正激计算表:12V_38A_PQ3230_NCP1252A_041224_REV3

正激计算表:12V_38A_PQ3230_NCP1252A_041224_REV3
正激计算表:12V_38A_PQ3230_NCP1252A_041224_REV3

双表找正的基本方法.doc

如对你有帮助,请购买下载打赏,谢谢! 双表找正法 一采用两块百分表分别测定连轴节径向和轴向的找正情况。在使用该法对联轴节进行找正的操作中,一般分两步进行。第一步是用钢板尺和塞尺进行初步找正。即用钢板尺在连轴节外圆面的不同轴向位置上进行靠测,利用透光法检查两联轴节的同心度情况。并用塞尺测定两联轴节对口间隙情况,以确保联轴节两端面的平行度及一定的间隙值。第二步采用两块百分分表进行精找,即由两块表分别鉴定轴向与径向的调整值,直至确保合格为止。 二.在采用“二表找正法”时应注意 ①由于一般连轴节的外圆加工的光洁度较差,不利于找正时百分表环向移动。所以常在联 轴节外圆环面上取上、下、左、右各相隔90度的测点位置,测点距靠背轮边缘约10~15毫米并将各测点做好记号以供复用。在实际测定时常需多次测定以达到更合适的找正数据。除了以上找正时单轮转动方法以外,现在常用双轮同时转动的方法,即使联轴节组同时旋转,并分别测定四个位置上的数据。这种方法的优点是:测点的百分表触头基本上只作很有限的位移,对测定结果的准确度是有利的。 ②对测出数值应进行复核,复核的方法是将联轴节再向前转动,核对各位置的测量数值不 应有变动;若有变动,则可能是找正架安装固定不牢、百分表固定不牢、轴有窜动等原因;查明情况,重新测量;所测数值上+下应该等于左+右;如果不相等,钳工称之为丢数,也应查明原因,消除后重新测量。 ③对于联轴节外缘比较宽的要考虑采用的百分表支架要有适当的刚性和稳定性。百分表在 主轮上的固定要可靠,在使用磁力表座时也可以采用包箍等方法来固定百分表架。 ④在测量过程中,使百分表首先位于上方垂直的位置0°把百分表指针调至零位,为使测量有一定范围,一般让表处于量程的一半位置。然后将两半联轴器顺次转到90°、180°、270°三个位置上,分别测出a2、s2、;a3、s3;a4、s4。将测得数值记在记录图中。当两半联轴器重新转到0°位置时,百分表的读数应该归零。否则应检查其原因,轴是否有窜动,百分表是否牢固,并予消除,然后再继续测量,直到所测得的数值正确为止。在偏移不大的情况下,最后测得数据应该符合下列条件:a1﹢a3﹦a2+a4;s1+s3=s2+s4。其中a为径向表读数,s为轴向表读数。在测量过程中,如果由于基础的构造影响,使联轴器最低位置的径向间隙a3和轴向间隙s3测不到,则可根据其他三个已测的间隙数值推算出来: A3=a2+a4-a1;s3=s2+s4-s1 轴向径向 A1 s1 A4 a2 s4 s2 A3 s3 最后,比较对称点上的两个径向间隙和轴向间隙数值如a1和a3;s1和s3,如果对称点的数值相差不超过规定的数值时,则认为符合要求,否则要进行调整。调整时通常采用在垂直方向加减主动机支脚下面的垫片或在水平方向移动主动机位置的方法来实现。 对于粗糙和小型的机器,在调整时,根据偏移情况采取逐渐近似的经验方法来进行调整即逐次试加或试减垫片,以及左右敲打电机来进行调整。对于精密的大型的机器,在调整时,则应该通过计算来确定加减垫片的厚度和左右的移动量。 三找正联轴器时,一般可能遇到如图所示的四种情况: ① S1=s3,a1=a3如图一所示,这表示两半联轴器的端面互相平行,主动轴和从动轴的 中心线又同在一条中心线上,这时两半联轴器处于正确的位置。此处s1、s3和a1、a3表示在联轴器上方和下方两个位置上的轴向间隙和径向间隙。 ②S1=s3,a1≠a3,如图二所示,这表示两半联轴器的端面互相平行,两轴的中心线不 同轴。这时两轴的中心线之间有径向位移,即两轴没有开口,只有径向位移。这时

正激变换器工作原理

正激变换器 实际应用中,由于电压等级变换、安全、系统串并联等原因,开关电源的输入输出往往需要电气隔离。在基本的非隔离DC DC-变换器中加入变压器,就可以派生出带隔离变压器的DC DC-变换器。例如,单端正激变换器就是有BUCK变换器派生出来的。 一工作原理 1 单管正激变换器 单端正激变换器是由BUCK变换器派生而来的。图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器 图(a1)BUCK变换器

图(a2)单端正激变换器 BUCK 变换器工作原理: 电路进入平恒以后,由电感单个周期内充放电量相等, 由电感周期内充放电平恒可以得到: ?==T dt L u T L U 001

即: 可得: 单端正激变换器的工作原理和和BUCK 相似。 其工作状态如图如图(a3)所示: 图(a3)单端正激变换器工作状态 开关管Q 闭合。如图所示,当开关管Q 闭合时的工作状态如图a4所示, ? ? =- -ON ON t T t o o i dt U dt U U 0 )(i i ON o o o i OFF o ON o i DU U T t U T D U DT U U t U t U U == -=-=-)1()()(

图(a4) 根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。在此期间,电感电压为: O I L U U N N u -= 1 2 开关管Q 截止。开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降: O L U U -= 在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此: ()S O S I T D U DT U U N N ?-?=??? ? ??-1120 得: I O DU N N U 1 2= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,

单表找正方法

单表对中法 单表对中法是将对中表架和百分表分别固定在相邻两机器的半联轴器上,然后各自转动两轴或同时转动两轴,通过百分表的读数来计算和调整对中状况。该法的优点是:直观明确、表架简单、计算调整方便。由于它从根本上消除了转子轴向窜动对对中读数的影响,因此对中精度较高,对大型多台单机组成的机组特别适用。 (一)单表法对中的基本程序: ?测定对中表架(以下简称表架)的挠度,将挠度值在表架上打永久性标志。对中时用实测值减去表架挠度。即为表的实际读数值,底部的读数值应减去挠度的二倍,左右的读数应减挠度。 ?将相邻机器的两半联轴器沿圆周做出四等分标志(见附图 ??) 图 ?? 单表法对中测量简图 ?将表架固定在?轴上,表头触在 轴半联轴器外圆上,百分表不动,转动 轴 ??°此时百分表的读数为半联轴器外圆的圆度偏差。在实测时应减去此偏差值,两轴同时转动不产 ?向

生偏差值; ?调整百分表到??= 。按转动方向转动?轴(或同时转动两轴),在 轴联轴器外圆测出??、??、??的值,检查读数应使??+??=??+??(误差应小于 ?????),若不等时查明原因重新测量。百分表读数是对中时进行调整的依据,因此要求百分表读数应准确无误,并注意数值的“正”“负”。 ?同样将表架固定在 轴上,重复步骤 、 ,调整??= ,并测出??、??、??四个数值。(注意:两次盘车方向和读数方向应保持一致)。 ?根据两组百分表读数,确定支脚在垂直和水平方向的调整量和调整方向,调整量可用计算法、作图法和填表计算法确定。 (二)支脚调整量的确定: ?计算法 )用计算法调整轴(?)支脚垫片调整量时应先测出 、?、?之值(见附图 ??),并用??和??分别表示前后支脚的调整量。 这种计算方法只是先将两轴找成一条直线,在实际调整时还应将各支脚处的膨胀量或收缩量考虑进去。 图 ?? 单表对中示意图 )计算公式 2 21B AC L -= 式中?——机器支脚在垂直和水平方向的调整值,即 2 y 21垂 垂垂B C A Ly -=

变压器参数计算

变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф= B * S ⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф/ ⊿t * N ⑷

EL = ⊿i / ⊿t * L ⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф/ ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф= B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨)

双管正激

双管正激理想模型的理论缺陷及实际工作过程分析 The defects in operation principle of dual switch forward converter based on ideal model and the analysis of practical operation principle adlsong 摘要:本文阐述的双管正激拓朴结构基于理想模型的工作原理的缺陷,分析了基于基于实际模型的磁通复位工作原理。还讨论了散热器寄生电容对磁通复位过程的影响。文中给出的实际双管正激电源的工作波形,实验的结果证明了分析的正确。此外,还讨论了磁通复位后开关管两端的电压大小与负载的变化关系,也给出相应的实验波形。 Abstract: The principle of dual switch forward converter based on ideal model and its defects are presented in this paper. The practical operation principle based on real model is also discussed in detail. The effect on transformer reset caused by parasitic capacitance between power devices and the heat sink is also discussed. It proves to be correct by the waveforms of a practical dual switch forward converter. It is discussed how the voltage value between the power device after the transformer demagnetized completely varies with the output load. The waveforms are presented in the end. 关键词:双管正激,磁通复位,寄生电容,散热器 Key Words: Dual Switch Forward, Magnetic Reset, Parasitic Capacitor, Heat Sink 双管正激变换器拓朴结构由两个功率开关管和两个二极管构成,当二个开关管Q1和Q2同时关断时,磁通复位电路的二个二极管D3和D4同时导通,输入的电流母线电压Vin反向加在变压器的初级的励磁电感上,初级的励磁电感在Vin作用下励磁电流从最大值线性的减小到0,完成变压器磁通的复位,并将储存在电感中的能量返回到输入端,没有功率损耗,从而提高电源的效率;此外,每个功率开关管理论的电压应力为直流母线电压,这样就可以选取相对较低的额定电压的功率MOSFET 管,成本低,而且额定功率较低的功率MOSFET的导通电阻小,因此可以进一步的提高效率。所以双管正激变换器广泛的应用于台式计算机的主电源及大功率通信电源、变频器等三相电路的辅助电源中。本文将讨论在一些教材和资料中所阐述的这种拓朴结构基于理想模型的工作原理的缺陷,并

单表格模板找正方法

欢迎阅读单表对中法 单表对中法是将对中表架和百分表分别固定在相邻两机器的半联轴器上,然后各自转动两轴或同时转动两轴,通过百分表的读数来计算和调整对中状况。该法的优点是:直观明确、表架简单、计算调整方便。由于它从根本上消除了转子轴向窜动对对中读数的影响,因此对中精度较高,对大型多台单机组成的机组特别适用。 (一)单表法对中的基本程序: 1.测定对中表架(以下简称表架)的挠度,将挠度值在表架上打永久性标志。对中时用实测值减去表架挠度。即为表的实际读数值,底部的读数值应减去挠度的二倍,左右的读数应减挠度。 2.将相邻机器的两半联轴器沿圆周做出四等分标志(见附图5.1) b 图 3. 4.b2、b3 “负”。5. 6. 1.计算法 1)用计算法调整轴(A)支脚垫片调整量时应先测出D、Y、Z之值(见附图5.2),并用Ly和Lz分别表示前后支脚的调整量。 这种计算方法只是先将两轴找成一条直线,在实际调整时还应将各支脚处的膨胀量或收缩量考虑进去。 图5.2单表对中示意图 2)计算公式: 式中L——机器支脚在垂直和水平方向的调整值,即 计算结果为正值时应加垫;为负值应减垫;水平方向只是用调节螺钉调整中心偏差而不是增减垫片。A——两机器在垂直方向(A垂)和水平方向(A水)百分表读数的代数和;

其中:A垂=a3+b3 A水=a2-a4+b2-b4 C——调整轴(A)支脚中心与基准轴(B轴)半联轴器上百分表读数平面间的距离(Y,Z)和两百分表读数平面距离(D)之比,即Cy=Y/D或Cz=Z/D。(见附图5.2) B——基准轴在垂直方向(B垂)和水平方向(B水)百分表读数的代数和; 其中:B垂=b3-b1 B水=b2-b4 2.作图法 单表对中作图法是在单表对中计算法的基础上发展起来的,它的最大优点是简单,直观、方向性好,尤其是在垂直面需要预留垫膨胀量及水平面上需要留出水平偏差时,这一优点更加突出。缺点是比例不当时,误差较大。下面以垂直方向的调整为例介绍作图法的步骤。 1) 5.3); 2 A1、A2A3和 B3 3 A4轴与A 4 B轴中心偏差= 2,A轴中心偏差= 2 把各轴中心偏差值分别标在画有安装曲线的座标纸上,得出C、D两点。连接C、D两点成一直线并向A轴侧延长,与A轴支座处垂直线分别交于E、F两点,此DEF线(虚线)即是A轴中心调整前实际所处的位置线(见附图5.5) 图5.5调整前的实际位置曲线

变压器计算表

由变换器预定技术指标可知变压器初级侧电压 Vin(min)=200V,Vin(max)=380V, 预设效率85%η=,工作频率65kHz 电源输出功率P(out)=24V*1A=24W 变压器的输入功率P(in)=P(out)/0.8=30W. 根据面积乘积法来确定磁芯型号,为了留有一定裕量,选用锰锌铁氧体磁芯EFD30,有效截面积269e A mm = 因为所选的MOS 管的最大耐压值max 600mos V V =。在100 V 裕量条件下所允许的最大反射电压 V f =V mosmax -V dcmac -100=600-380-100=120V 最大占空比 D max =V f /(V dcmin +V f )=120/(200+120)=0.375 初级电流 Ip=2*Pin/D (max)*V dcmin =2*30/(0.375*200)=0.8A 初级最大电感量 Lp=(D (max)*V dcmin )/f*Ip=0.375*200/65*0.8=1.4mH 初次级匝数比 N 1=V f /V o =120/24=5 初级匝数

5832 .191120106928.018.04.11033==????=?=e w P P P A B k I L N 其中,磁感应强度B =0.28 T ;由于此变换器设计在断续工作模式k=1(连续模式k=0.5) 磁芯气隙 ()270.4100.015p e g p N A l cm L π-= ?≈ 5V--次级匝数 6.11==n N N P S 辅助绕组匝数 6.8158.512s a a o N V N V ?==≈=8.2

联轴节单表找正

1、单表对中找正的装架示意图(图示为单表双打) 2、使用单表双打对中法的前提条件: S—两转子轴头之间的距离 D—联轴节的外径 前提条件:S≥D/2 轴端距离越大,联轴节的直径越小,计算就越准确,当S≥D/2时,单表双打对中法对张口的敏感性强,对中的精度可以达到更高的水平。 联轴节直径比较大,端面跳动显著,建议用三表法(或双表法) 联轴节直径比较小,端面跳动较小,建议用单表法,单表法适用于长联轴节(指中间接筒较长)设备对中。 3、单表双打对中法的数据记录规定 当把表架固定在A转子的轴头上,表杆头触到B转子的联轴节的外圆上时,如(E)所示,叫A打B,记A →B 。当把表架固定在B转子的轴头上,表杆头触到A转子的联轴节的外园上时,如(F)所示,叫B打A,记B →A 。 记录如下: 在两次打表的过程中,盘车时的旋转方向必须相同,在记录时 四个方向的数据要一一对应,便于下一步进行计算和张口方向的判断。 4、数据有效性判则: (1)数据要“园”。当我们取在0°时表的读数为零,盘表一周回到0°位置时,表的读数要回零。否则,我们称数据不“园”,为无效数据,要查找原因。 造成数据不园的原因: A、百分表不准(先检查表是否回零) B、表架没有拧紧(用手指轻敲表架,看表针是否转动) C、磁力表座的磁力不够,未吸牢(同上) D、联轴节的外圆不园,盘车时 两联轴节没有转动相同的角度。(确保转动相同的角度) (2)遵守数据有效性判则: a1﹢a3=a2﹢a4 b1﹢b3=b2﹢b4 5、关于径向偏差的测量: 为什么两转子径向的实际偏差值等于表值的一半?(即为什么实际偏差值是表值的一半?) 如图所示:以垂直方向为例,假设A、B两转子的高低差为h,联轴节的外圆半径为R。 当我们以A转子的轴心为基准,可测得B转子联轴节的最高点的实际高度为: L1=R-h

基于UC3844的多路输出双管正激电源设计

第十七届全国电源技术年会论文集 基于UC3844的多路输出双管正激电源设计 石晓丽张代润黄念慈郑越四川大学电气信息学院(成都610065) 摘要:介绍了一种基于UC3844集成芯片实现双管正激多路输出的电路,分析了电路的工作原理,并介绍了电路启动和控制设计方法,该控制方法简单,成本低,工作频率高,实用性强,同时设计了两种输出方案来满足不同需要,与一般的双管正激相比有较高的实用价值,实验证明效果良好。 叙词:双管正激多路输出开关电源 1引言 在中等容量的开关电源中,双管正激变换器有比较明显的 优势,它克服了单管正激变换器开关管电压应力过高的缺点,而 且不需要特殊变压器磁复位电路。更重要的是,与全桥变换器 和半桥变换器相比,其在结构上有抗桥臂直通的优点,因此已成 为应用最为普遍的电路拓扑结构。本文设计了一种采用 UC3844控制的多路输出双管正激开关电源。UC3844是一种电 流调制的PWM控制器,实现电压电流双闭环控制,芯片内阻较 大(30k),启动电流小(小于lmA),因此在高压输入时仍然可以 使用大电阻分压来进行启动,直接采用变压器输出端反馈,控制 电路简单,电路输出采用LM350调整电压精度。 2变换器工作原理 本文设计的变换器输出功率200W,工作频率50kHz,工作范围400V~600V,输出4路分别为24V、±12V和5V。 图l是变换器的原理图,主电路是双管正激变换器,开关管Q1和Q2同时导通,能量通过高频变压器传输到输出侧,经整流输出给负载;开关管关断时,变压器能量通过续流二极管D。和D2回馈到输入端,变压器磁芯复位。 Q和Q采用功率M喽;H『r作为功率开关管。开关管与瞬态电压抑制器(TVS)并联,可靠保护开关管。R3、G、b构成高频变压器原边缓冲电路,用以限制开关管漏极因高频变压器的漏感而可能产生的尖峰电压,岛选用超快恢复二极管,恢复时间为75ns。变压器原边的直流输入电压、原边绕组的感应电压以及由变压器的漏感而产生的尖峰电压,三者叠加在一起,其值可能超过M哽;既丌的额定电压,所以必须在开关管的DS极增加钳位电路和吸收电路,用以保护功率M瞪;H『r不被损坏。R。、Rz、C1、聩与R、R5、c3、D4构成了两个开关管的缓冲电路,D3和D4选用超快恢复管,其最大反向耐压值为700V,恢复时间为30ns。 输出部分采用半波加续流二极管整流,二极管选用超快恢复MUR820,额定值为8A/200V,恢复时间为30ns。 3控制电路的设计 UC3844电流PWM模式集成控制芯片广泛用于中小功率的13(3-13(3开关电源,UC3844内部主要由5.0V基准电压源、振荡器、降压器、电流检测比较器、PWM锁存器、高增益E/A误差放大器和用于驱动功率MOSFET的大电流推挽输出电路等 图1由UC3844控制的多路输出双管正激开关电源 构成,启动/关闭电压阀值为16v/10V,输出最大占空比为50%,工作频率0~500kHz,驱动能力达士1A。 R2 R4 图2UC3844的典型外部接线图 UC3844典型外围电路如图2所示。UC3844的内阻大约30k,它的启动电压可以由主电路输入电压经过Rt、Rz、R。、R(芯片内阻)分压而得到,由图2可以知道,A点电压的计算公式为: UA2i孺Rl‰ UC3844的启动电压为16V,式中R一30k,R2—20k,R4—4.7k,可计算出,当R-一300k时,%一400V电路开始工作。UC3844启动时电流不到lmA,启动过程中电阻R-所消耗的功率大约为: Pea=r×R1一(10-3)2×300×103—0.3W在双管正激变换器中,两开关管是同步的,因此采用变压器分两路来同时给开关管驱动信号,接线如图3所示。UC3844正 ?189?

单表法找正压缩机联轴器

单表法找正压缩机联轴器 1前言 压缩机在安装时要求转子不能出现太大的振动(在允许范围内),对准轴的目的是定位驱动机械与被驱动机械的关系,以避免传送不希望的应力。恰当的对准应该提供与轴中线最小的斜度和最小偏移。不正确的对准是减少轴承、联轴器、轴和齿轮寿命的主要原因。否则会减少压缩机的寿命或引发大的事故无法运行。在压缩机机体找正以后为了达到精确对中的要求,通过联轴器的对中来实现。通过联轴器的对中目前有三表法、两表法、单表法和激光法等。其中单表法的使用越来越普遍和实用。尤其在有压缩机和它的驱动机(特别是气轮机)之间热伸长的差别有要求时,采用单表法有其它方法不能替代的优点,能在冷对中时预留伸缩量,使热态工作时达到精确的对中效果,实现机器的平稳运行。下面以空分装置氮压机联轴器找正为例浅谈单表法找正压缩机联轴器。 2方法 压缩机安装就位以后,把驱动机粗略地与压缩机对准。在固定压缩机连接轮毂时,制作两个托架给驱动机轮毂上的刻度盘千分表提供刚性支持,如图 1 所示。把一个托架牢固地固定到压缩机的轮毂上,把千分表指向驱动机轮毂外缘。把另一个托架固定到带刻度盘千分表的驱动机轮毂上,千分表指向压缩机轮毂的外径。用手转动驱动机的轴并增加垫片抬高驱动机。 要考虑在运行温度下压缩机和驱动机之间热伸长的差别。在联轴器之间安装联轴器垫片。某些垫片和轮毂已经动态平衡。匹配标志的对准将保证良好的平衡。

2.1对准检查 灌浆凝固和拧紧螺丝后,检验压缩机是否已经保持水平并与驱动机对准。再按照上述说明检查轴的对准。 初次对准:首先利用中心线等确定齿轮箱(在“双齿轮箱”设备上最靠近驱动机)的位置。然后,用暗销固定齿轮箱就位。 接着的对准核对:首先精确地定位先前用暗销固定的齿轮箱(带着它的暗销)提供附加对准工作的参照。 ( l )压缩机必须被螺钉牢固地固定并用暗销结合到它的底座上。 ( 2 )驱动机的脚和底板安装支点必须相当的平,清洁和没有毛刺。 ( 3 )驱动机应该在正确的轴向距离上粗略地对准压缩机。在驱动机支持垫块的孔和固定螺钉之间必须留有足够的空隙,以便驱动机活动。 ( 4 )所有的薄垫片必须清洁,没有毛刺和平整上下面平行。 ( 5 )驱动机的脚和底板支点之间的空隙必须在4个支点上完全用薄垫片塞满,以避免损坏或扭曲驱动机机架。所有固定螺钉必须均匀地拧紧,使力矩达到最终数值。 ( 6 )固定刻度盘千分表的托架必须制造得具有刚性,而且可以牢固的固定到联轴器的轮毂上,如图 1 所示。 这些托架的任何变形或移动,刻度盘千分表读数将产生错误。 当使用两只刻度盘千分表完成驱动机和压缩机垂直的和水平的对准时,按照规定的方式读取所有刻度盘千分表的读数。 ( l )在图2所示的位置上设置零点。 ( 2 )读取的所有读数应该尽可能的接近垂直中心线和水平中心线。如果读数不在这些中心线上读取,读数越大,初次对准越差,误差就越大。 ( 3 )为了方便读取精确的读数,在法兰盘的表面用粉笔,蜡笔或标志笔,做联轴器轮毂水平中心线和垂直中心线的记号。(使用法兰盘螺钉孔作为参照。)使用这些准线确定刻度盘千分表的位置。轴总是朝着一个方向转动。 ( 4 )用核对零点结束读数。如果千分表在原始起点不能够读零,复位到零重新读取读数。 ( 5 )总是读取4个读数,间隔90o,核对精确度。垂直和水平读数的代数和应该等于零。如果两个合计数差别每英寸大于0 . 002 ,检查托架,并读取另外的读数。 ( 6 )一些简单测量方法要求使用在表2中给出的公式。对于所有的情况,应用下列字符,如图 2 所示:

双管正激变换器设计之一变压器篇(1.2KW)

1200W双管正激变换器设计之一——变压器设计 正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法: 规格: 输入电压Vin=400V(一般在输入端会有CCM APFC将输入电压升压在稳定的DC400V左右) 输出电压Vout=12V 输出功率Pout=1200W 效率η=85% 开关频率Fs=68KHz 最大占空比Dmax=0.35 第一, 第一,选择磁芯的材质 选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下: 因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB

的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T 第二,确定磁芯规格 根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku) 其中: Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数 对正激变换器,视在功率Ps=Pout/η+Pout 电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2 铜窗口占用系数Ku取0.2 ΔB=0.20T,J=600A/cm2,Ku=0.2 代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4 查磁芯规格书,选用磁芯ETD49,其相关参数如下: ETD49的AP=Aw*Ae=375*213=79875mm4=7.9875cm4<7.962cm4,即,OK。 第三,计算匝比、匝数 1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf) 其中Vf为输出二极管正向压降,取0.8V 得匝比N=(400*0.35)/(12+0.8)=10.9375, 取匝比N=11验算最大占空比Dmax, 最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.352 2. 根据公式Np=Vin*Ton/(ΔB*Ae) 导通时间Ton=Dmax*Ts,周期Ts=1/Fs*106 得初级匝数

单表找正座标作图法

单表找正座标作图法-----调整压缩机支座垫片找正法 1.单表找正法 单表找正法是利用百分表支架和一块百分表,交替地安装在相邻两半联轴节上,转动两轴分别测出对应联轴节上的径向位移偏差(或用两组百分表支架同时得出两组读数)。得出两组实际的百分表读数。根据读数,可计算法或作图法,确定被调整轴各支座的调整量和调整方向。通过调整,使机组达到对中要求。见图G1、图G2。 图G1 单表法对中示意图 图G2 用双百分表支架单表法对中示意图 单表找正步骤: (1)将相邻两个半联轴节沿圆周划出四等分标记。

(2)把百分表支架装在汽轮机轴的半联轴节上,装上百分表,使测量头与压缩机轴端的半联轴节外圆相接触,并使表的测量头对准标记a1的位置。见图G3。 图G3 单表找正对中示意图 b1 a1 b 4 R b2a4R a2 b3 a3 汽轮机侧找正读数压缩机侧找正读数 (3)按转动方向旋转汽轮机轴(或同时旋转两轴)。记录百分表在压缩机半联轴节上测出的a1、a2、a3、a4四个读数。检查读数应使a1 + a3 = a2 + a4(偏差应小于0.02mm)。若不等,查明原因后重新测量。百分表读数是对中时进行调整的依据,因此,要求百分表读数应准确无误。还应注意数值的“正”或“负”。 (4)把百分表支架换装在压缩机轴端的半联轴节上,用同样方法测出b1、b2、b3、b4四个读数。 (5)确定调整量和调整方向。 压缩机在垂直方向上两支座的调整量及水平位置的左右移动量用座标

作图法来确定。 (6)垂直方向调整量作图步骤: a.画出机组运转时的热态线,见图G4,根据机组各轴向尺寸,标出各相应位置。 b.画出冷态找正曲线。 在热态曲线上,通过各支座点、轴承点等分别作热态线的垂直线,按比例将制造厂提供的或计算出的轴中心在各处所要求的预留膨胀量数值标注在各自的垂直线上。 图G4 透平—压缩机冷态找正曲线 透平冷态找正曲线 例1. 乙烯裂解装置C300透平压缩机的冷态找正调整。 裂解气压缩机级的汽轮机在前后轴承处轴中心的膨胀量,按照机体受热膨胀计算公式计算后分别为0.29mm和0.336mm(环境温度为10°C)。制造厂技术文件给出压缩机低压缸支座处轴中心位移数值分别为0.15mm和0.12mm。在

对中找正理论计算

旋转机械的联轴器找正 联轴器的找正是机器安装的重要工作之一.找正的目的是在机器在工作时使主 动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要. 两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对 中就更困难.各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,机器产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因.因此,在设计机器时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的.从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量。 1.联轴器找正时两轴偏移情况的分析 机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现四种情况,如图1所示。图1联轴器找正时可能遇到的四种情况 根据图1所示对主动轴和从动轴相对位置的分析见表1。 表1联轴器偏移的分析

2.测量方法 安装机器时,一般是在主机中心位置固定并调整完水平之后,再进行联轴器的找正。通过测量与计算,分析偏差情况,调整原动机轴中心位置以达到主动轴与从动轴既同心,又平行。联轴器找正的方法有多种,常用的方法如下: (1)简单的测量方法如图2所示。用角尺和塞尺测量联轴器外圆各方位上的径向偏差,用塞尺测量两半联轴器端面间的轴向间隙偏差,通过分析和调整,达到两轴对中。这种方法操作简单,但精度不高,对中误差较大。只适用于机器转速较低,对中要求不高的联轴器的安装测量。 图2 角尺和塞尺的测量方法

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

轴系找正(自用)

联轴器的找正 各位考官,大家好! 今天我要讲的主题是联轴器的找正,联轴器的找正是设备安装的重要工作之一。找正的目的是设备在工作时使主动轴和从动轴两轴中心线在同一直线上,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。 两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对中就更困难,各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,设备产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因。因此,在设计时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的。从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量。 一、联轴器找正时两轴偏移情况的分析 机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现如图一所示四种情况: 图一

根据图一所示对主动轴和从动轴相对位置的分析见表1。 表一 二、测量方法 安装或维修设备时,一般是在主机(减速箱)中心位置固定并调整完水平之后,再进行联轴器的找正。通过测量与计算,分析偏差情况,调整原动机(电机)轴中心位置以达到主动轴与从动轴既同心,又平行。 联轴器找正的方法有多种,常用的方法如下: 1)角尺和塞尺测量法 用角尺和塞尺测量联轴器外 圆各方位上的径向偏差,简单的 测量方法如图二所示。用塞尺测 量两半联轴器端面间的轴向间隙 偏差,通过分析和调整,达到两 轴对中。这种方法操作简单,但 精度不高,对中误差较大。只适 用于机器转速较低,对中要求不 高或粗排时联轴器的安装测量。图二

机泵找正方法

泵找正方法 联轴器的找正是机器安装的重要工作之一.找正的目的是在机器在工作时使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要. 两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对中就更困难.各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,机器产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因.因此,在设计机器时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的.从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量. 联轴器找正时两轴偏移情况的分析 机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现四种情况,如图1所示。根据图1所示对主动轴和从动轴相对位置的分析见表1。 图1联轴器找正时可能遇到的四种情况表1联轴器偏移的分析 单表法 它是近年来国外应用日益广泛的一种联轴器找正方法。这种方法只测定联轴器轮毂外圆的径向读数,不测量端面的轴向读数,测量操作时仅用一个百分表,故称单表法。其安装,测量示意图如图8 此种方法用一块百分表就能判断两轴的相对位置并可计算出轴向和径向的偏差值。也可以根据百分表上的读数用图解法求得调整量。用此方法测量时,需要特制一个找正用表架,其尺寸,结构由两半联轴器间的轴向距离及轮毂尺寸大小而定。表架自身质量要小,并有足够的刚度。表架及百分表均要求固紧,不允许有松动现象。图8便是两轴端距离较大时找正用表架的结构示意图。

双管正激同步整流变换器

本科毕业设计(论文) 双管正激同步整流变换器 *** 燕山大学 2012年6月

本科毕业设计(论文) 双管正激同步整流变换器 学院(系):里仁学院 专业:08应电2班 学生姓名:*** 学号:*** 指导教师:*** 答辩日期:2012/6/17

燕山大学毕业设计(论文)任务书学院:系级教学单位: 学号*** 学生 姓名 *** 专业 班级 08应电2班 题目题目名称推挽正激式DC-DC变换器的设计 题目性质 1.理工类:工程设计(√ );工程技术实验研究型(); 理论研究型();计算机软件型();综合型() 2.管理类(); 3.外语类(); 4.艺术类() 题目类型 1.毕业设计(√ ) 2.论文() 题目来源科研课题()生产实际()自选题目(√) 主要内容随着电源技术的发展,低电压、大电流的变换器因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激式和反激式有电路拓扑结构简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。与正、反激式相比,推挽式变换器变压器利用率高,输出功率较大,基本不存在励磁不平衡的现象。因此,一般认为推挽式变换器适用于低压,大电流,功率较大的场合。应用SG3525设计一套用于正激电路的低压大电流变换器及其控制系统,并通过Pspice仿真验证其闭环控制性能。 基本要求1. 了解正激变换器的基本原理,建立推挽正激式低压大电流DC-DC变换器的Pspice仿真模型; 2. 基于SG3525的特性设计PI控制闭环系统,给出控制参数的设计过程; 3. 仿真验证控制系统的性能。 参考资料1. 基于SG3525控制的双管正激变换器 2. SG2525A-REGULA TING PULSE WIDTH MODULA TORS 3. 脉宽调制电路SG3525AN原理与应用 4. SG3525在开关电源中的应用 周次第~周第~周第~周第~周第~周 应完成的内容查阅资料、 分析原理 建立正激式 DC-DC变换器的 Pspice仿真模型 闭环控制参 数的设计与 整定; 仿真验证;撰写论文 准备答辩 指导教师: 职称:年月日系级教学单位审批: 年月日

相关文档
最新文档