可控硅参数说明

可控硅参数说明
可控硅参数说明

符号说明:

VRRM--反向重复峰值电压:在控制极断路和额定结温的条件下,可以重复加在可控硅上的交流电压。此电压小于反向最高测试电压100V。反向最高测试电压,规定为反向漏电流急速增加,反向特性曲线开始弯曲时的电压。

V RSM--反向不重复峰值电压;在控制极断路和额定结温的条件下,不允许加在可控硅上的交流电压。

V DRM――断态重复峰值电压;断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。规定断态重复峰值电压V DRM为断态不重复峰值电压(即断态最大瞬时电压)UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo。

IT(AV)/ IF(AV)--通态/正向平均电流;在环境温度+40℃和额定结温下,导通角不小于170°阻性负载电路中,允许通过的50Hz正弦半波电流的平均值。

I T(RMS), I F(RMS)――通态/正向方均根电流;是指在额定结温,允许流过器件的最大有效电流值,用户在使用中须保证,在任何条件下流过器件的电流有效值,不超过对应壳温下的方均根电流值

I TSM,I FSM--通态/正向浪涌电流;指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流(半个正弦波t=10ms, 50Hz)

I2t--表示可控硅所通过的电流产生的能量,是电流的平方乘以时间,表示可控硅的发热特性。

P GM--门极峰值功率;门极触发电压与最大触发电流的乘积;

P G(AV) --门极平均功率;门极触发电压与正常触发电流的乘积;

di/dt--通态电流临界上升率;指在额定结温下,可控硅能承受的最大通态电流上升率(如果电流上升太快,可能造成局部过热而使可控硅损坏)

V ISO--绝缘电压;芯片与可控硅的底板之间的绝缘电压。

Tj--工作结温;可控硅在正常工作条件下允许的PN结温度。

Tjm--额定结温;可控硅在正常工作条件下允许的最高PN结温度。

Tstg--储存温度;能保证可控硅正常工作的储存温度。

Md--安装力矩/电极连接力矩;在安装过程中超过此规定,将造成可控硅的损坏。

IDRM--断态重复峰值电流;为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流,该参数在器件允许工作的最高结温Tjm下测出。

I

RRM

--反向重复峰值漏电流;为晶闸管在阻断状态下承受断态重复峰值电压

V

DRM 和反向重复峰值电压V

RRM

时流过元件的正反向峰值漏电流该参数在器件

允许工作的最高结温Tjm下测出

V TM / V FM――通态/正向峰值电压;指器件通过规定正向峰值电流I

FM

或通态峰值

电流I

TM

时的峰值电压也称峰值压降,该参数直接反映了器件的通态损耗特性影响着器件的通态电流额定能力。

VGT--门极触发电压;在额定结温、在阳极和阴极加上正向电压(一般为6V)时,使元件从阻断状态转为导通状态,控制极所需要的最大的直流电压。也就

是说当触发电路输出的的直流触发电压不小于Vg就能保证该型号的元件均能可靠的触发而导通。

V G D门极不触发电压;在额定结温、在阳极和阴极加上正向阻断峰值电压时,保证元件处于阻断状态所能加在门极上的最大直流电压。

I GD--不触发电流;在额定结温、在阳极和阴极加上正向阻断峰值电压时,保证元件处于阻断状态所能允许的,加在门极上的最大触发电流。

IGT--门极触发电流;在额定结温、在阳极和阴极加上一定正向电压(一般为6V)时,保证元件从阻断状态到导通状态,加在门极上的最大触发电流。

dv/dt--断态电压临界上升率;指在额定结温的门极断路的情况下,不导至可控硅从断态到通态转换的外加电压最大上升率

IH--维持电流;在门极断路时。规定环境温度和元件导通条件下,要保持元件能处于导通状态所必须的最小正向电流。

I L------擎住电流;擎住电流是晶闸管刚从断态转入通态,并移除了触发信号后,能维持通态所必需的最小主电流。擎住电流约为维持电流的2到4倍

可控硅工作原理

可控硅工作原理 一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。 在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称死硅)更为可贵的可控性。它只有导通和关断两种状态。 可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。 可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。 可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。 可控硅从外形上分类主要有:螺栓形、平板形和平底形。 1、可控硅元件的结构 不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。 2、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1、可控硅结构示意图和符号图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

双向可控硅好坏检测方法

双向可控硅好坏检测方法 双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 1.双向可控硅的检测 方法一: 测量极间电阻法。将万用表置于皮R×1k档,如果测得T2-T1、T2-G之间的正反向电阻接近∞,而万用表置于R×10档测得T1-G之间的正反向电阻在几十欧姆时,就说明双向可控硅是好的,可以使用;反之,若测得T2-T1,、T2-G之间的正反向电阻较小甚或等于零.而Tl-G之间的正反向电阻很小或接近于零时.就说明双向可控硅的性能变坏或击穿损坏。不能使用;如果测得T1-G之间的正反向电阻很大(接近∞)时,说明控制极G与主电极T1之间内部接触不良或开路损坏,也不能使用。 方法二: 检查触发导通能力。万用表置于R×10档:①如图,1(a)所示,用黑表笔接主电极T2,红表笔接T1,即给T2加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果表头指针发生了较大偏转并停留在一固定位置,说明双向可控硅中的一部分(其中一个单向可控硅)是好的,如图1(b)所示,改黑表笔接主电极T1,红表笔接T2,即给T1加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果结果同上,也证明双向可控硅中的另一部分(其中的一个单向可控硅是好的。测试到止说明双向可控硅整个都是好的,即在两个方向(在不同极性的触发电压证)均能触发导通。 图1判断双向可控硅的触发导通能力 方法三: 检查触发导通能力。如图2所示.取一只10uF左右的电解电容器,将万用表置于R×10k档(V电压),对电解电容器充电3~5s后用来代替图1中的短路线,即利用电容器上所充的电压作为触发信号,然后再将万用表置于R×10档,照图2(b)连接好后进行测试。测试时,电容C的极性可任意连接,同样是碰触

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

电工必备基础知识

电工必备基础知识 1、左零右火。 2、三相五线制用颜色黄、绿、红、淡蓝色分别表示U、V、W、N保护接地线双颜色(PE)。 3、变压器在运行中,变压器各相电流不应超过额定电流;最大不平衡电流不得超过额定电流的25%。变压器投入运行后应定期进行检修。 4、同一台变压器供电的系统中,不宜保护接地和保护接零混用。 5、电压互感器二次线圈的额定电压一般为100V。 6、电压互感器的二次侧在工作时不得短路。因短路时将产生很大的短路电流,有可能烧坏互感器,为此电压互感器的一次,二次侧都装设熔断器进行保护。 7、电压互感器的二次侧有一端必须接地。这是为了防止一,二次线圈绝缘击穿时,一次高压窜入二次侧,危及人身及设备的安全。 8、电流互感器在工作时二次侧接近于短路状况。二次线圈的额定电流一般为5A 9、电流互感器的二次侧在工作时决不允许开路, 10、电流互感器的二次侧有一端必须接地,防止其一、二次线圈绝缘击穿时,一次侧高压窜入二次侧。 11、电流互感器在联接时,要注意其一、二次线圈的极性,我国互感器采用减极性的标号法。 12、安装时一定要注意接线正确可靠,并且二次侧不允许接熔断器或开关。即使因为某种原因要拆除二次侧的仪表或其他装置时,也必须先将二次侧短路,然后再进行拆除。 13、低压开关是指1KV以下的隔离开关、断路器、熔断器等等 14、低压配电装置所控制的负荷,必须分路清楚,严禁一闸多控和混淆。 15、低压配电装置与自备发电机设备的联锁装置应动作可靠。严禁自备发电设备与电网私自并联运行。 16、低压配电装置前后左右操作维护的通道上应铺设绝缘垫,同时严禁在通道上堆放其他物品。 17、接设备时:先接设备,后接电源。 18、拆设备时:先拆电源,后拆设备。 19、接线路时:先接零线,后接火线。 20、拆线路时:先拆火线,后拆零线。 21、低压熔断器不能作为电动机的过负荷保护。 22、熔断器的额定电压必须大于等于配电线路的工作电压。 23、熔断器的额定电流必须大于等于熔体的额定电流。 24、熔断器的分断能力必须大于配电线路可能出现的最大短路电流。 25熔体额定电流的选用,必须满足线路正常工作电流和电动机的起动电流。 26、对电炉及照明等负载的短路保护,熔体的额定电流等于或稍大于负载的额定电流。 27、对于单台电动机,熔体额定电流≥(1.5-2.5)电机额定电流 28、熔体额定电流在配电系统中,上、下级应协调配合,以实现选择性保护目的。下一级应比上一级小。 29、瓷插式熔断器应垂直安装,必须采用合格的熔丝,不得以其他的铜丝等代替熔丝。 30、螺旋式熔断器的电源进线应接在底座的中心接线端子上,接负载的出线应接在螺纹壳的接线端子上。 31、更换熔体时,必须先将用电设备断开,以防止引起电弧。 32熔断器应装在各相线上。在二相三线或三相四线回路的中性线上严禁装熔断器。 33、熔断器主要用作短路保护。

晶闸管的结构以及工作基本知识

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。 三、晶闸管的静态特性 晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。如图5所示。

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

初学者电子基础知识

初学者电子基础知识!(转载) 江华冯收录于2010-07-30 阅读数:查看收藏数:120 公众公开 原文来源 初学电子知识,请先把“电”当做“水”,“电路”就等于“水路”;接着了解一些常用名词术语,对照实物认识几种常用的电子元件及其功能;最后动手做一些实验. 任何电子产品都是电子元件组成的,学习电子技术就要先学电子元件. 电子元件的组合就成了电子电路,这也是基础知识.有了电子元件、电子电路的知识,电子工具也会用了,你就应该多动手进行产品实战了. 学电子最能尽快受益的莫过于自装音响和功放了.欣赏音乐本身是一种美的享受,可是能用自己的成果来享受则更是达到一种新的境界. 懂电子的朋友学电脑比不懂电子朋友学电脑要快要容易.懂电子的朋友用电脑是由电脑内部学到外部,不懂电子的朋友则是从电脑外部学到电脑内部. 什么是“场”?运动场常指大家可以做运动的一个范围,电场是指电产生作用力的一个范围,磁场是指磁产生作用力的一个范围,其它类同. 导体,电比较容易通过的物体.绝缘体,电比较难通过的物体.导体和绝缘体并没有明显的介限,导体和绝缘体是导电能力相差很多很多倍的两个物体相对而言的. 有很多物体,它们在常见的不同的物理情况(温度、电场、磁场、光照、掺杂等等)下呈现出不同的导电状态.我们称这类物体为半导体. 有了导体、绝缘体和半导体,就可以生产出各种各样的电子元件,我们就可以方便简单的检测和利用电能了. 开关实际上是一个短路器和开路器,是一个电阻在零欧姆和无穷大两个阻值上变换的元件,这跟自来水开关的效果和原理是一样的. 任何时候,只要有电流流过,就必定有一个闭合的通路.这个通路就是电流回路.不考虑电源内部的情况下,电流一定是从正极流向负极. 电源相当于一个特殊的电子元件,有闭合的通路才能产生电流.没有导体以及其它电子元件连接成闭合的通路就不会产生电流. 没有回路就一定没有电流,有电流就一定有回路.(交流电流并不需要物理上的通路,真空、空气也能形成电流回路.) 两个不同的水位线存在一个水差,就是水压.水压之间有一根水管的话,水就会流动,水流动就会受到阻力.水管越细,阻力越大,水流越小;水压越高,水流越大.电压是指两个物体之间的电势差,就是电压.如果电压之间有一个导电通路的话,这个通路里面就会产生电流.电阻越大,电流越小;电压越高,电流越大. 水压、水流、水阻.水流动的方向是从高处流向低处(不算抽水机在内);对应电的比喻:电压、电流、电阻.电流动的方向是从正极流向负极(不算电源在内). 两个水位之间的水位差等于水压;两个电极之间的电势差等于电压.高水位相当于正电极,低水位相当于负电极.

可控硅的主要参数

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。 可控硅的触发 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。 可控硅的主要参数 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。可控硅的常用封装形式

可控硅的使用及其方法

可控硅的使用及其方法 可控硅作为一种电子开关,广泛地应用在自动化设备和各种控制电路中,可控硅既有单项也有双向的,在使用中会经常遇到一些问题。文章根据实际工作情况,介绍一些经验以供参考。 标签:自动化设备;控制回路;研究分析 1 选购可控硅 可控硅的电参数很多,在选购时要考虑的是:额定平均电流IT、正反向峰值电压VDRM(VRRM)、控制极触发电压与触发电流IGT这几个参数。由于手册或产品合格证上给定的可控硅的上述参数值都是在规定的条件下测定的,而实际使用环境往往与规定条件不同,并且极有可能发生突发事故超过管子承受能力的现象。所以为了管子在安全的电压下工作,特别是交流220V的情况下,应该按额定为实际电压的2~3倍值来选管子。例如:外加电压为220V,则至少应选择400V以上的管子最好为600V,为了保证管子避免电流过大而烧毁,并考虑到管子的发热情况与电流的有效值,应选择平均电流的有效值的1.2~2倍,需要指出的是。IT对单项可控硅而言是IT(A V)指允许流过SCR的最大有效值电流。例如:8A SCR(单向)的有效值IT(RMS)=12.6A,因此用8A的BCR代替8A的SCR是不允许的,为了使管子的触发电压与触发电流要比实际应用中的数值要小。例如:实际使用的触发电压为3V,则可选触发电压为2V的管子。同样,管子的触发电流亦应选择小些以保证可靠触发,一般常用的集成电路输出电流均很小(除555电路例外,TTL比CMOS要大),所以可在其输出端加一级晶体管放大电路,以提供足够大的驱动电路来保证管子可靠地触发导通。 2 可控硅的具体接法 2.1 直流电路 首先,单向可控硅SCR有三个电极,即阳极A,阴极K,控制极G,SCR 在直流控制电路中使用时,要注意施加工作电压与控制触发电压的极性。A,K 之间是加正向电压但控正向的接法是图1,只有A,K之间接正向电压,控制极G亦接正向电压,SCR才能导通。SCR一旦触发导通后,即使降低控制极电压,甚至撤除控制极电源,SCR亦不阻断而是继续导通。要使SCR阻断,只有降低其阳极电压或将阳极,阴极断开一下,即使阳极与阴极电压为零即可所以有时候可以在SCR的A极与电源之间串了一个常闭开关,按一下即可将SCR阻断。 图1是双向可控硅BCR的接法。BCR是由两个SCR反向并联构成的,共用一个控制极。因此BCR与SCR接法有很大不同,无论在阳、阴两个电极之间接何种极性的电压,只要在其控制极加上一个触发脉冲,而不管这个脉冲是什么极性的,都可以使BCR导通。

晶闸管的基础知识和在可控整流技术方面的应用

上海交通职业技术学院 学生毕业论文 毕业论文题目晶闸管的基础知识和在可控整流技术方 面的应用 专业港口物流设备与自动控制 学号0910032 姓名 指导老师

目录 目录 (1) 摘要 (2) 1 绪论 (3) 1.1 课题背景及发展方向 (3) 1.2 本文主要工作 (3) 2 晶闸管元件 (4) 2.1晶闸管元件简介 (4) 2.1.1.单向晶闸管的工作原理和主要参数 (4) 2.1.2 双向晶闸管的工作原理和主要参数 (7) 3.晶闸管的应用 (10) 3.1 单相半波可控整流电路 (11) 3.1.1电阻性负载 (11) 3.1.2电感性负载及续流二极管 (13) 3.1.3反电动势负载 (17) 结束语 (19) 参考文献 (20) 致谢 (21)

晶闸管的基础知识和在可控整流技术 方面的应用 李坤清 摘要:晶闸管是晶体闸流管的简称,俗称可控硅整流器(SCR ,Silicon Controlled Rectifier),简称可控硅,其规范术语是反向阻断三端晶闸管。晶闸管是一种既具有开关作用,又具有整流作用的大功率半导体器件,应用于可控整流变频、逆变及无触点开关等多种电路。对它只要提供一个弱点触发信号,就能控制强电输出。所以说它是半导体器件从弱电领域进入强电领域的桥梁。目前为止,晶闸管是电子工业中应用最广泛的半导体器件,尽管有各种不同的新型半导体材料不断出现,但半导体材料中98%仍是硅材料,硅材料仍是集成电路产业的基础,其中晶闸管具有体积小、重量轻、功率高、寿命长等优点而得到广泛应用。晶闸管的作用主要有以下几种,1.变流整流,2.调压,3. 变频,4.开关(无触点开关)。普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整流电路属于不可控整流电路。如果把二极管换成晶闸管,就可以构成可控整流电路、逆变、电机调速、电机励磁、无触点开关及自动控制等方面。在电工技术中,常把交流电的半个周期定为180°,称为电角度。这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内晶闸管导通的电角度叫导通角θ。很明显,α和θ都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。晶闸管的功用不仅是整流,它还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率的交流电,等等。本文主要论述晶闸管的基本原理、主要参数以及在可控整流技术方面的应用。 关键词:晶闸管可控硅半导体可控整流技术

可控硅资料及工作原理和测试方法

可控硅資料/及工作原理和測試方法BTA06-400BW 6A 400V 50mA TO-220AB BTA06-400C 6A 400V 25mA TO-220AB BTA06-400CW 6A 400V 35mA TO-220AB BTA06-400TW 6A 400V 5mA TO-220AB BTA06-400E 6A 400V 5~10mA TO-220AB BTA06-400D 6A 400V 1~5mA TO-220AB BTA06-400SAP 6A 400V 5~10mA TO-220 BTA06-600B 6A 600V 35~50mA TO-220AB BTA06-600BW 6A 600V 50mA TO-220AB BTA06-600C 6A 600V 25mA TO-220AB BTA06-600CW 6A 600V 35mA TO-220A BTA06-600SW 6A 600V 10mA TO-220AB BTA06-600TW 6A 600V 5mA TO-220AB BTA06-600E 6A 600V 5~10mA TO-220AB BTA06-600D 6A 600V 1~5mA TO-220AB BTA06-600SAP 6A 600V 5~10mA TO-220AB BTA06-700B 6A 700V 35~50mA TO-220AB BTA06-700BW 6A 700V 50mA TO-220AB

BTA06-700C 6A 700V 25mA TO-220AB BTA06-700CW 6A 700V 35mA TO-220AB BTA06-700SW 6A 700V 10mA TO-220AB BTA06-700TW 6A 700V 5mA TO-220AB BTA06-700E 6A 700V 5~10mA TO-220AB BTA06-700D 6A 700V 1~5mA TO-220AB BTA06-700SAP 6A 700V 5~10mA TO-220AB BTA06-800B 6A 800V 35~50mA TO-220AB BTA06-800BW 6A 800V 50mA TO-220AB BTA06-800C 6A 800V 25mA TO-220AB BTA06-800CW 6A 800V 35mA TO-220AB BTA06-800SW 6A 800V 10mA TO-220AB BTA06-800TW 6A 800V 5mA TO-220AB BTA06-800E 6A 800V 5~10mA TO-220AB BTA06-800D 6A 800V 1~5mA TO-220AB BTA06-800SAP 6A 800V 5~10mA TO-220AB BTB06-400B 6A 400V 35~50mA TO-220A BTB06-400BW 6A 400V 50mA TO-220AB BTB06-400C 6A 400V 25mA TO-220AB

可控硅参数列表

March 2008 Rev. 21/9 AN2703 Application note Parameter list for SCRs, TRIACs, AC switches, and DIACS Introduction All datasheet parameters are rated as minimum or maximum values, corresponding to the product parameter distribution. In each datasheet, two classes of parameters are available:■ Absolute ratings, corresponding to critical parameters, not to be exceeded for safe operation. If the absolute rating is exceeded, the component may be damaged.■Electrical, thermal and static characteristics, defining limits on product https://www.360docs.net/doc/7813977607.html,

Parameters AN2703 1 Parameters 2/9

AN2703Parameters 3/9I GM Peak gate current This is the maximum peak current allowed through gate and cathode, defined for a 20 μs pulse duration. If the absolute rating is exceeded, the component may be damaged. P G(AV)Average gate power dissipation This is the maximum average power that can be dissipated by the gate junction. If the absolute rating is exceeded, the component may be damaged. V RGM Peak reverse gate voltage This parameter is only defined for SCRs. It is the maximum reverse voltage than can be applied across gate and cathode terminals, without risk of destruction of the gate to cathode junction. V GM Peak positive gate voltage (with respect to the pin "COM") This parameter is only defined for ACSs. It is the maximum voltage than can be applied across gate and COM terminals without risk of destruction of the gate to COM junction.Table 2.Electrical characteristics parameters Parameter Name and description P Average power dissipation This is the average power dissipated by current conduction through the device for one full cycle operation. I GT Triggering gate current This is the current to apply between gate and cathode (or gate and electrode A1 for TRIAC) to turn-on the device. This parameter defines the sensitivity of the component. For a SCR, the gate current has always to be sunk by the gate. For a TRIAC, I GT is define for 3 or 4 quadrants corresponding to the different polarities of A2, A1 and gate: - Q1: I g sunk by the gate, V A2-A1 > 0 - Q2: I g sourced by the gate, V A2-A1 > 0 - Q3: I g sourced by the gate, V A2-A1 < 0 - Q4: I g sunk by the gate, V A2-A1 < 0 The I GT value is higher in Q4 quadrant. For ACS types, I GT is defined in two quadrants (Q2 and Q3). V GT Triggering gate voltage This is the voltage to apply across gate and cathode (or gate and electrode A1 for TRIAC) to reach the IGT current and then to trigger the device. V GD Non-triggering gate voltage V GD is the maximum voltage which can be applied across gate and cathode (or gate and electrode A1 for TRIAC) without causing undesired turn-on. This parameter is specified, for the worst case scenario, at the maximum junction temperature.Table 1.Absolute ratings parameters (continued) Parameter Name and description

可控硅晶闸管的基础知识

关于可控硅 一、可控硅的概念和结构? 晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 二、可控硅的种类 可控硅有多种分类方法。 (一)按关断、导通及控制方式分类:可控硅按其关断、导通及控制方式可分为普通可控硅、双向可控硅、逆导可控硅、门极关断可控硅(GTO)、BTG可控硅、温控可控硅和光控可控硅等多种。 (二)按引脚和极性分类:可控硅按其引脚和极性可分为二极可控硅、三极可控硅和四极可控硅。 (三)按封装形式分类:可控硅按其封装形式可分为金属封装可控硅、塑封可控硅和陶瓷封装可控硅三种类型。其中,金属封装可控硅又分为螺栓形、平板形、圆壳形等多种;塑封可控硅又分为带散热片型和不带散热片型两种。 (四)按电流容量分类:可控硅按电流容量可分为大功率可控硅、中功率可控硅和小功率可控硅三种。通常,大功率可控硅多采用金属壳封装,而中、小功率可控硅则多采用塑封或陶瓷封装。 (五)按关断速度分类:可控硅按其关断速度可分为普通可控硅和高频(快速)可控硅。 图2 三、晶闸管的主要工作特性 为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。这个演示实验给了我们什么启发呢? 图3 这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。 晶闸管的特点:是“一触即发”。但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。如果晶闸管阳极和阴极之间外加

可控硅的应用参数

图1b电路为MOC3061的典型功率扩展电路,在控制功率较大的电机时,应考虑使用功率扩展电路。制作时,可参考图示参数选择器件。由于电源采用电容压降方式,请自制时注意安全,人体不能直接触摸电路板。 电路见图1a。电路中NE555接成占空比可调的方波发生器,调节RW可改变占空比。在NE555的3脚输出高电平期间,过零通断型光电耦合器MOC3061初级得到约10mA正向工作电流,使内部硅化镓红外线发射二极管发射红外光,将过零检测器中光敏双向开关于市电过零时导通,接通电风扇电机电源,风扇运转送风。在NE555的3脚输出低电平期间,双向开关关断,风扇停转。 MOC3061本身具有一定驱动能力,可不加功率驱动元件而直接利用 MOC3061的内部双向开关来控制电风扇电机的运转。RW为占空比调节电位器,

RC电路用来降低DV/DT防止误触发 MOC3061参数:技术文档数据: 触发电流在Ift=15mA到maxIf=60mA之间。 Led触发电流:Ift=15mA, A ll d evices a re gu a r a ntee d to trigger a t a n I F v a lue less th a n or equ a l to m ax I FT.Therefore,recommen d e d oper a ting I F lies b et w een m ax I FT(15m A for MOC3061-M, 10m A for MOC3062-M&MOC3162-M,5m A for MOC3063-M&MOC3163-M)a n d ab solute m ax I F(60m A). D v/D t=Pe a k B locking Current 保持通态的最小电流:IH=500u A,MT1-MT2volt a ge ab ove w hich d evice w ill not trigger 抑制电压:VINH=12(T Y P)-20(M AX)MT1-MT2VOLT A GE AB OVE W HICH D EVICE W ILL NOT TRIGGER 通态重复峰值电压V D RM=600v D V/D T=600V/US(MIN),1500(T Y P). The39ohm resistor a n d0.01μF c a p a citor a re for snu bb ing of the tri a c a n d is often,b ut not a l way s, necess a r y d epen d ing upon the p a rticul a r tri a c a n d lo ad use d. Suggeste d metho d of firing t w o,ba ck-to-ba ck SCR’s B T A16-800B:负载电流IT=16A. 维持通态电流:IH=50m A 断态电压临界上升率:D v/D t=250v/us Igt=50m A, V D RM,VRRM=800V Vgt=1.5v

可控硅资料P0102

1/6 ? P01 Series SENSITIVE 0.8A SCRs September 2000 - Ed: 3 MAIN FEATURES: DESCRIPTION Thanks to highly sensitive triggering levels, the P01 SCR series is suitable for all applications where available gate current is limited, such as ground fault circuit interruptors, pilot circuits in solid state relays, stand-by mode power supplies,smoke and alarm detectors. Available in through-hole or surface mount pack-ages, the voltage capability of this series has been upgrated since its introduction, to reach 600 V. Symbol Value Unit I T(RMS)0.8A V DRM /V RRM 400 and 600V I GT 5 to 200 μA ABSOLUTE RATINGS (limiting values) Symbol Parameter Value Unit I T(RMS) RMS on-state current (180° conduction angle)TO-92Tl = 55°C 0.8 A SOT -223Tamb = 70°C IT (AV) Average on-state current (180° conduction angle) TO-92Tl = 55°C 0.5A SOT -223Tamb = 70°C I TSM Non repetitive surge peak on-state current tp = 8.3 ms Tj = 25°C 8A tp = 10 ms 7I 2t I 2t Value for fusing tp = 10ms Tj = 25°C 0.24A 2S dI/dt Critical rate of rise of on-state current I G = 2 x I GT , tr ≤ 100 ns F = 60 Hz Tj = 125°C 50A/μs I GM Peak gate current tp = 20 μs Tj = 125°C 1A P G(AV)Average gate power dissipation Tj = 125°C 0.1W T stg Tj Storage junction temperature range Operating junction temperature range - 40 to + 150- 40 to + 125 °C

相关文档
最新文档