦb+ U c I a COS

(120°+Φa)

B、A相电压、

电流不同相

P=U c I c COSΦc+ U a I b COS(120°+Φb)+ U b I a COS

(120°-Φa)

5 三元件电

流电压均

不同相

接法为:

U a I b U b I c U c I a

P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)

U c I a COS(120°+Φa)

-1/(1/2+

tanΦ*/2)

电度表反转

接法为:

U a I c U b I a U b I a

P=U a I c COS(120°-Φc)+ U b I a COS(120°-Φa)

U b I a COS(120°-Φb)

1/(-1/2+

tanΦ*/2)

当0°<Φ<30°时,电度表

反转,当Φ=30°时,电

度表不转,当Φ>30°时,

电度表正转,转速较慢

6 一相

电压

断线

A相断线P=U b I b COSΦb+ U c I c COSΦc

2/3 电度表转慢B相断线P=U a IaCOSΦa+ U c I c COSΦc

C相断线P=U b I b COSΦb+ U a I a COSΦa

7 两相

电压

断线

A、B相断线P=U c I c COSΦc

1/3 电度表明显转慢

B、C相断线P=U a I a COSΦa

C、A相断线P= U b I b COSΦb

8 三相电压断线0

三相四线电能表错误接线分析及判断电子版本

三相四线电能表错误接线分析及判断

三相四线电能表错误接线 分析及判断

三相四线电度表接线方式的分析与判断 1、三相四线电度表标准接线方式 P=P1+P2+P3 =U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式 P=P1+P2+P3 =U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ) =-3 UI cos (60°-ψ)故当Ψ在0°~60°内,呈反转状态。

负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 3、三相四线电度表电压正相序A 、B 、C 而电流正相序是C 、A 、B 的接线方式 P=P1+P2+P3 =U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式

电能表错误接线计算题指导

错误接线计算题指导 1、三相三线有功电能表错误接线类 三相三线有功电能表错误接线类题型在题库中占比46.30%,通常是给出功率因数(角),求更正系数或退补电量。错误接线的已知条件又分为两类,一类是直接给出接线方式,一类是给出接线图,要求考生自己判断接线方式。 此类题型重点是根据接线方式求得A、C两元件的电流、电压的夹角,难点是更正系数的化简。在实际考试的过程中,由于采用网络机考的形式,不要求写出解题过程,只需写出最终结果,且可借助于计算器计算,故理论考试的时候,可以将功率因数角直接代入化简式,以避免在将更正系数化到最简的过程中可能出现的失误。题库中此类题目涉及到的错误接线方式共11种,现总结如下:

例1-1:已知三相三线有功电能表接线错误,其接线方式为:A 相元件U ca I a ,C 相元件U ba I c ,功率因数为0.866,该表更正系数是 。(三相负载平衡,结果保留两位小数) 解: )150cos(a ca a ?+=I U P )90cos(c ba c ?+=I U P 在对称三相电路中: U ca =U ba =U ,I a =I c =I ()()[]??+++=+=90cos 150cos UI P P P c a 误 更正系数: []) ()()()(误正??????+++=+++==90cos 150cos cos 390cos 150cos UI UIcos 3P P K (化简式) 化到最简: ? tg 312-K +==-1.00 (最简式) 答:该表更正系数是-1.0。 例1-2:用户的电能计量装置电气接线图如图, ?=35,则该用户更正系数是 。(结果保留两位小数)

三相四线电度表错误接线分析

三相四线电度表错误接线分析 1 前言 三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接入法。采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。 2 三相四线有功电度表经电流互感器间接接入正确接线 正确接线图及向量图如图1所示, 此时三相有功功率的计算式为: P=UICOS(180?,Φ)+ UICOSΦ,UICOSΦ aaabbbccc 假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。B、C相CT接反与A相接反结果相同。 3.1.2 2CT接反

3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示: 此时三相有功功率的计算式为: P=UICOS(180?,Φ)+ UICOS(180?,Φ),UICOS(180?,Φ) aaabbbccc 假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。 3.2电压、电流回路不同相 3.2.1两元件电压、电流不同相 假设A相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图5所示。

P=UICOS(120?,Φ)+ UICOS(120?,Φ), UICOS(120?,Φ) abbbcccaa 假设三相负载对称,则此时有功功率为:P=3UICOS(120?,Φ),此时电度表反转,计量值为正确接法的-1/(1/2+ t anΦ* /2) 图7所示接法中有功功率的计算式为 P=UICOS(120?,Φ)+ UICOS(120?,Φ),UICOS(120?,Φ) accbaacbb 假设三相负载对称,则此时有功功率为:P=3UICOS(120?,Φ)

三相四线制和三相五线制接线图解

三相四线制和三相五线制接线图解 三相指L1---(A)相、L2---(B)相、L3---(C)相三相, 四线指通过正常工作电流的三根相线和一根N线(中性线),或称零线。不包括不通过正常工作电流的PE线(接地线)。 由于在三相四线制中有中线,而中线的作用在于保证负载上的各相电压接近对称,在负载不平衡时不致发生电压升高或降低,若一相断线,其他两相的电压不变。所以在低压供电线路上采用三相四线制。 L1---(A)相、L2---(B)相、L3---(C)相,各相线之间的电压称为线电压,线电压为380伏。 L1---(A)相、L2---(B)相、L3---(C)相中的任一相与N线(中性线) 或称零线间的电压,称为相电压。相电压为220伏。 三相五线制中五线指的是:三根相线加一根地线一根零线。三相五线制比三相四线制多一根地线,用于安全要求较高,设备要求统一接地的场所。三相五线制的学问就在于这两根"零线"上,在比较精密电子仪器的电网中使用时,如果零线和接地线共用一根线的话,对于电路中的工作零点会有影响的,虽然理论上它们都是零电位点,如果偶尔有一个电涌脉冲冲击到工作零线,而零线和地线却没有分开,比如这种脉冲却是因为相线漏电引起的,再如有些电子电路中如果零点飘移现象严重的话那么电器外壳就可能会带电,可能会损坏电气元件的,甚至损坏电器,造成人身安全的危险. 零线和地线的根本差别在于一个构成工作回路,一个起保护作用叫做保护接地,一个回电网,一个回大地,在电子电路中这两个概念是要区别开来的. 结构的区别: 零线(N):从变压器中性点接地后引出主干线。 地线(PE):从变压器中性点接地后引出主干线,根据标准,每间隔20-30米重复接地。 原理的区别: 零线(N):主要应用于工作回路,零线所产生的电压等于线阻乘以工作回路的电流。由于长距离的传输,零线产生的电压就不可忽视,作为保护人身安全的措施就变得不可靠。

三相四线电能表错误接线分析报告及判断

三相四线电能表错误接线 分析及判断

三相四线电度表接线方式的分析与判断 1、三相四线电度表标准接线方式 P=P1+P2+P3 =U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ 负载120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a)(b) 2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式 P=P1+P2+P3 =U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ) =-3 UI cos (60°-ψ)故当Ψ在0°~60°,呈反转状态。 负载120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a)(b)

P=P1+P2+P3 =U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°,呈反转状态。 负载120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a)(b) 4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式 P=P1+P2+P3 =U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°,呈反转状态。或正或反 负载120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a)(b)

电能表错误接线的诊断与防范

一、引言 电能表错接线的主要表现为: 电能表反转、不转、转速变慢等情况。由于电能表计量装置是由电能表、互感器、二次回路等多种元件构成,因此,电能表的错误计量及其更正也呈多样性变化。为公平、公正、合理计量电能,及时、快捷、正确诊断错误接线及采取有效的防范措施,是摆在供电企业员工面前的重要课题,是提高供电企业形象和减少电量丢失的有效途径。笔者结合装表接电和电能计量装置的运行检查实践,浅谈电能表比较典型的错误接线及防止措施,以供同行参考。 二、电能计量装置常见错误接线 1、单相有功电能表的错误接线 当直接接入式单相电能表装表时,误将进电能表的火线与零线接反了,零线从电能表引出后处在开断状态,而负载跨接在火线和地线之间,用电依然正常,因电能表电流线圈无电流通过而不转。 当电压小钩断开或接触不良造成开路时,此时电能表的测量功率P=(0)×IcosΦ=0,电能表不转。 当电流互感器二次测开路时,电能表电流线圈无电流通过,电能表测量的功率P=U(0)cosΦ=0,电能表不转。同样,电流互感器二次侧短路时,因无电流通过电流线圈,电能表也会不转。当电

流互感器二次侧极性接反时,电能表测量的功率P'=-UIcosΦ电能表反转。 2、三相三线两元件电能表错误接线 当电压线A、B相电压对调; B、C相电压对调; A、C相电压对调时,对调后计量值P'均为零,电能表不转。 3、三元件电能表的错误接线 当有任一只电流线或CT极性接反时,接反相测量的有功功率为负值,电能表变慢。 当有两相电流线或CT极性接反时,接反两相的测量值为负值,电能表反转。 当三相电流线或CT极性接反时,电能表反转,K=-1。 当电流回路一相开路时,电能表仅计量两相电量; 二相开路时,仅计量一相电量; 三相开路时,电能表停转。同样,电流回路出现一相、两相、三相短路时,电能表计量值同上。 当低压三相四线电能表CT接线正确,而电压辅助线相序与电流不一致时,如电能表反转。 在电压回路存在开路故障时,有以下特征:

三相四线电度表错误接线分析

三相四线电度表错误接线的分析与判断 动力工程部电气车间 二O一一年九月

三相四线电度表接线方式的分析与判断 1、三相四线电度表标准接线方式 P=P1+P2+P3 =U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式 P=P1+P2+P3 =U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ) =-3 UI cos (60°-ψ)故当Ψ在0°~60°内,呈反转状态。 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b)

P=P1+P2+P3 =U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式 P=P1+P2+P3 =U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。或正或反 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b)

三相四线制智能电度表误接线的现场检查和处理方法及投用前的试验方法

1根述 随着计算机技术突飞猛进的发展,6kv中压柜的计量装置由以前的两块笨重的机械转盘式电度表和无功电度表被小小的块三相四线制智能电表所替代.智能表能否和互感器正确接线以及试验调试方法的正确与否,很多的保护及现场调试人员都对它没有深刻的理解,经常把它和电流互感器的接线和极性等问题搞错造成诸如差动保护跳闸,计量不准确,功率不正常等现象,本文就及由电流互感器极性错误引起的制智能电表出现的功幸负值及功率不准确现象的处理及投用前的试验方法和以及设计圈纸的改进小建议进行具体阐述 2智能电度表的工作原理及特点 M392智能电度表是由北京柯瑞斯通公司生产,它采用美国大功率采样元件和计元件组成,具有计量精度高可以同时显示三相电流、三相线电压、三相相电压、三相有功、三相无功、三相视载功率、功率因数以及电度量等参数,与模拟相比具有体积小、功率小、计量度精高、测量速度快、读数方便以及丰富485通讯接囗为后台管理提供了可靠的依据等特点 3三相四线制智能电表误接线的现场检查 3.1现象 6604线回路为本厂6#变的6kV高压电动机,由于本会在变电所投用时高压电机还没用达到运行条件,并没有留意,近些天该电机开始运转,在巡检时发现M392智能电度表三相功率显示为负值目电度计量也不准确,MICOM综保继电器三相功率也为负值。 其二次原理见1,图2,从二次原理我们看到该电流互感器二次为两线圈M392即CK为智能电度表为三相四线制三个测量元件的接线方式,电流互感器的极性为“-”极性接法。 3.2分析 为了更好的判断故障性质,我们本次采用了不停电检查处理方式,但是为了保证人身及设备安全以及生产工艺的连续性,我们办理第二种工作票,我们对所使用仪表工具进行认真检查,包括短接线等以确保安全性 首先,我们用万用表检查智能电度表的电压回路,其电压互感器变比为6000/100其电压测量结果如下 UAB=100.5V UBC=99.5V UCA=101V UA=57.9V UB=57.4V UC=58V 从测量结果来看线电压,相电压之间非常平衡,证明电压回路有问题,PT也没有断线情况发生。 在看电流回路,由于现场没有伏安相位表,没有方法测量电流电压的相位角,但是MICOM保继电器的测量数据和M392智能电度表测量数据是一样的且MICOM综保继电器有测量相位角的功能,其测量结果如下: 4投用前的试验方法 4.1计量、综保二次回路试验方法 分别在计量回路的二次回路端子排的(A411,B411,C411,)和(N41)端子,保护回路的二次回路端子排的(A421,B421,C421)和(N421)端子加1A的电流,起始电流从0.5A开始步长为0.1A,可以三相同时加也可加单相电流(现在的微机综保效验台都能做到),同时在给二次电压端子(A631,B631,C631)加57.74V的相电压,观察计量表计和综保的电流电压有功无功、视载功率功率因数以及电度量等参数是否显示正确,正确说明计量表计和综保精度都没问题

电能表错误接线主要表现

电能表错接线的主要表现为: 电能表反转、不转、转速变慢等情况。由于电能表计量装置是由电能表、互感器、二次回路等多种元件构成,因此,电能表的错误计量及其更正也呈多样性变化。为公平、公正、合理计量电能,及时、快捷、正确诊断错误接线及采取有效的防范措施,是摆在供电企业员工面前的重要课题,是提高供电企业形象和减少电量丢失的有效途径。笔者结合装表接电和电能计量装置的运行检查实践,浅谈电能表比较典型的错误接线及防止措施,以供同行参考。 二、电能计量装置常见错误接线 1、单相有功电能表的错误接线 当直接接入式单相电能表装表时,误将进电能表的火线与零线接反了,零线从电能表引出后处在开断状态,而负载跨接在火线和地线之间,如图1所示,用电依然正常,因电能表电流线圈无电流通过而不转。 当电压小钩断开或接触不良造成开路时,其接线如图2所示,此时电能表的测量功率P=(0)×IcosΦ=0,电能表不转。 当电流互感器二次测开路时,电能表电流线圈无电流通过,电能表测量的功率 P=U(0)cosΦ=0,电能表不转。同样,电流互感器二次侧短路时,因无电流通过电流线圈,电能表也会不转。当电流互感器二次侧极性接反时,电能表测量的功率P'=-UIcosΦ电能表反转,其接线如图3所示。 2、三相三线两元件电能表错误接线 当电压线A、B相电压对调; B、C相电压对调; A、C相电压对调时,对调后计量值P'均为零,电能表不转。 3、三相三元件电能表的错误接线 当有任一只电流线或CT极性接反时,接反相测量的有功功率为负值,其更正系数 电能表变慢。 当有两相电流线或CT极性接反时,接反两相的测量值为负值,更正系数 电能表反转。 当三相电流线或CT极性接反时,电能表反转,K=-1。 当电流回路一相开路时,电能表仅计量两相电量; 二相开路时,仅计量一相电量; 三相开路时,电能表停转。同样,电流回路出现一相、两相、三相短路时,电能表计量值同上。 当低压三相四线电能表CT接线正确,而电压辅助线相序与电流不一致时,如, 电能表反转。 在电压回路存在开路故障时,有以下特征: 一相电压回路开路,电能表计量两相电量; 两相电压回路开路时,电能表仅计量一相电量,电能表变慢; 三相电压回路开路时,电能表停转。 三、规范电能表计量装置的安装接线及工艺 规范电能计量装置的安装接线,是防止计量差错的有效手段。首先电能计量装置的二次回路应符合技术要求: 对高压CT接线,不宜采用简化接线,而应用分相接线,即三相三线二只CT用4根线连接,三相系统三只CT用6根线连接。对于低压的有的仍用简化接线,即三相三线2只CT采用不完全星形接法,用3根线连接; 三相四线3只CT星形法接线,用4根线连接。 其次,当PT二次电压线用电缆连接时,一般采用四芯,一根芯作为备用,35kV 以上计费用PT二次回路,应不装设隔离开关辅助触点,但安装熔断器; 35kV及

三相四线错误接线检查方法3

三相四线错误接线检查作业指导书 一、任务要求 1、遵守安全工作规程,正确使用仪表; 2、画出向量图,描述故障错误; 3、列出各元件功率表达式及总的功率表达式; 4、求出更正系数。 二、使用工具 1、低压验电笔; 2、相位表; 3、相序表。 三、适用范围 三相四线制感应式有功电能表与三相四线制感应式跨相900无功电能表无TV 、经TA 接入或经TV 、TA 接入的联合接线方式。 四、相关知识 ① 三相四线有功电能表正确接线的相量图: ②正确功率表达式: u u u I U P ?cos 1= v v v I U P ? c o s 2= w w w I U P ?c o s 3= ????cos 3 cos cos cos 3210UI I U I U I U P P P P w w w v v v u u u =++=++= )090900( ≤≤-≤≤??::容性时感性时 五、操作步骤 说明:①下列涉及1、2、3数字均表示电能表第几元件;N 表示有功电能表的零线端,

②操作前均需办理第二种工作票,并做好安全措施。 1、未经TV ,经TA 接入的三相四线制有功和无功电能表接线方式: (1)测量相电压,判断是否存在断相。 U 1N = U 2N = U 3N = 注:不近似或不等于220V 的为断线相。 (2)测量各相与参考点(U u )的电压,判断哪相是U 相。 U 1u = U 2u = U 3u = 注:①0V 为U 相; ②其他两相近似或等于380V ,则非0V 相为U 相。 (3)确定电压相序。 注:①利用相序表确定电压相序; ②利用任意正常两相相电压的夹角(按顺序相邻两相夹角为1200或相隔两相夹角为2400均为正相序;反之类推)。 12120U U ∧?? = 0 13240U U ∧?? = 023120U U ∧?? =均为正相序; 0 12240U U ∧?? = 0 13120U U ∧?? = 023240U U ∧?? =均为逆相序; (4)测量相电流,判断是否存在短路、断相。 I 1= I 2= I 3= 注:①出现短路,仍有较小电流,出现断相电流为0A ; ②同时出现短路与断相,应从TA 二次接线端子处测量(此处相序永远正确), 如哪相电流为0A ,则就是哪相电流断路。 (5)以任意一正常的相电压为基准,测量与正常相电流的夹角,判断相电流的相序。 11U I ∧?? = 12U I ∧?? = 13U I ∧?? = (设U 1、I 1、I 2、I 3均为正常) (6)如出现相电流极性反,测量相应元件进出电流线的对地电压,判断哪种极性反(此项只能记录在草稿纸上)。 注:①TA 极性反与表尾反的区别:即TA 极性反是指从TA 二次出线端K 1、K 2与 联合接线盒之间的电流线接反;表尾反是指从TA 二次出线K 1、K 2未接反,只是从联合接线盒到有功电能表的电流进出线接反; ②相电流进线对地电压>相电流出线对地电压,则为TA 极性反; ③相电流进线对地电压<相电流出线对地电压,则为电流表尾反。

电能表错接线的主要原因

电能表错接线的主要表现为:电能表反转、不转、转速变慢等情况。由于电能表计量装置是由电能表、互感器、二次回路等多种元件构成,因此,电能表的错误计量及其更正也呈多样性变化。为公平、公正、合理计量电能,及时、快捷、正确诊断错误接线及采取有效的防范措施,是摆在供电企业员工面前的重要课题,是提高供电企业形象和减少电量丢失的有效途径。笔者结合装表接电和电能计量装置的运行检查实践,浅谈电能表比较典型的错误接线及防止措施,以供同行参考。 一、电能计量装置常见错误接线 1、单相有功电能表的错误接线 当直接接入式单相电能表装表时,误将进电能表的火线与零线接反了,零线从电能表引出后处在开断状态,而负载跨接在火线和地线之间,用电依然正常,因电能表电流线圈无电流通过而不转。 当电压小钩断开或接触不良造成开路时,此时电能表的测量功率P=U(0)×Icosφ=0,电能表不转。当电流互感器二次测开路时,电能表电流线圈无电流通过,电能表测量的功率P=U(0)×Icosφ=0,电能表不转。同样,电流互感器二次侧短路时,因无电流通过电流线圈,电能表也会不转。当电流互感器二次侧极性接反时,电能表测量的功率P=-UIcosφ,电能表反转。 2、三相三线两元件电能表错误接线 当电压线A、B相电压对调;B、C相电压对调;A、C相电压对调时,对调后计量值P均为零,电能表不转。

3、三元件电能表的错误接线 当有任一只电流线或TA极性接反时,接反相测量的有功功率为负值,电能表变慢。 当有两相电流线或TA极性接反时,接反两相的测量值为负值,电能表反转。 当三相电流线或TA极性接反时,电能表反转,K=-1。 当电流回路一相开路时,电能表仅计量两相电量;二相开路时,仅计量一相电量;三相开路时,电能表停转。同样,电流回路出现一相、两相、三相短路时,电能表计量值同上。 当低压三相四线电能表TA接线正确,而电压辅助线相序与电流不一致时,如电能表反转。 在电压回路存在开路故障时,有以下特征:一相电压回路开路,电能表计量两相电量;两相电压回路开路时,电能表仅计量一相电量,电能表变慢;三相电压回路开路时,电能表停转。 二、规范电能表计量装置的安装接线及工艺 规范电能计量装置的安装接线,是防止计量差错的有效手段。首先电能计量装置的二次回路应符合技术要求:对高压TA接线,不宜采用简化接线,而应用分相接线,即三相三线二只TA用4根线连接,三相系统三只TA用6根线连接。对于低压的有的仍用简化接线,即三相三线2只TA采用不完全星形接法,用3根线连接;三相四线3只TA星形法接线,用4根线连接。 其次,当TV二次电压线用电缆连接时,一般采用四芯,一根芯作为备用,35kV以上计费用TV二次回路,应不装设隔离开关辅助触点,但安装熔断器;35kV及以下计费TV二次回路,不得装设隔离开关辅助触点和熔断器;35kV及以下用户应用专用计量互感器;35kV及以上用户应有TA、TV专用二次回路,不得与保护、测量回路共用。 二次回路连接导线最好用黄、绿、红相色线,中性线用黑色线,且导线中间不得有接头。导线连接为螺丝压接式,螺丝压接时,线头应弯圈,方向与螺丝旋紧方向一致。 三、对于电能表的规范安装接线应注意以下要求 1、电能表的火线、零线应采用不同颜色的导线并对号入孔,不得对调。 2、电能表的零线要经电表接线孔穿越电表,不得在主线上单独引接一条零线进入电表。 3、导线穿过金属盘时,要用套护圈或塑料管,塑料表箱要用阻燃材料。 4、电能表间距不小于80mm,与屏边距离不小于40mm,电能表倾斜度(前后、左右)不得超过1°。

有功电能表错误接线现场检查及判断

有功电能表错误接线现场检查及判断 https://www.360docs.net/doc/7d13222484.html, 2007年3月7日11:06 来源: 张玉林江苏省盐都县供电公司 (224002) 随着国民经济的不断发展,电能需求量的日益增加,电力客户逐步增多,电能计量装置接线的准确性要求不断提高。计量是否准确不但影响到供电企业的形象和声誉,而且直接关系到供电企业的经济效益。电能表的计量准确性可以通过电能计量装置检定机构(国家授权由电力企业计量检定部门检定,一般是供电企业的计量中心)的校验得到保证,而现场接线的准确性,不仅取决于装表人员的工作责任心、业务水平及工作的熟练程度,而且由于电力客户法律、法规意识谈薄、有意窃电,致使计量装置错误接线,直接影响到计量的准确性。对于现场接线的检查,一般采用电能表现场校验仪,采用六角图法检查分析判断,但其存在许多不足:①设备投资比较大、仪器较多、携带运输不方便;②接线较多、操作步骤复杂、使用不方便;③需提供操作电源,受现场环境影响较大;④当三相二元件有功电能表错误接线在48种以外时,仪器无法分析判断。为克服上述缺陷,我们在现场采用了手持式钳形数字万用表,对计量装置接线现场检查,依据现场检查结果进行分析判断,大大减少了投资和现场工作量,受到了现场检定人员的一致好评。 1 主要功能介绍 使用该仪表可以在现场完成诸如感性、容性电路的判别、电能表接线正确与否、电能表运行快慢判断、测量三相相序、判断变压器接线组别。可进行三相相

电压、线电压、三相电流、相位差、相序及电阻的测量。 2 测量前准备工作 工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电第二种工作票,并履行好工作许可手续。完成后,可通过仪表的相位测量档测量出三相负载的性质(阻性、感性、容性及相角一功角)。三相二元件有功电能表正确原理接线图见图1。 图1 三相两元件有功电能表正确接线图 3 检查测量步骤 (1)电能计量装置外观检查:通过对电能计量装置外表、封印等的检查,初步判断电力客户是否依法用电,有无违约窃电现象。 (2)相关数据测量: ①三相相电压及线电压--用仪表的电压档可判断出电能表有无某元件失压、欠压现象; ②三相电流测量--用仪表的电流档,用钳形表可依次测量出I 1、I 2 、I 1 +I 2 , 从而判断出电能表某相元件有无缺电流、电流反接或电流差现象; ③电源相序测量--用仪表的相位测量档测量接入电能表电压U 12与U 32 之间的 相位差,若为300°,则为正相序;若为60°,则为反相序;

三相四线及三相三线错误接线向量图分析及更正

三相四线测量常识———————————————第一步:测三相电压测量U1n接线图如下: 测量U2n、U3n方法与上面图类似,移动红线到第二、第三元件电压端,零线不动。(注意选择交流500) 不带电压互感器时220V为正常,且三相电压数值相接近为正常。如果有某相为0,说明该相电压断线。 能够测出U1=_____V U2=_____V U3=_____V 第二步:测量各元件对参考点Ua的电压测量方法如下图: 测量方法与上类似,移动红线到第二、第三元件电压端,接参考点的连线不动。 目的:测出对参考点电压为0的该相确定为A相 能够测出U1a=_____V U2a=_____V U3a=_____V

第三步:测量三个元件的相电流测量I1的方法如下图: 测量其它相与上图类似,移动黑线到第二、第三元件电流进线端。 目的:判断各元件电流是否正常,正常是三相相电流相接近,如果有某相为0,说明该相电流开路或短路。 能测出I1=_____A I2=_____A I3=_____A 第四步:测量第一元件电压与各元件电流的相位角测量

第五步:测量第一元件与第二元件电压间的相位角 按照上图可以测出

三相四线错误接线检查方法

三相四线错误接线检查作业指导书 一、任务要求 1、遵守安全工作规程,正确使用仪表; 2、画出向量图,描述故障错误; 3、列出各元件功率表达式及总的功率表达式; 4、求出更正系数。 二、使用工具 1、低压验电笔; 2、相位表; 3、相序表。 三、适用范围 三相四线制感应式有功电能表与三相四线制感应式跨相900无功电能表无TV、经TA接入或经TV、TA接入的联合接线方式。 四、相关知识

① 三相四线有功电能表正确接线的相量图: ②正确功率表达式: 五、操作步骤 说明:①下列涉及1、2、3数字均表示电能表第几元件;N 表示有功电能表的 零线端,即在万特模拟台有功电能表的零线端。 ②操作前均需办理第二种工作票,并做好安全措施。 1、未经TV ,经TA 接入的三相四线制有功和无功电能表接线方式: (1)测量相电压,判断是否存在断相。 U 1N = U 2N = U 3N = 注:不近似或不等于220V 的为断线相。 (2)测量各相与参考点(U u )的电压,判断哪相是U 相。 U 1u = U 2u = U 3u = 注:①0V 为U 相; ②其他两相近似或等于380V ,则非0V 相为U 相。

(3)确定电压相序。 注:①利用相序表确定电压相序; ②利用任意正常两相相电压的夹角(按顺序相邻两相夹角为1200或相隔两相夹角为2400均为正相序;反之类推)。 12120U U ∧ ? ?= 0 13240U U ∧ ? ?= 023120U U ∧ ? ? =均为正相序; 12240U U ∧ ? ? = 0 13120U U ∧ ? ? = 023240U U ∧ ? ? =均为逆相序; (4)测量相电流,判断是否存在短路、断相。 I 1= I 2= I 3= 注:①出现短路,仍有较小电流,出现断相电流为0A ; ②同时出现短路与断相,应从TA 二次接线端子处测量(此处相序永远 正确),如哪相电流为0A ,则就是哪相电流断路。 (5)以任意一正常的相电压为基准,测量与正常相电流的夹角,判断相电流的相序。 11U I ∧ ??= 12U I ∧ ??= 13U I ∧ ?? = (设U 1、I 1、I 2、I 3均为正常) (6)如出现相电流极性反,测量相应元件进出电流线的对地电压,判断哪种

电能表正确接线

电能表正确接线与错误接线 221.试绘出单相、三相电能表的正确接线和注意事项。 答:(1)绘出单相电能表的正确接线,如图7—1所示。 负荷 单相电能表接线应注意事项如下: 1)用验电笔确认相线和零线; 2)相线接单相电能表第一个接线孔,如图7—1所示; 3)零线接单相电能表第三个接线孔,如图7—1所示; 4)负荷线接第二和第四个出线孔,如图7—1所示。 (2)绘出三相三线有功电能表的正确接线图,如图7—2所示。 222.试画出三相四线有功电能表正确接线图和注意事项。 答:三相四线有功电能表的接线图,如图7—3所示。 三相四线有功电能表接线应注意事项如下: 豪? W T接零线上 负荷 图7—3

(1)三相四线有功电能表的零线T接到电源的零线上; (2)电源的零线不能剪断直接接入用户的负荷开关,以防止断零线和烧坏用户的设备; (3)注意电压的连接片要上紧以防止松脱,造成断压故障。 223.试画出单相电能表相线和零线接反的错误接线图,有何缺点? 答:单相电能表相线和零线接反的错误接线图,如图7—4 所示。 电零线源相线 这种错误接线的缺点有如下几点: (1)其错误是将相线和零线接错,造成相线没有通过电能表的电流线圈,方便了用电户偷电。 (2)相线接在零线的接线孔,容易误碰造成触电人身事故。 (3)这种接错线容易使电能表计量不准。 224.试画出三相三线有功电能表第一相电流极性接反的错误接线图,并求更正系数。 答:三相三线有功电能表接错线是电能表第一相电流的极性反接,其接线如图7—5所示。 图7—5 三相三线有功电能表的第一相电流极性接反造成电能表慢转,产生负误差。其负误差计算公式如下 即三相三线有功电能表正转,但是产生负误差。当cos∮=0.866时.电能表变慢66.6%。 225.试绘出单相电能表的相线进出线接反的错误接线图,有何问题? 答:单相电能表的相线进出线接反的错误接线图,如图7—6所示。

三相四线有功电度表错误接线分析与判断

三相四线有功电度表错误接线分析与判断 刘艳红 重庆建峰化肥公司重庆涪陵 408601 摘要:本文针对三相四线有功电度表经过电流互感器间接接入低压系统计量时容易出现的几种错误接法进行了分析,并提出了判断依据。关键词:三相四线有功电度表接法电流互感器 1 前言 三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接入法。采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。 2 三相四线有功电度表经电流互感器间接接入正确接线 正确接线图及向量图如图1所示,

此时三相有功功率的计算式为: P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COSΦc 假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。B、C相CT接反与A相接反结果相同。 3.1.2 2CT接反 3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示:

此时三相有功功率的计算式为: P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+ U c I c COS(180°-Φc) 假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。 3.2电压、电流回路不同相 3.2.1两元件电压、电流不同相

2021年三相四线电度表错误接线分析之欧阳学文创编

三相四线电度表错误接线的分析与判 断 欧阳光明(2021.03.07) 动力工程部电气车间 二O一一年九月 三相四线电度表接线方式的分析与判断 1、三相四线电度表标准接线方式 P=P1+P2+P3 =UAIAcosψA+ UBIBcosψB+ UCICcosψC =3 UI cosψ 2、三相四线电度表电压正相序A、B、C而电流正相序是B、C、A 的接线方式 P=P1+P2+P3 =UAIBcos(120°+ψB)+ UBICcos(120°+ψC)+ UCIAcos (120°+ψA) =3 UI cos(120°+ψ) =-3 UI cos(60°-ψ)故当Ψ在0°~60°内,呈反转状态。 3、三相四线电度表电压正相序A、B、C而电流正相序是C、A、B 的接线方式 P=P1+P2+P3 =UAICcos(120°-ψC)+ UBIAcos(120°-ψA)+ UCIBcos(120°-ψB)

=3 UI cos(120°-ψ) =-3 UI cos(60°+ψ)故当Ψ在0°~30°内,呈反转状态。 4、三相四线电度表电压正相序B、C、A而电流正相序是A、B、C 的接线方式 P=P1+P2+P3 =UBIAcos(120°-ψA)+ UCIBcos(120°-ψB)+ UAICcos(120°-ψC)=3 UI cos(120°-ψ) =-3 UI cos(60°+ψ)故当Ψ在0°~30°内,呈反转状态。或正或反 5、三相四线电度表电压正相序B、C、A而电流正相序是B、C、A 的接线方式 P=P1+P2+P3 =UBIBcosψB+ UCICcosψC+ UAIAcosψA =3 UI cosψ 6、三相四线电度表电压正相序B、C、A而电流正相序是C、A、B 的接线方式 P=P1+P2+P3 =UBICcos(120°+ψC)+ UCIAcos(120°+ψA)+ UAIBcos (120°+ψB) =3 UI cos(120°+ψC) =-3 UI cos(60°-ψC) 故当Ψ在0°~30°内,呈反转状态。或正或反 7、三相四线电度表电压正相序C、A、B而电流正相序是A、B、C 的接线方式 P=P1+P2+P3

低压三相四线制错误接线对无功电能量的影响与分析

低压三相四线制错误接线对无功电能量的影响与分析[摘要]在电能计量中由于电流互感器错误接线造成了电能表有功计量部分 和无功计量部分计算的不准,有功电量通过错误接线算出更正系数进行电量追补,无功电量往往就被忽视,无功电量的追补我们也通过分析进行无功电量追补。无功计量不准不及时纠正,也会造成电量损失,为避免计量的失准,以下列举了常见六种错误接线分析。 【关键词】三相四限制;无功计量;误接线;分析 引言 在电能计量中,互感器错误接线造成无功计量不准,从而使用户的计量失准,现将由于互感器错误接线对无功计量的影响试举以下几例。 错误接线时计量差错分析 以下分析的是在三相电路平衡时: 当三相电路平衡时:U=Uu=Uv=Uw I=Iu=Iv=Iw Φ=Φu=φv=φw 1、三相电流互感器二次极性全接反 功率表达式为:Qu=UvwIuCOS(90°+φu) Qv=UwuIvCOS(90°+φv) Qw=UuvIwCOS(90°+φw) 三元件功率和为:Q=Qu+Qv+Qw =UvwIuCOS(90°+φu)+UwuIvCOS(90°+φv)+UuvIwCOS(90°+φw) =-(UvwIusinφu)+UwuIvsinφv+UuvIwsinφw) 则:Q=-3UIsinφ 实际无功功率Q’’=3UIsinφ 所以无功计量反向计量,反计的电量与正向无功电量基本相等。 2、两相电压元件接错 假设U、W两相电压元件接错,则各元件所计量功率表达式为: Qu=UvuIuCOS(150°-φu) Qv=UuwIvCOS(90°+φv) Qw=UwvIwCOS(30°-φw) 当三相电路平衡时,三元件功率之和为: Q=Qu+Qv+Qw =UvuIuCOS(150°-φu)+UuwIvCOS(90°+φv)+UwvIwCOS(30°-φw) =0 所以当两相电压元件接错时,无功不计量。 3、两相电流元件接错 假设U、V两相电流元件接错,则各元件所计量功率表达式为: Qu=UvwIvCOS(30°+φu) Qv=UwuIuCOS(150°+φv) Qw=UuvIwCOS(90°-φw) 当三相电路平衡时,三元件功率之和为: Q=Qu+Qv+Qw

相位表相量图分析三相四线错误接线方法与步骤图解

三相四线相位表查错误接线方法与步骤(完全根据个人的经验总结,肯定有不完善甚至不正确的地方,仅供参考) 第一步:测各元件电压 目的:判断各元件电压数值是否有异常, 57V为正常(不带电压互感器时220V为正常),且三相电压数值相接近为正常。如果有某相为0,说明该相电压断线。 U1n= V U2n = V U3n = V 测量U1n接线图如下: 测量U2n、U3n方法与上面图类似,移动红线到第二、第三元件电压端,零线不动。 注意档位

第二步:测量各元件对参考点Ua的电压 目的:测出对参考点电压为0的该相确定为A相 U1a = V U2a = V U3a = V 测量U1a方法如下图: U2a、U3a测量方法与上类似,移动红线到第二、第三元件电压端,接参考点的连线不动。注意档位

第三步:测量三个元件的相电流 目的:判断各元件电流是否正常,正常是三相相电流相接近,如果有某相为0,说明该相电流开路或短路。 I1= A I2= A I3= A 测量I1的方法如下图: 测量其它相与上图类似,移动黑线到第二、第三元件电流进线端。 注意档位

第四步:测量第一元件电压与各元件电流的相位角 目的:根据测出的角度来画相量图及功率表达式

第五步:测量第一元件与第二元件电压间的相位角 目的:用来判断接线是正相序还是逆相序,一般来说测出的角度为120为正相序,240度为逆相序。(其它情况如为300度则为正相序,但B相反接。如为60度,则为逆相序,B相反接,有点难,一般不会来这种)。

相关文档
最新文档