操作系统十大题全集--可变分区管理

操作系统十大题全集--可变分区管理
操作系统十大题全集--可变分区管理

[原创][2.可变分区存储管理方案中的内存分配/十大题型]算法全实现

/*可变分区存储管理方案中的内存分配

可变分区调度算法有:最先适应分配算法,最优适应分配算法,最坏适应算法

用户提出内存空间的申请;系统根据申请者的要求,按照一定的分配策略分析内存空间的使用情况,找出能

满足请求的空闲区,分给申请者;当程序执行完毕或主动归还内存资源时,系统要收回它所占用的内存空间

或它归还的部分内存空间。

1.程序运行时首先接收输入:空闲区数据文件,包括若干行,每行有两个数据项:起始地址、长度(均为整数),各数据项以逗号隔开。

2.建立空闲区表并在屏幕上显示输出空闲区表内容,空闲区表中记录了内存中可供分配的空闲区的始址和长度,用标志位指出该分区是否是未分配的空闲区。

3.从用户界面根据用户提示接收一个内存申请,格式为:作业名、申请空间的大小。

4.按照最差(最坏)适配算法选择一个空闲区,分割并分配,修改相应的数据结构(空闲区表),填写内存已分配区表(起始地址、长度、标志位),其中标志位的一个作用是指出该区域分配给哪个作业。

5.重复3、4,直到输入为特殊字符(0)。

6.在屏幕上显示输出新的空闲区表和已分配区表的内容。

本程序包括:FIFO,最优适应分配算法,最坏适应算法

VC++调试通过

(C)copyright by Neo

欢迎大家测试请问题请Email:sony006@https://www.360docs.net/doc/7714548506.html,

*/

#include

#include

#include

#include

const int MAXJOB=100;//定义表最大记录数

typedef struct node{

int start;

int length;

char tag[20];

}job;

job frees[MAXJOB];//定义空闲区表

int free_quantity;

job occupys[MAXJOB];//定义已分配区表

int occupy_quantity;

//初始化函数

void initial()

{

int i;

for(i=0;i

frees[i].start=-1;

frees[i].length=0;

strcpy(frees[i].tag,"free");

occupys[i].start=-1;

occupys[i].length=0;

strcpy(occupys[i].tag,"");

}

free_quantity=0;

occupy_quantity=0;

}

//读数据函数

int readData()

{

FILE *fp;

char fname[20];

cout<<"请输入初始空闲表文件名:";

cin>>fname;

if((fp=fopen(fname,"r"))==NULL){

cout<<"错误,文件打不开,请检查文件名"<

}

else{

while(!feof(fp)){

fscanf(fp,"%d,%d",&frees[free_quantity].start,&frees[free_quantity].length); free_quantity++;

}

return 1;

}

return 0;

}

//sort

void sort()

{

int i,j,p;

for(i=0;i

p=i;

for(j=i+1;j

if(frees[j].start

p=j;

}

}

if(p!=i){

frees[free_quantity]=frees[i];

frees[i]=frees[p];

frees[p]=frees[free_quantity];

}

}

}

//显示函数

void view()

{

int i;

cout<

cout<<"起始地址长度状态"<

for(i=0;i

cout.setf(2);

cout.width(12);

cout<

cout.width(10);

cout<

cout.width(8);

cout<

}

cout<

cout<<"起始地址长度占用作业名"<

for(i=0;i

cout.setf(2);

cout.width(12);

cout<

cout.width(10);

cout<

cout.width(8);

cout<

}

}

//最先适应分配算法

void earliest()

{

char job_name[20];

int job_length;

int i,j,flag,t;

cout<<"请输入新申请内存空间的作业名和空间大小:";

cin>>job_name;

cin>>job_length;

flag=0;

for(i=0;i

if(frees[i].length>=job_length){

flag=1;

}

}

if(flag==0){

cout<

else{

t=0;

i=0;

while(t==0){

if(frees[i].length>=job_length){

t=1;

}

i++;

}

i--;

occupys[occupy_quantity].start=frees[i].start;

strcpy(occupys[occupy_quantity].tag,job_name);

occupys[occupy_quantity].length=job_length;

occupy_quantity++;

if(frees[i].length>job_length){

frees[i].start+=job_length;

frees[i].length-=job_length;

}

else{

for(j=i;j

frees[j]=frees[j+1];

}

free_quantity--;

cout<<"内存空间成功:)"<

}

}

}

//最优适应分配算法

void excellent()

{

char job_name[20];

int job_length;

int i,j,flag,t;

cout<<"请输入新申请内存空间的作业名和空间大小:";

cin>>job_name;

cin>>job_length;

flag=0;

for(i=0;i

if(frees[i].length>=job_length){

flag=1;

}

}

if(flag==0){

cout<

else{

t=0;

i=0;

while(t==0){

if(frees[i].length>=job_length){

t=1;

}

i++;

}

i--;

for(j=0;j

if((frees[j].length>=job_length)&&(frees[j].length

}

}

occupys[occupy_quantity].start=frees[i].start;

strcpy(occupys[occupy_quantity].tag,job_name);

occupys[occupy_quantity].length=job_length;

occupy_quantity++;

if(frees[i].length>job_length){

frees[i].start+=job_length;

frees[i].length-=job_length;

}

else{

for(j=i;j

frees[j]=frees[j+1];

}

free_quantity--;

cout<<"内存空间成功:)"<

}

}

}

//最坏适应算法

void worst()

{

char job_name[20];

int job_length;

int i,j,flag,t;

cout<<"请输入新申请内存空间的作业名和空间大小:";

cin>>job_name;

cin>>job_length;

flag=0;

for(i=0;i

if(frees[i].length>=job_length){

flag=1;

}

}

if(flag==0){

cout<

else{

t=0;

i=0;

while(t==0){

if(frees[i].length>=job_length){

t=1;

}

i++;

}

i--;

for(j=0;j

if((frees[j].length>=job_length)&&(frees[j].length>frees[i].length)){ i=j;

}

}

occupys[occupy_quantity].start=frees[i].start;

strcpy(occupys[occupy_quantity].tag,job_name);

occupys[occupy_quantity].length=job_length;

occupy_quantity++;

if(frees[i].length>job_length){

frees[i].start+=job_length;

frees[i].length-=job_length;

}

else{

for(j=i;j

frees[j]=frees[j+1];

}

free_quantity--;

cout<<"内存空间成功:)"<

}

}

}

//撤消作业

void finished()

{

char job_name[20];

int i,j,flag,p=0;

int start;

int length;

cout<<"请输入要撤消的作业名:";

cin>>job_name;

flag=-1;

for(i=0;i

if(!strcmp(occupys[i].tag,job_name)){

flag=i;

start=occupys[i].start;

length=occupys[i].length;

}

}

if(flag==-1){

cout<<"没有这个作业名"<

}

else{

//加入空闲表

for(i=0;i

if((frees[i].start+frees[i].length)==start){

if(((i+1)

frees[j]=frees[j+1];

}

free_quantity--;

p=1;

}

else{

frees[i].length+=length;

p=1;

}

}

if(frees[i].start==(start+length)){

frees[i].start=start;

frees[i].length+=length;

p=1;

}

}

if(p==0){

frees[free_quantity].start=start;

frees[free_quantity].length=length;

free_quantity++;

}

//删除分配表中的该作业

for(i=flag;i

occupys[i]=occupys[i+1];

}

occupy_quantity--;

}

}

//显示版权信息函数

void version()

{

cout<

cout<<" ┏━━━━━━━━━━━━━━━━━━━━━━━┓"<

cout<<" ┃可变分区存储管理模拟系统┃"<

cout<<" ┠───────────────────────┨"<

cout<<" ┃(c)All Right Reserved Neo ┃"<

cout<<" ┃sony006@https://www.360docs.net/doc/7714548506.html, ┃"<

cout<<" ┃version 2004 build 1122 ┃"<

cout<<" ┗━━━━━━━━━━━━━━━━━━━━━━━┛"<

cout<

}

void main()

{

int flag=0;

int t=1;

int chioce=0;

version();

initial();

flag=readData();

while(flag==1){

sort();

cout<

cout<<"========================================================="<

cout<<" 1.申请空间 2.撤消作业 3.显示空闲表和分配表 0.退出"<

cin>>chioce;

switch(chioce){

case 1:

//换算法请换下一句调用

earliest();

break;

case 2:

finished();

break;

case 3:

view();

break;

case 0:

flag=0;

break;

default:

cout<<"选择错误!"<

}

}

}

可变分区管理实验

实验三、可变分区内存管理 实验环境: 实验环境一:Windows平台 实验时间: 6小时 实验目的: 体会可变分区内存管理方案,掌握此方案的内存分配过程、内存回收过程和 紧凑算法的实现。 实验目标: 编制一个程序模拟实现可变分区内存管理。实验时,假设系统内存容量为 1000KB。分配时使用malloc(pid, length)函数实现,作业释放内存时使用mfree(handle)函数实现,内存情况输出用mlist()函数实现。 实验步骤: 1、编写主界面,界面上有三个选项:分配内存、回收内存、查看内存。选择分 配内存时,要求输入作业的进程号和作业长度,然后使用malloc函数分配内 存,并报告内存分配结果。回收内存时要求输入进程号,使用mfree函数实 现回收。查看内存时,使用mlist函数实现输出内存使用情况和空闲情况。 2、编写malloc(pid, length)函数,实现进程pid申请length KB内存,要求程序判 断是否能分配,如果能分配,要把分配内存的首地址handle输出到屏幕上。 不能分配则输出字符串“NULL”。要考虑不能简单分配时,是否符合紧凑的 条件,如符合则采用紧凑技术,然后再分配。分配时可在最佳适应算法、最 差适应算法和首次适应算法中任选其一。 3、编写mfree(handle)函数,释放首地址为handle的内存块。释放成功返回Success, 否则返回Failure。 4、编写mlist()函数,要求输出内存使用情况和空闲情况。输出的格式为: ID Address Length Process ID 内存分区号 Address 该分区的首地址 Length 分区长度 Process 如果使用,则为使用的进程号,否则为NULL

可变分区存储管理方式的内存分配和回收实验报告

一.实验目的 通过编写和调试存储管理的模拟程序以加深对存储管理方 案的理解,熟悉可变分区存储管理的内存分配和回收。 二.实验内容 1.确定内存空间分配表; 2.采用最优适应算法完成内存空间的分配和回收; 3.编写主函数对所做工作进行测试。 三.实验背景材料 实现可变分区的分配和回收,主要考虑的问题有三个:第一,设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计内存分配算法;第三,在设计的数据表格基础上设计内存回收算法。 首先,考虑第一个问题,设计记录内存使用情况的数据表格,用来记录空间区和作业占用的区域。 由于可变分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随内存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在内存中的起始地址和长度。由于分配时空闲区有时会变成两个分区:空闲区和已分分区,回收内存分区时,可能会合并空闲分区,这样如果整个内存采用一张表格记录己分分区和空闲区,就会使表格操作繁琐。分配内存时查找空闲区进行分配,然后填写己分

配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。由此可见,内存的分配和回收主要是对空闲区的操作。这样为了便于对内存空间的分配和回收,就建立两张分区表记录内存使用情况,一张表格记录作业占用分区的“己分分区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种:一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分分区表”还是“空闲区表”都必须事先确定长度。它们的长度必须是系统可能的最大项数。 “已分分区表”的结构定义 #definen10//假定系统允许的最大作业数量为n struct {floataddress;//已分分区起始地址 floatlength;//已分分区长度、单位为字节 intflag;//已分分区表登记栏标志,“0”表示空栏目,实验中只支持一个字符的作业名 }used_table[n];//已分分区表 “空闲区表”的结构定义 #definem10//假定系统允许的空闲区最大为m struct {floataddress;//空闲区起始地址

动态分区式存储管理

可变分区存储管理 设计思路: 整体思路: 可变分区管理方式将内存除操作系统占用区域外的空间看做一个大的空闲区。当作业要求装入内存时,根据作业需要内存空间的大小查询内存中的各个 空闲区,当从内存空间中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装人该作业,作业执行完后,其所占的内存分区被收回,成为一个空闲区。如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。 设计所才用的算法: 采用最优适应算法,每次为作业分配内存时,总是把既能满足要求、又是最小的空闲分区分配给作业。但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。为解决此问题,设定一个限值min size,如果空闲区的大小减去作业需求长度得到的值小于等于min size,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。 内存分配与回收所使用的结构体: 为便于对内存的分配和回收,建立两张表记录内存的使用情况。一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志(为0时作为标志位表示空栏目);一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志(0表空栏目,1表未分配)。两张表都采用顺序表形式。 关于分配留下的内存小碎片问题: 当要装入一个作业时,从“空闲分区表”中查找标志为“ 1”(未分配)且满足作业所需内存大小的最小空闲区,若空闲区的大小与作业所需大小的差值小于或等于min size,把该分区全部分配给作业,并把该空闲区的标志改为“0”(空栏目)。同时,在已分配区表中找到一个标志为“ 0”的栏目登记新装人作业所占用分区的起始地址,长度和作业名。若空闲区的大小与作业所需大小的差值大于

计算机操作系统内存管理系统可变分区存储管理方式的内存分配回收

精心整理课程设计2 可变分区存储管理方式的内存分配回收 一、课程设计目的 深入了解采用可变分区存储管理方式的内存分配回收的实现。 二、预备知识 存储管理中可变分区的管理方式。 给作业。但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。为解决此问题,设定一个限值minsize,如果空闲区的大小减去作业需求长度得到的值小于等于minsize,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。 内存分配与回收所使用的结构体:

为便于对内存的分配和回收,建立两张表记录内存的使用情况。一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志(为0时作为标志位表示空栏目);一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志(0表空栏目,1表未分配)。两张表都采用顺序表形式。 关于分配留下的内存小碎片问题: 当要装入一个作业时,从“空闲分区表”中查找标志为“1”(未分配)且满足作业所需内存大小的最小空闲区,若空闲区的大小与作业所需大小的差值小于或等于minsize,把该分区全部分 “0” 下邻(1 的作业名 }used_table[n]; //已分配区表 (2)空闲分区表的定义: struct {float address; //空闲区起始地址

float length; //空闲区长度,单位为字节 int flag; //空闲区表登记栏标志,用"0"表示空栏目,用"1"表示未分配}free_table[m]; //空闲区表 (3)全局变量 float minsize=5; // { // { } { if((free_table[k].length-need_length)<=minsize) //整个分配 { free_table[k].flag=0; ads=free_table[k].address; len=free_table[k].length; } else { //切割空闲区 ads=free_table[k].address; len=need_length; free_table[k].address+=need_length;

操作系统实验可变分区的管理

#include #include #include #include #include #define n 10 //假定系统允许的最大作业数为n,假定模拟实验中n值为10 #define m 10 //假定系统允许的空闲区表最大为m,假定模拟实验中m值为10 #define minisize 100 //空闲分区被分配时,如果分配后剩余的空间小于minisize,则将该空闲分区全部分配,若大于minisize,则切割分配 struct { float address; //已分配分区起始地址float length; //已分配分区长度,单位为字节 int flag; //已分配区表登记栏标志,用"0"表示空栏目 }used_table[n]; //已分配区表 struct { float address; //空闲区起始地址 float length; //空闲区长度,单位为字节 int flag; //空闲区表登记栏标志,用"0"表示空栏目,用"1"表示未分配 }free_table[m]; //空闲区表 void allocate(char J,float xk) //给J 作业,采用最佳分配算法分配xk大小的空间 { int i,k; float ad; k=-1; for(i=0;i=xk&&free_tab le[i].flag==1) if(k==-1||free_table[i].length=n) //无表目可填写已分配分区 { printf("无表目填写已分分区错误\n"); //修正空闲区表 if(free_table[k].flag==0) //前面找到的是整个空闲分区 free_table[k].flag=1; else {//前面找到的是某个空闲分区一部分free_table[k].length=free_table[k].le ngth+xk; return; } } else {//修改已分配表 used_table[i].address=ad; used_table[i].length=xk; used_table[i].flag=J; } return; }//主存分配函数结束

固定分区存储管理

理工大学信息工程与自动化学院学生实验报告 ( 2013 —2014 学年第一学期) 课程名称:操作系统开课实验室:信自楼444 2013年 11月28 日 注:报告容按下列的要求进行。 一、实验目的 通过编写固定分区存储管理的模拟程序,加深对操作系统存储管理功能中的固定分区管理方式、主存分配表等相应知识的理解。 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的存分配和回收。 二、实验题目 1.设计一个固定分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 2.必须建立分区表,记录空闲区与占用区的状况。 3.流程图按选定的算法自己完成。

三、算法设计的思想或流程图 本系统将存用户空间划分为五个大小不固定的分区,其分区大小由用户输入决定。在每个分区只装入一道作业,这样把用户空间划分为几个分区,便允许几道作业并发运行。当有一个空闲分区时,便可以从外存的后备队列中选择一个适当大小的作业装入该分区,当该作业结束时又可以从后备作业队列中找出另一作业调入该分区。 每个存空间是一个Node型的对象。Node类有一个三个参数的构造函数。分别为:分区号、起始地址、大小。然后就是一些属性的get、set方法和一个打印其属性的函数。四个数据域分别为:属性m_No用来表示该存空间的序号。属性m_Addr用来表示存分区的起始地址。属性m_Size用来表示存空间的大小。属性m_State表示存空间的是否已分配的状态标志。若该存空间已分配,m_TaskNo表示占有该存空间的任务序号。否则没有实际意义。 在用户申请任务的存空间时,提示用户输入任务号和其需要的存空间大小。 流程图 主程序:

操作系统_动态分区分配算法课程设计_java版

湖南文理学院实验报告 课程名称操作系统课程设计 实验名称存储管理——动态分区分配算法的模拟 成绩 学生姓名曹乐专业计算机 班级、学号 13101 18 同组者姓名 实验日期 12.21 1、实验目的 通过这次实验,加深对动态分区分配算法的理解,进一步掌握首次适应算法、循环首次适应算法、最佳适应算法、最坏适应算法和快速适应算法的实现方法。 2、试验内容 问题描述: 设计程序模拟四种动态分区分配算法:首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的工作过程。假设内存中空闲分区个数为n,空闲分区大小分别为P1, … ,P n,在动态分区分配过程中需要分配的进程个数为m(m≤n),它们需要的分区大小分别为S1, … ,S m,分别利用四种动态分区分配算法将m个进程放入n个空闲分区,给出进程在空闲分区中的分配情况。 3、程序要求: 1)利用首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法四种动态分区分配算法模拟分区分配过程。

2)模拟四种算法的分区分配过程,给出每种算法进程在空闲分区中的分配情况。 3)输入:空闲分区个数n,空闲分区大小P1, … ,P n,进程个数m,进程需要的分区大小S1, … ,S m,算法选择1-首次适应算法,2-循环首次适应算法,3-最佳适应算法,4-最坏适应算法,5-快速适应算法。 4、需求分析 (1) 输入的形式和输入值的范围 算法选择 空闲分区个数 空闲分区大小(KB) 作业个数 作业名称 作业大小(KB) (2) 输出的形式 最终内存空闲分区的分配情况 5、调试分析 通过这次课程设计我练习了用JAVA写系统软件,对OS中可变分区存储管理有了更深刻的了解。在写程序的时候也遇到了一些困难。比如在设计数据结构时特别犹豫,总想找一个很合适的。但是,后来才知道,关键要多尝试,而空想是没有用的。最后我证实了自己的设计

操作系统可变分区存储管理模拟

操作系统实验(三)可变分区存储管理模拟实验 作者:顾熙杰 准考证号:4 报到号:177 实验地点:浙工大计算机中心 1)实验目的 理解操作系统中可变分区管理的算法, 掌握分配和回收算法 掌握空闲分区的合并方法 掌握不同的适应算法 2)实验内容 建立数据结构 建立空闲分区队列 根据不同的适应算法建立队列 编写分配算法 编写回收算法 3)数据结构 Private Type MEM_tp fenqu_shouzhi As Integer '分区首地址 fenqu_changdu As Integer '分区长度 fenqu_zhuangtai As Integer '分区状态-1表示不存在,0表示空闲分区,1表示已经分配的分区 fenqu_huodongjincheng As Integer '该分区正在活动的进程代号 End Type 4)程序流程图 面向对象程序设计由事件驱动,画流程图比较困难。 (1)分配新的分区 最先适应按地址找 最优适应,找最小可以满足的 最坏适应,找最大可以满足的 (2)分区回收 既无上邻又无下邻 既有上邻又有下邻 只有上邻 只有下邻 5)实验中需要改进的地方 由于没有使用链表,程序结构比较混乱,需要大大改进,提高可阅读性。 6)程序代码(VB)

Option Explicit Private Declare Function ShellExecute Lib "Shell32.dll" Alias "ShellExecuteA" (ByVal hwnd As Long, ByVal lpOperation As String, ByVal lp String, ByVal lpParameters As String, ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long '表示内存分区的结构信息类型的变量类型 Private Type MEM_tp fenqu_shouzhi As Integer '分区首地址 fenqu_changdu As Integer '分区长度 fenqu_zhuangtai As Integer '分区状态-1表示不存在,0表示空闲分区,1表示已经分配的分区 fenqu_huodongjincheng As Integer '该分区正在活动的进程代号 End Type '定义最多640个,总共640K内存数组 Dim MEM(1 To 640) As MEM_tp '表示可以使用的进程代号 Dim jincheng(1 To 640) As Integer '0表示该进程号可以使用 '.>=1表示该进程号不可以使用 '表示分配方法 Dim fenPEI_fangfa As Integer '0=最先分配 '1=最优分配 '2=最坏分配 Function get_jincheng() As Integer '取可以使用的进程号 Dim i As Integer For i = 1 To 640 If jincheng(i) = 0 Then jincheng(i) = 1 get_jincheng = i Exit Function End If Next get_jincheng = 0 End Function Function get_FENQU() As Integer '取可以使用的为了表示分区的存储空间,模拟c语言的指针 Dim i As Integer For i = 1 To 640

操作系统试验--可变分区存储管理

实验四可变分区存储管理 学时:4学时 ⒈实验内容 主存储器空间分配实验。 ⒉实验目的 通过首次适应算法、最佳适应算法和最坏适应算法实现主存空间的分配,可以使读者可好地理解存储分配算法。 ⒊实验题目 编写一段程序来模拟可变分区管理方法。要求能通过文件形式定义空闲区表;能随意输入作业及需要分配的空间;能分别使用首次适应算法、最佳适应算法和最坏适应算法对输入的作业进行空间分配;能显示系统空闲表和已分配空间表。 ⒋实验提示 ⑴可变分区方式是按作业需要的主存空间大小来分区。当装入一个作业时,首先要查看是否有足够的空闲空间来分配,若有则按指定的分配方式进行分配;否则作业不能装入。随着作业的装入和撤离主存空间被分为若干个大大小小的不连续的区间,为了表明各区间的状态可以用一个内存分区表如表1所示来表示。 表1 内存分区表 起始地址长度标志 作业1 20k 120k 空闲 50k 200k 这样我们可以定义一个如下的结构表示内存分区信息。 typedef struct node { int start; //起始地址 int length; //长度 char tag[20]; //标志 }job; ⑵可变分区的三种算法就是为作业分配主存空间的方法。 ●首次适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入第一个满足条件的空间中去。 ●最佳适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入满足条件的空闲空间中最小的一个空间中去。

●最坏适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入满足条件的空闲空间中最大的一个空间中去。 从三种算法的说明可以看出,分配空间的过程主要可以分两步: ●查询所有满足作业需求的空间块。 ●按照指定的算法将作业装入空间块中。 ⑶在操作的最初主存空间实际就是一个大的空闲区,不涉及到如何分配的问题。为直接模拟运行一段时间后主存中出现了多个空闲块的状态,题目要求从一个文件读入空闲区表。在这里我们可以设计一个空闲区表文件的结构为如表2所示: 空闲区表2 表 起始地址长度 50k 200k …… 这样也可以方便地将空闲表一次读入程序中,而不必再一个个的输入。 ⑷主要变量及函数说明如表3所示。 变量与函数说明表3 表 typedef struct node内存块结

实验四可变分区存储管理方式的内存分配和回收

实验四 实验四可变分区存储管理方式的内存分配和回收 一.实验目的 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的内存分配和回收。 二.实验属性 设计 三.实验内容 1.确定内存空间分配表; 2.采用最优适应算法完成内存空间的分配和回收; 3.编写主函数对所做工作进行测试。 四.实验背景材料 实现可变分区的分配和回收,主要考虑的问题有三个:第一,设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计内存分配算法;第三,在设计的数据表格基础上设计内存回收算法。 首先,考虑第一个问题,设计记录内存使用情况的数据表格,用来记录空间区和作业占用的区域。 由于可变分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随内存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在内存中的起始地址和长度。由于分配时空闲区有时会变成两个分区:空闲区和已分分区,回收内存分区时,可能会合并空闲分区,这样如果整个内存采用一张表格记录己分分区和空闲区,就会使表格操作繁琐。分配内存时查找空闲区进行分配,然后填写己分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。由此可见,内存的分配和回收主要是对空闲区的操作。这样为了便于对内存空间的分配和回收,就建立两张分区表记录内存使用情况,一张表格记录作业占用分区的“己分分区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种:一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分分区表”还是“空闲区表”都必须事先确定长度。它们的长度必须是系统可能的最大项数。 “已分分区表”的结构定义 #define n 10 //假定系统允许的最大作业数量为n struct { float address; //已分分区起始地址 float length; //已分分区长度、单位为字节 int flag; //已分分区表登记栏标志,“0”表示空栏目,实验中只支持一个字符的作业名 }used_table[n]; //已分分区表 “空闲区表”的结构定义

可变分区存储管理方式的内存分配回收

实验报告 操作系统 可变分区存储管理方式的内存分配回收 班级:XXXXXXXXXXXX 学号:XXXXXXXXXXXX 姓名:XXXXXX 日期:XXXX.XX.XX

版本历史Revisions History

目录1引言4 1.1实验目的4 1.2参考文档4 2可变分区存储管理5 2.1实验原理分析5 2.2设计思路5 2.3源程序6 2.4重要结构体说明10 2.5重要变量说明10 2.6结果11 2.7测试方法对结果的分析11 2.8接口12 2.8.1接口设计说明12 2.9任务设计12 2.9.1流程图12

1 引言 1.1实验目的 通过首次适应算法、最佳适应算法和最坏适应算法实现主存空间的分配,可以使开发人员更好地理解存储分配算法。 1.2参考文档 1.操作系统 2. 3.1节空闲存储区表 2.操作系统2. 3.2节首次适应法(1.分配算法,2.回收算法)

2 可变分区存储管理 2.1实验原理分析 在可变分区模式下,在系统初启且用户作业尚未装入主存储器之前,整个用户区是 一个大空闲分区,随着作业的装入和撤离,主存空间被分成许多分区,有的分区被 占用,而有的分区时空闲的。为了方便主存空间的分配和去配,用于管理的数据结 构可由两张表组成:“已分配区表”和“未分配区表”。在“未分配表中”将空闲 区按长度递增顺序排列,当装入新作业时,从未分配区表中挑选一个能满足用户进 程要求的最小分区进行分配。这时从已分配表中找出一个空栏目登记新作业的起始 地址和占用长度,同时修改未分配区表中空闲区的长度和起始地址。当作业撤离时 已分配区表中的相应状态变为“空”,而将收回的分区登记到未分配区表中,若有 相邻空闲区再将其连接后登记。 2.2设计思路 1、分配算法: 采用首次适应法为作来分配大小为size的内存空间时,总是从表的起始端的低地址 部分开始查找,当第一次找到大于或等于申请大小的空闲区时,就按所需大小分配 给作业。如果分配后原空闲区还有剩余空间,就修改原存储区表项的m_size和 m_addr,使它记录余下的“零头”。如果作业所需空间正好等于该空闲区大小,那 么该空闲区表项的m_size就成为0,接下来要删除表中这个“空洞”,即将随后的 各非零表项依次上移一个位置。 2、回收算法: 当某一作业回收以前所分配到的内存时,就要将该内存区归还给系统,使其成为空 闲区而可被其它作来使用。回收时如释放区与邻近的空闲区相衔接,要将它们合并 成较大的空闲区,否则空闲区将被分割得超来越小,最终导致不能利用;另外,空 闲区个数越来越多,也会使空闲区登记表溢出。

3.用C语言模拟实现可变式分区存储管理

3.用C语言模拟实现可变式 分区存储管理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

试验三:用C语言模拟实现可变式分区存储管理 一、試驗目标: 1、通过编写可变式分区存储管理的C语言程序,使学生加强对可变式分区存储管理的认识。 2、掌握操作系统设计的基本原理、方法和一般步骤。 二、試驗内容:用C語言編寫一個实现可变式的分区管理的模擬程序。 *复习相关的知识: 1、分区管理的原理:将存储器划分成若干段大小固定的区域,一个区域里只能运行一个程序,程序只能在其自身所在的分区中活动。 2、固定式分区管理的原理:区域大小及起始地址是固定的。一个分区只能存放一个程序。需要设置一个分区说明表来标明内存的使用状态。根据分区说明表来给程序分配相应的区域。由于程序不可能刚刚占有一个分区的大小,这样就会在一个分区之中留下零头,造成了极大的浪费。 3、可变式分区管理的原理:区域的大小及起始地址是可变的,根据程序装入时的大小动态地分配一个区域。保证每个区域之中刚好放一个程序。这样可以充分地利用存储空间,提高内存的使用效率。如果一个程序运行完毕,就要释放出它所占有的分区,使之变成空闲区。这样就会出现空闲区与占用区相互交错的情况。这样就需要P表,F表来分别表示内存的占用区状态与空闲区的状态。 *确定该系统所使用的数据结构: 我们可以把内存表示为一个数组的形式。这个数组中的每一个单元都是一个无符号的字符型的数据类型。这样一个单元刚好占用一个字节的大小。这一个字节的地址可以用它在此数组中的下标来表示。如果一个程序占用了一定的区域,那么这个区域的大小就可以用它占有的字节数的个数来表示。用C语言可以表述如下: unsigned char memory[1024] 它就可以表示一个1K的内存空间。 为了实现可变式的分区管理,还需要设立两个表,一个是P表,一个是F表,它们分别表示内存的占用区状态。由于在该程序运行的过程之中需要不断地修改P表和F表,所以这两个表不适合于用数组的形式来表示;而应该使用单链表的形式。这样就要给单链表中的结点确立一个数据结构。很显然,P表中的每一个结点至少要包括以下的几项:占用的程序名、占用区的起始地址、占用区的大小、指向下一个结点的指针。F表中的结点可以不需要程序名这一项。但是为了统一起见,我们就统一地采用P表中的这种结点的结构。可以用C语言描述如下: struct node

可变分区存储管理方式的内存分配和回收

free_quantity++; fscanf(文件指针,格式字符串,输入表列); } return 1; } return 0; } void sort() { int i,j,p; for(i=0;i

最新c++动态分区分配算法模拟(操作系统课程设计)

c++动态分区分配算法模拟(操作系统课程 设计)

课程设计 课程设计名称:操作系统课程设计 专业班级: 学生姓名: 学号: 指导教师: 课程设计时间:6月13日-——6月17日

计算机科学专业课程设计任务书 说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页

1:需求分析 (1)用C语言实现采用首次适应算法的动态分区分配过程alloc()和回收过程free()。其中,空闲分区通过空闲分区链表来管理,在进行内存分配时,系统优先使用空闲区低端的空间。 (2)假设初始状态下,可用的内存空间为640KB,并有下列的请求序列:作业1申请130KB;作业2申请60KB;作业3申请100KB;作业2释放60KB;作业4申请200 KB;作业3释放100 KB;作业1释放 130 KB;作业5申请140 KB;作业6申请60 KB;作业7申请 50KB;作业6释放60 KB。采用首次适应算法进行内存块的分配和回 收,同时显示内存块分配和回收后空闲内存分区链的情况。 2:概要设计 (1)数据结构:作业队列数据结构,用于存储待处理作业;阻塞作业队列数据结构,用于存储阻塞的作业。已分配内存块的双向链表,记录当前系 统已分配的各个内存块;未分配内存块的双向链表,记录系统中剩余的 各个内存块;系统内存分配总情况的结点对象,记录系统中阻塞的作业 总数,已分配的内存块数,剩余的内存块数。 (2)主函数:对作业队列、阻塞队列、已分配内存块链表、未分配内存块链表、系统总内存分配情况结点对象进行初始化,调用分配函数或回收函 数,循环处理11个作业步。 (3)分配函数alloc():首次适应算法检索未分配的内存块链表,若找到合适的内存块,则加以判断,空闲内存块大小减去作业去请求内存块大小小于

操作系统实验可变分区内存分配首次适应算法模拟之令狐文艳创作

题目可变分区内存分配首次适应算法模拟 令狐文艳 姓名: 学号: 专业: 学院: 指导教师:林夕 二零一八年十一月 一、实验目的 主存的分配和回收的实现与主存储器的管理方式有关的,通过本实验帮助学生理解在可变分区管理方式下应怎样实现主存空间的分配和回收。 二、实验内容及原理 编写一个内存动态分区分配模拟程序,模拟内存的分配和回收的完整过程。 模拟在可变分区管理方式下采用最先适应算法实现主存分配和回收。 可变分区方式是按作业需要的主存空间大小来分割分区

的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离,主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。 当进程运行完毕释放内存,系统根据回收区的首址,从空闲区链表中找到相应的插入点,此时可能出现以下4种情况之一: 1.回收区与插入点的前一个空闲分区F1相邻接,此时将两个分区合并 2.回收区与插入点的后一个空闲分区F2相邻接,此时将两个分区合并 3.回收区与插入点的前,后两个空闲分区相邻接,此时将三个分区合并 4.回收区既不与F1相邻接,又不与F2相邻接,此时应为回收区单独建立一个新表项 三、程序设计 1.算法流程 3.详细设计 (1)定义两个结构体 struct kongxian //空闲分区 { int start; //起址

int end; //结束 int length; //长度 }kongxian[N]; struct zuoye //作业分区 { int start; //起址 int end; //结束 int length; //长度 }zuoye[N]; (2)init() //初始化函数kongxian结构体为 0 1023 1024 print1() //打印空闲分区 print2() //打印作业分区 main()中具体实现算法: printf("请输入作业的占用空间的长度 "); scanf("%d",&len); flag=0; for(i=0;i=len) //首次适应算法 { flag=1;

动态可变分区存储管理模拟系统解析

青岛农业大学 理学与信息科学学院 操作系统课程设计报告 设计题目仿真实现动态可变分区存储管理模拟系统 —最佳适应算法和最先适应算法 学生专业班级计算机科学与技术2011级03班 学生姓名(学号)张明珠(H20110684 ) 设计小组其他同学姓名(学号)刘玉婷(H20110661) 宋璇(H20110162) 指导教师牟春莲 完成时间 2014. 06.15 实习(设计)地点信息楼218 2014年6月16日

一、课程设计目的 操作系统的理论知识只有通过操作系统的实际操作和编程才能真正地理解 和掌握,没有实践操作系统的操作和编程,学习操作系统就是纸上谈兵。操作系统课程设计是在学习完《操作系统》课程后进行的一次全面、综合实习,是计算机科学与技术专业的重要实践性教学环节。通过课程设计,达到如下目的: 1、巩固和加深对操作系统原理的理解,提高综合运用本课程所学知识的能力。 2、培养学生选用参考书,查阅手册及文献资料的能力;培养独立思考、深 入研究、分析问题、解决问题的能力。 3、通过实际操作系统的分析设计、编程调试,掌握系统软件的分析方法和 工程设计方法。 4、能够按要求编写课程设计报告书,能正确阐述设计过程和实验结果、正 确绘制系统和程序框图。 5、通过课程设计,培养学生严谨的科学态度、严肃认真的工作作风和团队 协作精神。 二、设计任务 题目描述: 仿真实现动态可变分区存储管理模拟系统。内存调度策略可采用最先适应算法、最佳适应法等,并对各种算法进行性能比较。为了实现分区分配,系统中必须配置相应的数据结构,用来描述空闲区和已分配区的情况,为分配提供依据。常用的数据结构有两种形式:空闲分区表和空闲分区链。为把一个新作业装入内存,须按照一定的算法,从空闲分区表或空闲分区链中选出一个分区分配给该作业.设计要求: 1.采用指定算法模拟动态分区管理方式的主存分配。能够处理以下的情形: ⑴随机出现的进程i申请jKB内存,程序能判断是否能分配,如果能分配,要求输出分配的首地址Faddress,并要求输出内存使用情况和空闲情况。 内存情况输出的格式为:Faddress该分区的首地址;Eaddress该分区的尾地址Len 分区长度;Process 如果使用,使用的进程号,否则为0。 ⑵主存分配函数实现寻找空闲区、空闲区表的修改、已分配区表的修改功能。成员分工: 张明珠申请内存、查看进程之间的前后的区域状态、释放进程

操作系统第四章习题

一、选择 1. 可变分区存储器管理系统中,若采用最佳适应分配算法,“空闲区表”中的空闲区可按( A )顺序排列。 A.长度递增 B.长度递减 C.地址递增 D.地址递减 2. 虚拟存储技术是—B—。 A. 扩充内存物理空间技术 B. 扩充内存逻辑地址空间技术 C.扩充外存空间技术 D. 扩充I/O缓冲区技术 3. 很好地解决了“零头”问题的存储管理方法是—A—。 A.分页存储管理方法 B.分段存储管理方法 C.多重分区管理 D.可变式分区管理 4. 系统“抖动”现象的发生是由—B—引起的。 A.交换的信息量过大 B.置换算法选择不当 C.内存容量不足 D.请求分页管理方案 5. 虚拟存储管理系统的基础是程序的—C—理论。 A. 全局性 B. 虚拟性 C. 局部性 D. 动态性 6. 分页系统中页面是为( B )的。 A、用户所感知 B、操作系统所感知 C、编译系统所感知 D、连接装配程序所感知 7.下列—A—存储方式不能实现虚拟存储器。 A.分区 B.页式 C.段式 D.段页式 8. 操作系统处理缺页中断时,选择一种好的调度算法对内存和外存中的信息进行高效地调度,尽可能避免—D—。 A. 碎片空闲 C. 多重中断 D. 抖动 9. 分页式存储管理的主要特点是—C—。 A. 要求处理缺页中断 B. 要求扩充内存容量 C. 不要求作业装入到内存的连续区域 D. 不要求作业全部同时装入内存 10. LRU页面调度算法淘汰—B—的页。 A. 最近最少使用 B. 最近最久未使用 C. 最先进入内存 D. 将来最久使用 11.虚拟存储器实际容量受—B—限制。 A.物理内存大小 B.计算机的地址结构 C.磁盘容量 D.数据存放的绝对地址 12. 分区管理要求对每一个作业都分配—A—的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的页 D. 若干不连续的帧 13.页面置换算法中—A—不是基于程序执行的局部性理论。 A.先进先出调度算法 B. LRU C. LFU D.最近最不常用调度算法 14. 在存储管理中,采用覆盖与交换技术的目的是—A—。 A. 节省内存空间 B. 物理上扩充内存容量 C. 提高CPU利用率 D. 实现内存共享 15. 分页虚拟存储管理中,缺页中断时,欲调度一页进入内存,内存已无空闲块,如何决定淘汰已在内存的块时,—B—的选择是很重要的。 A. 地址变换 B. 页面调度算法 C. 对换方式 D. 覆盖技术

模拟实现一个简单的可变分区存储管理系统

合肥学院 计算机科学与技术系 实验报告 2013 ~2014 学年第一学期 课程操作系统原理 实验名称模拟实现一个简单的可变分区存储管理系统学生姓名 专业班级 指导教师谢雪胜 2013 年12 月

1.实验目的 模拟实现一个简单的固定(或可变)分区存储管理系统 2.实验内容 本实验要求完成如下任务: (1)建立相关的数据结构,作业控制块、已分配分区及未分配分区 (2)实现一个分区分配算法,如最先适应分配算法、最优或最坏适应分配算法(3)实现一个分区回收算法 (4)给定一批作业/进程,选择一个分配或回收算法,实现分区存储的模拟管理。3.实验步骤 (1)任务分析 本实验要实现的功能是模拟分区管理系统,即输入一个批作业,由程序根据各个作业的大小为批作业分配分区。如果能找到满足条件的分区,则分配成功,否则分配失败。对于程序的输入,输入用户程序所要请求的分区大小,-1表示输入完成。程序输入分配分区后各个分区的使用情况,然后回收分区,程序输出回收分区后各个分区的使用情况。 (2)概要设计 对于分区的定义,定义的数据结构如下所示 typedef struct { int no; //定义分区编号 int size; //定义大小 int start; //定义分区起始位置 int state; //定义分区状态,已分配或未分配 }fenqubiao; fenqubiao arr[50]; 其中,no表示分区的编号,size表示当前分区块的大小,start表示当前分区的起始位置,state表示当前分区的状态,已分配或空闲。Arr[50]表示当前系统所有分区情况。 主程序的流程图如下:

计算机操作系统内存管理系统可变分区存储管理方式的内存分配回收

课程设计2 可变分区存储管理方式的内存分配回收 一、课程设计目的 深入了解采用可变分区存储管理方式的内存分配回收的实现。 二、预备知识 存储管理中可变分区的管理方式。 三、小组成员 四、课程设计内容 编写程序完成可变分区存储管理方式的内存分配回收。 具体包括:确定内存空间分配表; 采用最优适应算法完成内存空间的分配和回收; 编写主函数对所做工作进行测试。 五、设计思路: 整体思路: 可变分区管理方式将内存除操作系统占用区域外的空间看做一个大的空闲区。当作业要求装入内存时,根据作业需要内存空间的大小查询内存中的各个空闲区,当从内存空间中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装人该作业,作业执行完后,其所占的内存分区被收回,成为一个空闲区。如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。 设计所才用的算法: 采用最优适应算法,每次为作业分配内存时,总是把既能满足要求、又是最小的空闲分区分配给作业。但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。为解决此问题,设定一个限值minsize,如果空闲区的大小减去作业需求长度得到的值小于等于minsize,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。

内存分配与回收所使用的结构体: 为便于对内存的分配和回收,建立两张表记录内存的使用情况。一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志(为0时作为标志位表示空栏目);一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志(0表空栏目,1表未分配)。两张表都采用顺序表形式。 关于分配留下的内存小碎片问题: 当要装入一个作业时,从“空闲分区表”中查找标志为“1”(未分配)且满足作业所需内存大小的最小空闲区,若空闲区的大小与作业所需大小的差值小于或等于minsize,把该分区全部分配给作业,并把该空闲区的标志改为“0”(空栏目)。同时,在已分配区表中找到一个标志为“0”的栏目登记新装人作业所占用分区的起始地址,长度和作业名。若空闲区的大小与作业所需大小的差值大于minsize。则把空闲区分成两部分,一部分用来装入作业,另外一部分仍为空闲区。这时只要修改原空闲区的长度,且把新装人的作业登记到已分配区表中。 内存的回收: 在可变分区方式下回收内存空间时,先检查是否有与归还区相邻的空闲区(上邻空闲区,下邻空闲区)。若有,则将它们合件成一个空闲区。程序实现时,首先将要释放的作业在“内存分配表”中的记录项的标志改为“0”(空栏目),然后检查“空闲区表”中标志为‘1’(未分配)的栏目,查找是否有相邻的空闲区,若有,将之合并,并修改空闲区的起始地址和长度。 六:数据结构 (1)已分配表的定义: struct {float address; //已分分区起始地址 float length; //已分分区长度,单位为字节 int flag; //已分配区表登记栏标志,"0"表示空栏目,实验中只支持一个字符的作业名

相关文档
最新文档