大地电磁测深一维正演——地电学实验报告.讲义

大地电磁测深一维正演——地电学实验报告.讲义
大地电磁测深一维正演——地电学实验报告.讲义

实验报告

课程名称:地电学

课题名称:大地电磁层状模型数值模拟实验专业:地球物理学

姓名:xx

班级:06xxxx

完成日期:2016 年11月26日

目录

一、实验名称 (3)

二、实验目的 (3)

三、实验要求 (3)

四、实验原理 (3)

五、实验题目 (4)

六、实验步骤 (4)

七、实验整体流程图 (8)

八、程序及运行结果 (9)

九、实验结果分析及体会 (14)

一、实验名称

大地电磁层状模型数值模拟实验

二、实验目的

(1)学习使用Matlab编程,并设计大地电磁层状模型一层,二层,三层正演程序

(2)在设计正演程序的基础上实现编程模拟

(3)MATLAB软件基本操作和演示

.

三、实验要求

(1)利用MT一维测深法及其相关公式,计算地面上的pc视电阻率和ph相位,绘制视电阻率正演曲线和相位曲线并分析。

(2)利用Matlab软件作为来实现该实验。

四、实验原理

(一)、正演的概念:

正演是反演的前提。在实际地球物理勘探中,一些模型的参数是不容易确定的,如埋藏在地下的地质体模型的岩性、厚度、产状等参数,我们把这些描述未知模型的参数的集合定义为“模型空间”。为了获得这些模型参数,可以利用那些可以直接观测的量来推测,而这些能够直接观测的量的集合则被称作“数据空间”。如果把模型空间中的一个点定义为m,把数据空间中的一个点定义为d,按照物理定律,可以把两者的关系写成

式中,G为模型空间到数据空间的一个映射。我们把给定模型m求解数据d的过程称为正演问题。

(二)、MT一维正演模型简介

大地电磁法作为一种电磁类勘探方法,它的模型参数为一组能够表征地球物理勘探目标体的电性参数,即目标体电阻率和相应层的层厚度。所谓一维模型,即介质在三维空间中沿两个方向上模型参数是不变的,只在另一个方向上特征属

性会变化。在此一维模型即指水平层状一维介质,即介质只在沿垂直于地面上的方向上电性(电阻率)变化,在另外两个方向上保持不变的典型特征,所以就构成一组电阻率不同的电性层,抽象出来即是一组由电阻率及对应的层厚度构成的电性层数。

根据正演问题的概念,构成正演的元素有3个,即模型、测量数据和模型到数据的映射。对模型来说比较简单,即为水平层状一维介质模型。我们知道大地电磁法属于一种天然的交变电磁场的地球物理勘探方法,所以它的测量数据一般为大地电磁场的电场和磁场分量。而将以上两者联系起来的关系—映射则是二者之间的物理规律,由于大电磁场场源的性质,可将大电磁场看作是垂直入射的平面波,通过地下介质传播到地面上。在这个过程中,大地电磁场遵循电磁场的普遍规律,即Maxwell方程组。在大地电磁法中,我们利用在地面上的视电阻率和相位进行后续的解释工作,所以正演的数据空间需转化为视电阻率和相位。综上所述,MT一维正演即求解水平层状一维介质对垂直入射平面波在地面上的视电阻率和相位响应。

五、实验题目

1、利用MT一维测深法及其相关公式,计算地面上的pc视电阻率和ph相位。

2、绘制视电阻率正演曲线。

3、绘制相位曲线。

六、实验步骤

大地电磁法一维正演具有以下的基本推导思路:从大地电磁场满足的基本方程—麦克斯韦方程组出发,结合大地电磁场的特点,推导出单一方向的波动方程;然后,结合水平层状介质的边界条件,推导出能够表示地面波阻抗的递推式;最后根据视电阻率和相位的定义式,得出水平层状介质的大地电磁场响应函数(视电阻率和相位)。

我们知道麦克斯韦方程组有4个基本方程构成,另外还有3个本构关系将4个基本方程联系起来,其具体的形式如式:

其中E和H为电场强度和磁场强度,j为电流密度,D为电位移矢量,B为磁感应强度,σ、μ、ε分别为电导率、磁导率和介电常数。

由于大地电磁法应用的频率都很低,一般f<10hz,这时在导电介质的位移电流?D/?t与传导电流j相比可以忽略不计。所以麦克斯韦方程组可以简化为以下形式:

考虑在谐变场的情况下,对上式前两式两边取旋度,并根据矢量分析公式可得出波动方程的形式

由于是一维层状介质,所以在笛卡尔坐标系下电磁场在水平方向上是不变的,故只需研究沿Z轴向下方向上的电磁场分量。由波动方程上式知:

其中Km为第m层的复波数,

求解得:

所以,波阻抗Z可求得为:

其中Z0m为第m层的特征阻抗:

我们知道同一层内部积分常数Am和Bm是相同的,因此层内不同深度处的波阻抗

可以通过积分常数联系起来。为此,将上作如下变换:

?则有:

若取底面处波阻抗代入上式中求出Bm/Am,然后代入上上式求取顶面的波阻抗,则可把同一层顶面和底面的波阻抗联系起来,并消去积分常数Am和Bm。记Zm 为第m层的顶面阻抗,底面的波阻抗等于第M+1层顶面的波阻抗,则结果如下:

将上式代入阻抗的定义式:

其中

同样将上式写成如下形式:

其中R m为第m层的反射系数。所以就得到了顶面波阻抗的递推公式:

最底层为n层。

而正演则是要求出在地面上的视电阻率和相位响应,对相位来说即是波阻抗相位,也就是波阻抗所对应的复数的幅角。对视电阻率来说,根据视电阻率的定义有:

所以就有n层层状介质的视电阻率响应为:

由特征阻抗公式及变换式可得:

从以上的递推过程可以看出,根据反射系数(波阻抗)的递推公式可以计算出地面上的视电阻率表达式以及阻抗相位的表达式,可用于进一步的程序实现。

七、实验整体流程图或算法

为了测试该MT一维正演程序的应用效果,考虑选取几种典型的地电断面作为正演程序的输入模型,即二层模型、三层模型。根据电性层各层电阻率的相互关系,二层模型可以分为G型和D型,而三层模型则分为A型、H型、K型和Q型这四种类型,至于多层层状(大于三层情况下)介质则可以分解为上述的几种简单类型。

我们已经知道,以上所述几种典型模型的视电阻率响应函数特征,如果将以上模型输入到本次所写的程序中,则可以作为测试本程序是否可行的依据。

大地电磁一维测深模拟输入输出模块

大地电磁一维测深运算模块

八、程序及其运行结果

MT一维测深运算程序代码:

G型曲线为两层模型曲线,其各层电阻率的关系为ρ1<ρ2,程序正演时取ρ1=100Ω﹒m,ρ2=1000Ω·m,h1=1000m。正演理论结果如下图。我们知道周期T和深度成正比,则从图上可以看出G型曲线在短周期视电阻率较小,随着周期T变长,视电阻率也相应的增大,但G型曲线仍存在尾支渐进线,渐近线与第二层的真电阻率相近:

D型:D型曲线为两层模型曲线,其各层电阻率的关系为ρ1>ρ2,程序正演时取ρ1=1000Ω·m,ρ2=100Ω·m,h1=1000m。正演理论结果如下图2-4。从图上可以看出D型曲线在短周期视电阻率较大,随着周期T变长,视电阻率也相应的减小,但D型曲线仍存在尾支渐进线,渐近线与第二层的真电阻率相等。

A型:A型曲线为三层模型曲线,其各层电阻率的关系为ρ1<ρ2<ρ3,程序正演时取ρ1=10Ω·m,ρ2=100Ω·m,ρ3=1000Ω·m,

h1=h2=1000m。正演理论结果如下图2-5。从图上可以看出A型曲线在短周期视电阻率较小,随着周期T变长,视电阻率也相应的增大,但A 型曲线仍存在尾支渐进线,渐近线与第三层的真电阻率相等。从以上特征来看,A型与G型曲线有相似的特点。

K型:K型曲线为三层模型曲线,其各层电阻率的关系为ρ1<ρ2>ρ3,程序正演时取ρ1=10Ω·m,ρ2=100Ω·m,ρ1=10Ω·m ,h1=h2=1000m。正演理论结果如下图2-6。从图上可以看出K型曲线在短周期视电阻率较小,随着周期T变长,视电阻率也相应的增大,达到一峰值后逐渐减小,这一峰值与第二层的电阻率有关,但并不等于该电阻率,说明该峰值还受相邻层的影响。但K型曲线仍存在尾支渐进线,渐近线与第三层的真电阻

率相等。

H型:H型曲线为三层模型曲线,其各层电阻率的关系为ρ1>ρ2<ρ3,程序正演时取ρ1=100Ω·m,ρ2=10Ω·m,ρ3=100Ω·m,h1=h2=1000m。正演理论结果如下图。从图上可以看出H型曲线在短周期视电阻率较大,随着周期T变长,视电阻率也相应的减小,达到一个极小值后逐渐增大,这一极小值与第二层的电阻率有关。但H型曲线仍存在尾支渐进线,渐近线与第三层的真电阻率相等。另外,H型曲线与K型曲线,不仅在视电阻率曲线上有相反的特征,在相位曲线上亦如此。

Q型:Q型曲线为三层模型曲线,其各层电阻率的关系为ρ1>ρ2>ρ3,程序正演时取ρ1=1000Ω·m,ρ2=100Ω·m,ρ3=10Ω·m ,

h1=h2=1000m。正演理论结果如下图。从图上可以看出Q型曲线在短周期视电阻率较大,随着周期T变长,视电阻率也相应的减小,但Q型曲线仍存在尾支渐进线,渐近线与第三层的真电阻率相等。

九、实验体会

实验中设计了几个模型参数,经过正演计算以及matlab成图,验证了程序的正确性,通过整个过程的实践,对大地电磁一维正演有了全新的认识。另外通过改变模型参数,深刻理解了模型参数变化和正演曲线的相关关系,对大地电磁的学习有很大的帮助。

通过本次实验我们进一步的熟悉了Matlab编程,学习了如何利用大地电测测深法及其相关公式来计算视电阻率,绘制视电阻率测深和相位曲线并分析。并加

深了对课堂上所学内容的理解。

我国大地电磁测深新进展及瞻望

第17卷 第2期 地 球 物 理 学 进 展 V ol.17 N o.2 2002年6月(245~254) PROG RESS I N GE OPHY SICS June 2002我国大地电磁测深新进展及瞻望 魏文博 (中国地质大学,北京100083) [摘 要] 简要回顾了上世纪60—80年代,我国大地电磁测深工作的起步和发展,较全面地介绍了90年代以来的新进展,并瞻望了新世纪的发展方向. [关键词] 大地电磁测深仪器;数据采集;数据处理和反演;应用;新进展 [中图分类号] P631 [文献标识码] A [文章编号] 1004229032(2002)022******* 0 引 言 电法勘探是勘探地球物理学的重要分支.如果从1815年P.F ox在硫化矿体上观测到自然电场[1]算起,电法勘探已有近200年历史;但真正得到发展,则不到100年时间.20世纪初,世界各国的工业迅速发展,矿产原料需求量急剧增加,迫切需要先进的勘查技术;因而,促使电法勘探从科学研究进入实用阶段,并得以迅速发展.显然,电法勘探的发展是和工业生产水平、社会经济状况,以及科学技术进步密切相关的.发展到今天,电法勘探在勘探地球物理学各分支中,方法技术最多、应用面最广,其应用领域遍及固体矿产、油气和水资源勘查,工程勘查,环境监测,及地学基础理论研究等各方面.在所有的电法勘探方法中,发展最快的是大地电磁测深. 大地电磁测深是20世纪50年代初由A.N.T ikhonov[2]和L.Cagnird[3]分别提出的天然电磁场方法.60年代以前,由于技术难度大,该方法的研究进展缓慢;但它具有探测深度大、不受高阻层屏蔽的影响、对低阻层反应灵敏等吸引人的优点,因而对该方法的研究始终为人们所关注.70年代以来,由于张量阻抗分析方法的提出,方法理论研究出现突破性进展,并随着电子、计算机、信号处理技术突飞猛进的发展,大地电磁测深无论在仪器研制,或是数据采集、处理技术与反演、解释方法等方面的研究,都融合了当代先进的科学理论和高新技术,这使大地电磁测深有了长足的进步,因此成为电法勘探众多方法技术中最成熟的方法. 近年来,大地电磁测深方法不断得到完善,应用效果明显改善,成绩斐然,引人瞩目.在这新世纪开端,我们回顾它在我国的发展历程,总结近些年取得的进展,瞻望新世纪未来的方向,这将有益于大地电磁测深在我国的进一步推广应用,取得更辉煌的成就. 1 回 顾 我国的大地电磁测深工作始于20世纪60年代初期.至今,经历了60年代的引进、探索时期,70—80年代的研究、试验时期和90年代的迅速发展、推广应用时期. 20世纪60年代初期,在顾功叙院士的大力倡导下,原中国科学院兰州地球物理研究所 [收稿日期] 2001212226; [修回日期] 2002203225. [基金来源] 中国科学院资源与环境重大项目(K29512A12401). [作者简介] 魏文博,男,1945年9月生,福建泉州人,1969年毕业于原北京地质学院地球物理勘探系,现任中国地质大学(北京)教授、博士生导师,主要从事电法勘探、海洋电磁探测及大陆动力学研究.

浙大电工电子学实验报告实验二单向交流电路

实验报告 课程名称: 电工电子学实验 指导老师: 实验名称: 单向交流电路 一、实验目的 1.学会使用交流仪表(电压表、电流表、功率表)。 2.掌握用交流仪表测量交流电路电压、电流和功率的方法。 3.了解电感性电路提高功率因数的方法和意义。 二、主要仪器设备 1.实验电路板 2.单相交流电源(220V) 3.交流电压表或万用表 4.交流电流表 5.功率表 6.电流插头、插座 三、实验内容 1.交流功率测量及功率因素提高 按图2-6接好实验电路。 图2-6 (1)测量不接电容时日光灯支路的电流I RL 和电源实际电压U 、镇流器两端电压U L 、日光灯管两端电压U R 及电路功率P ,记入表2-2。 计算:cos φRL = P/ (U·I RL )= 0.46 测量值 计算值 U/V U L /V U R /V I RL /A P/W cos φRL 219 172 112 0.380 38.37 0.46 表2-2 (2)测量并联不同电容量时的总电流I 和各支路电流I RL 、I C 及电路功率,记入表2-3。 并联电容C/μF 测量值 计算值 判断电路性质 (由后文求得) I/A I C /A I RL /A P/W cos φ 0.47 0.354 0.040 0.385 39.18 0.51 电感性 1 0.322 0.080 0.384 39.66 0.56 电感性 1.47 0.293 0.115 0.383 39.63 0.62 电感性 2.2 0.257 0.170 0.387 40.52 0.72 电感性 3.2 0.219 0.246 0.387 40.77 0.85 电感性 4.4 0.199 0.329 0.389 41.37 0.95 电感性 表2-3 注:上表中的计算公式为cos φ= P/( I ·U),其中U 为表2-2中的U=219V 。 姓名: 学号:__ _ 日期: 地点:

基本运算电路实验报告

实报告 课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称:基本运算电路设计实验类型:同组学生姓名: 一、实验目的和要求: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 二、实验设备: 双运算放大器LM358 三、实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信 息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠 加到交流电压上,使得交流电的零线偏移 (正负电压不对称),但是由于交流电可 以通过“隔直流”电容(又叫耦合电容) 输出,因此任何漂移的直流缓变分量都不 能通过,所以可以使输出的交流信号不受 失调电压的任何影响。 专业: 姓名: 日期: 地点:紫金港东

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o ,1kHz 0 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o ,1kHz 0 共模抑制比850 3.用积分电路转换方波为三角波 实验电路: 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。 因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变

电路基础实验报告

基尔霍夫定律和叠加定理的验证 组长:曹波组员:袁怡潘依林王群梁泽宇郑勋 一、实验目的 通过本次实验验证基尔霍夫电流定律和电压定律加深对“节点电流代数和”及“回路电压代数和”的概念的理解;通过实验验证叠加定理,加深对线性电路中可加性的认识。 二、实验原理 ①基尔霍夫节点电流定律[KCL]:在集总电路中,任何时刻,对任一结点,所有流出结点的支路电流的代数和恒等于0。 ②基尔霍夫回路电压定律[KVL]:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于0。 ③叠加定理:在线性电阻电路中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加。 三、实验准备 ①仪器准备 1.0~30V可调直流稳压电源 2.±15V直流稳压电源 3.200mA可调恒流源 4.电阻 5.交直流电压电流表 6.实验电路板 7.导线

②实验电路图设计简图 四、实验步骤及内容 1、启动仪器总电源,连通整个电路,分别用导线给电路中加上直流电压U1=15v,U2=10v。 2、先大致计算好电路中的电流和电压,同时调好各电表量程。 3、依次用直流电压表测出电阻电压U AB、U BE、U ED,并记录好电压表读数。 4、再换用电流表分别测出支路电流I1、I2、I3,并记录好电流读数。 5、然后断开电压U2,用直流电压表测出电阻电压U、BE,用电流表分别测出支路电流I、1并记录好电压表读数。 6、然后断开电压U1,接通电压U2,用直流电压表测出电阻电压U、、BE,用电流表分别测出支路电流I、、1并记录好电压表读数。 7、实验完毕,将各器材整理并收拾好,放回原处。 实验过程辑录 图1 测出U AB= 图2 测出电压U BE=

大地电磁测深法作业指导书

大地电磁测深法作业指导书 大地电磁测深法是指可控源音频大地电磁测深(CSAMT)和音频大地电磁测深(AMT)。 1.目的 为了规范和提高大地电磁测深法的勘查工作及其质量,提出该项目的设计、勘查、资料整理和报告编写等方面的要求。 2.适用范围 本作业指导书主要针对地热勘查工作中的适用于大地电磁测深法,其他地质勘查中的大地电磁测深法应遵照相应的规范要求执行。 3.总则 地热勘查工作中的大地电磁测深法工作,必需按本作业指导书和相应的规范要求执行。 设计编写 1.实施步骤 1.1 设计书编写的准备工作(综合研究) 1.1.1 项目实施单位根据有关部门下达的《任务书》,认真研究项目的目标任务,落实设计编写的具体方案,系统收集,分析与任务有关的资料。充分收集测区内所有前人工作成果

资料(包括地质、矿产、物探、化探和遥感图像资料及各种科研成果),详细研究各种资料的可信度和存在问题,了解测区地质构造轮廓及地层、火成岩分布等性质。同时,应注意收集环境地质、水文地质、灾害地质、管道设施及输变电网布局等资料。作到充分利用以往资料,不作重复工作,分析在以往工作成果基础上获得新成果的可能性和新成果的价值,分析方法的有效性,充分利用先进适用的方法技术,获得最大的地质找矿效果。 1.1.2必要时,应在设计前进行现场踏勘和方法有效性试验,其主要内容为: a.实地考察测区地形、地貌、交通及生活条件 b.核对已收集的地质、物化探及测绘资料 c.测定电性参数,并分析它们于勘

查对象的相关性 d.在某些典型地段进行方法有效性试验 1.1.3落实编写部门和任务。编写部门用两天时间起草编写的具体方案,报有关专业地质调查部门审核,经批准后着手设计前的准备工作。 1.2技术设计 1.2.1 CSAMT 装置 AB 接地长导线为发射源,在r>3δ(趋肤深度)的扇形范围内布置测网,通过在接收点同时测量电场和磁场两个互相垂直的水平分量的振幅和相位,计算阻抗视电阻率P E/H 和相位差φ E-H 。装置图如下: A B O ≥3δHy Ex 1.2.2 CSAMT 装置的技术要求 1.2.2.1利用场强单分量视电阻率时,装置必须满足偶极子条件,而利用单一的比值视电阻率时可放宽。 1.2.2.2确定r距(发射源到测量点的距离)的原则是确保勘

基本运算电路实验报告

基本运算电路实验报告 实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: 实验名称: 基本运算电路设计 实验类型: 同组学生姓名: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 双运算放大器LM358 三、 实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。 2.通用型集成运放的输入级电路,为啥 均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。 4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠加到交流电压上,使得交流电的零线偏移(正负电压不对称),但是由于交 流电可以通过“隔直流”电容(又叫耦合电容)输出,因此任何漂移的直流缓变分量都不能通过,所以可以使输出的交流信号不受失调电压的任何影响。 5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 专业: 姓名: 日期: 地点:紫金港 东三--

《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告 (数据附页) 一、半定量观察分压电路的调节特点 二、用两种线路测电阻的对比研究 电流表准确度等级1.5,量程I m=5mA,R I=8.38±0.13Ω 电压表准确度等级1.5,量程U m=0.75V,R V=2.52±0.04kΩ; 量程U m=3V,R V=10.02±0.15kΩ

三、测定半导体二极管正反向伏安特性 由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。 四、戴维南定理的实验验证 1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等效 e e

取第二组和第七组数据计算得到: E e =2.15V R e =319.5Ω 由作图可得: E e =2.3V R e =352.8Ω 3. 理论计算。 % 6.17% 7.10.30034.2951.14917.19932.6162 12 132 12 321的相对误差为的相对误差为与实验值比较e e e e R E R R R R R R V R R ER E V E R R R Ω =++ ==+= =Ω=Ω=Ω= 4.讨论。 等效电动势的误差不是很大,而等效电阻却很大。原因是多方面的。但我认为最大的原因应该是作图本身。所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。 如果对数据进行拟合,可以得到I=-3.298U+6.836,于是得到E e =2.07V ,R e =303.2Ω,前者误差为11.5%,后者误差为1.1%,效果比直接读图好,因为消除了读图时人为的误差。 另外一点,仪表读数也是造成误差大的一个原因。比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。

MT大地电磁二维正演计算及反演计算

实 验 报 告 实验名称:实验三MT二维正演计算 实验四MT反演计算 课程名称: 电法勘探专题 实验时间:2011年12月8日 学号:2602080206 姓名:黄建华 任课老师:张继锋

目录 实验三MT二维正演计算 (1) 一、实验目的 (1) 二、实验要求 (1) 三、实验内容 (1) 四、结果及分析 (2) (一)、软件特性检验 (2) (二)、单个高阻体下Eps、Mps断面对比,Eh、Mh断面对比 (4) (三)、单个低阻体TE模式视电阻率断面 (5) (四)、横向分辨率分析(两个相同大小地质体的分辨) (5) (五)、纵向分辨率分析 (6) (六)、倾斜断层TE模式视电阻率和视阻抗相位断面 (6) (七)、地堑地电模型TE模式视电阻率和视阻抗相位断面 (7) 实验四MT反演计算 (9) 一、两层介质 (9) 二、三层介质(第一层厚度10) (10) 三、三层介质(第一层厚度50) (12) 四、五层介质 (13) 五、总结 (13)

实验三MT二维正演计算 一、实验目的 1、掌握大地电磁法的二维有限元正演理论 2、明确TE极化模式和TM极化模式特征 3、编制二维正演程序(参考徐世浙有限元与边界元) 4、掌握二维反演软件的应用,理解网格剖分的规则,合理的进行网格剖分和模型计 5、设计不同的二维地电模型,包括一维层状模型进行程序精度的检验,分别就TE 和TM模式进行正演,并根据结果分析两种模式的异同。 二、实验要求 1、能够正确应用软件,掌握各参数的设置 2、了解软件设计的基本思路,能够自己调整修改相关输出输入参数 3、对设计模型进行计算,并绘制相关误差分析剖面曲线,进行误差统计,并对模拟 结果做以分析。 4、完成实验报告,word排版,图标清晰,分析合理。 三、实验内容 1、均匀半空间及层状介质模型模拟,并和一维正演程序进行比较,分析误差,以检 验二维正演软件的正确性。 2、设计一个低阻体和高阻体分别就TE和TM模式进行正演

电路分析基础实验报告

实验一 1. 实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据KVL和KCL及电阻VCR列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5. 实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与R3并联,电压相同,电流符合分流规律。 6. 实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。并与理论计算值比较。 3. 实验电路及测试数据 电压源单独作用:

大地电磁测深技术发展及在油气勘探的应用

万方数据

地质与勘探2003年 为提高构造勘探分辩率奠定了基础。EMAP资料采集以高效的多道排列式为单位进行,代替了传统的单点式或双点式资料采集。1995年在国内首次引进该方法后,在采集方法上进行了全张量方式的改进,并依据国内学者的建议,称之为连续电磁剖面法(continueE1ectricMagneticPr06le简称cEMP)。 2野外工作方法 作为以天然电磁场为场源的MT和cEMP,属被动源物探方法系列,野外资料采集工作主要在信号接受方面,主要接受水平正交的电磁场分量(Ex、Hy、Ey、Hx)和垂直磁场分量(Hz),其中接受电场信号的信号传感器为两对正交的不极化电极对,电极距一般为50~200m,接受磁场信号的信号传感器是高灵敏度的感应式线圈磁棒。 图1为MT野外工作站布置。一般在每个测点 E 图1常规MT十字型布站示意图 上为5分量采集(Ex、Hy、Ey、Hx、Hz),其中x布站方向为正南北方向,Y为正东西方向。点距根据勘探目的不同而异,一般进行盆地前期油气勘探采用 4 1~2km的点距,而进行大地构造研究和深部地壳结构调查则采用5~10km的点距。 图2为二维cEMP野外工作站布置。CEMP以排列为单位进行布站,资料采集都采用张量方式观测,即每道除记录测线方向(x布站方向)的电场分量外,还观测垂直测线方向(Y布站方向)的电场分量,并布置两水平磁场分量采集站,排列上各道共用水平磁场分量采集站的信息,水平磁分量采集磁棒对应采集电场分量的电偶极平行布置(图2)。为提高资料采集精度,压制相关干扰,在离工区50~100km的区域内设置4分量的远参考站,测区内各排列与远参考站依次同步采集,资料采集时间一般为8~15小时。排列内的道数可根据采集单元的多少确定,道间距为200m,参考站采集单元与排列内各道采集单元通过GPs同步控制采集。 图3为三维cEMP小面元网络式采集布置示意图。一个面元网络内的道数,可根据采集系统的多少和点距大小来确定,一般为9道,也可为16道、25道等,中心点以四分量(Ex、Ey、Hx、Hy)或五分量(Ex、Ey、Hx、Hy、Hz)采集为主,周围道则可用两分量(Ex、Ey)采集,共用中心点的磁场分量。面元内的各道与参考站之间利用Gps卫星同步控制开始采集。面元内各道距依设计测网点线距确定。 3资料采集系统及处理系统简介 从应用MT近20年的历程看,仪器制作技术及方法技术的进步,一方面使该方法野外资料采集效率大大提高,另一方面应用领域拓宽,勘探效果日益突出。20世纪80年代初,资料采集“靠天吃饭”,信号强时就可获得合格资料,信号弱时就停工休息,庞大的车装采集系统都没有实时处理能力,质量反馈 图2二维cEMP排列式采集示意图 万方数据

电学实验基础实验报告

物理实验报告 ————制流电路、分压电路与电学实验基础知识 班级:________________ 姓名:________________ 学号:________________ 实验组号:____________ 实验日期:____________

实验报告 班级:计科1204 姓名:吕勇良 【实验名称】制流电路、分压电路与电学实验基础知识 【实验目的】 1.了解电学实验的要求、操作流程与安全知识; 2.学习电学实验中常用一区的使用方法; 3.学习连接电路的一般方法,学习用变阻器连成制流电路与分压电路的方法。【实验仪器】 电流表、电压表、电阻箱、滑线变阻器、稳压电源、开关、导线 【实验内容】 1.接线练习:连接如图6-3与图6-4所示的电路,并相互检查。不要通电。 2.考察滑线变阻器的制流作用 电路如图6-1所示。根据使用的一起确定E,R,并估算电流的范围,选用合适的电流表量程。在电路图中标注所有电路参数并设定R L>5R。严格按照电学实验操作规程,连接如图6-1所示的电路。其中R就是电阻箱,改变滑线变阻器滑动端的位置,从接入全部电阻时开始,没画过全长1/10,从安培表读取一次电流强度。 3.考察滑线变阻器的分压作用 按图6-2接线并设定R L>5R改变滑线变阻器滑动端的位置,没滑过全长的1/10,从伏特计读取AC两点间的电压U AC。 【实验数据记录与处理】 滑线变阻器的制流作用

作图(横坐标表示X,纵坐标表示U,做分压特性曲线U AC) 【思考题】 1、在图6-1所示的电路中,电阻R起什么作用?不用它会出现什么问题? 2、试证明:用内阻为R的伏特计来测量6-5所示线路中电阻R1两端的电位差时,伏特计的读数与R1两端的电位差的实在值之间的百分差为:

电磁勘探与大地电磁学-实验报告0

本科生实验报告 实验课程电磁勘探 学院名称地球物理学院 专业名称勘查技术与工程 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇年月二〇年月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下 2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4 号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

大地电磁勘探方法技术实验 摘要 关键词:;;;

第1章大地电磁一维正演程序设计与模型试验1.1 实验目的 根据大地电磁测深原理,学会根据大地电磁理论计算公式,推导大地电磁一 维情况下视电阻率的计算方法,根据相应计算方法设计计算机程序,实现一维层 状地层的视电阻率计算,并掌握绘制成果图件的方法。 1.2 实验内容 (1)根据一维介质的理论公式,完成公式推导,并进行拆分与整理,根据各参数的计算先后顺序列出每一个步骤相关的一般公式或计算表达式,以及相关的参数,设计一维层状介质的理论曲线的计算方法,以便采用计算机程序进行计算。 (2)根据一维层状介质的理论曲线的计算方法,分析输入参数和中间变量,并规划每一个参数的数据类型、输入参数的获取与输出结果的保存等,详细给出计算机程序流程图,并完成程序流程的检查与调整。 (3)根据程序的流程图,选择使用任何一种编程语言实现上述计算流程,完成程序的调试。 (4)根据给定的模型参数与频率表,完成模型试验,根据计算输出的数据选用合适的绘图工具绘制成果图件,并编辑、完善图件的相关信息。 1.3 实验原理 根据大地电磁一维层状介质正演理论,计算一维层状理论模型的视电阻率随频率变化曲线。 计算频率表: 6400.00 5210.00 3840.00 3200.00 2560.00 2133.33 1920.00 1600.00 1280.00 1066.66 960.00 800.00 640.00 533.33 480.00 400.00 320.00 300.00 280.00 240.00 200.00 150.00 120.00 100.00 80.000 60.000 45.000 32.000 28.000 20.000 15.000 12.000 10.000 8.000 5.000 4.500

初中 电学实验 实验报告

物理实验报告 ____级__班__号 姓名_________实验日期____年__月__日实验名称探究串联电路中电流的特点 实验目的练习使用电流表,探究串联电路中不同位置电流的关系实验器材(并画出实验电路图)电池组(2节干电池串联),电流表(量程:0.6A、3A)),4个小灯泡(额定电压2.5v的两个和3.8v 的两个),1个开关,若干条导线。 实验原理:在同一电路的不同位置分别接入电流表,比较不同位置的电流大小,就可以探究出串联电路的电流规律了。 实验步骤 1.检查器材。 2.采用两只额定电压都为2.5V的灯泡,按照实验电路图连接实物。(连接过程中开关应) 3.闭合开关查看两灯是否正常发光 4.将电流表分别接入A.B.C点测出各点的电流,并记录数据。(采用试触法选择电流表量程)(重复测三次,获得三组数据) 5.换两只额定电压都为3.8V的灯泡,重复以上步骤,再次测量A、B、C各点的电流。(重复测三次,获得三组数据) 6.换一只额定电压为2.5V、一只额定电压为3.8V的灯泡重新测量A、B、C各点的电流。(重复测三次,获得三组数据)

物理实验报告 ____级__班__号 姓名_________实验日期____年__月__日 实验名称探究并联电路中电流的特点 实验目的练习使用电流表,探究并联电路中干路电流和各支路电流的关系 实验器材电池组(2节干电池串联),电流表(量程:0.6A、3A),4个小灯泡(额定电压2.5v的两个和3.8v的两个),1个开关,若干条导线 实验原理:在电源电压相同、小灯泡不变的前提下,分别在A.B.C三处接 入电流表,测量通过它们的电流,比较通过它们的电流大小的关系,就可以得出并联电路的电流规律。 实验步骤 1.检查器材。 2. 采用两只额定电压都为 2.5V的灯泡,按照电路图连接实物图(开关应) 3.闭合开关查看两灯是否正常发光 4.将电流表分别接入A点测出L1灯的电流,将电流表接入 B点测出L2灯的电流,将电流表接入C点测出干路电流。(重复3次,获得三组数据) 5.采用两只额定电压都为3.8V的灯泡,按照电路图连接实物图,并按照以上的方法分别测出A.B.C三点的电流。(重复3次,获得三组数据) 6. 采用两只规格不一样的灯泡,按照电路图连接实物图,并按照以上的方法分别测出A.B.C三点的电流。(重复3次,获得三组数据) 7.整理器材。

电学元件伏安特性的测量实验报告附

电学元件伏安特性的测 量实验报告附 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

《电学元件伏安特性的测量》实验报告 (数据附页) 一、半定量观察分压电路的调节特点 变阻器R=470Ω 二、用两种线路测电阻的对比研究 电流表准确度等级,量程I m=5mA,R I=±Ω 电压表准确度等级,量程U m=,R V=±Ω; 量程U m=3V,R V=±Ω 三、测定半导体二极管正反向伏安特性

由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。 四、戴维南定理的实验验证 1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等 效电动势E e和等效内阻R e。(外接法) 修正后的结果:

取第二组和第七组数据计算得到: E e = R e =Ω 由作图可得: E e = R e =Ω 2.用原电路和等效电路分别加在相同负载上,测量外电路的电压和电流值。 3.理论计算。 4.讨论。 等效电动势的误差不是很大,而等效电阻却很大。原因是多方面的。但我认为最大的原因应该是作图本身。所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。 如果对数据进行拟合,可以得到I=+,于是得到E e=,R e=Ω,前者误差为%,后者误差为%,效果比直接读图好,因为消除了读图时人为的误差。 另外一点,仪表读数也是造成误差大的一个原因。比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。 总的讲,实验数值和理论还是有一定偏差,不能很好的证明。

可控源音频大地电磁测深(CSAMT)作业指导书

目录 章节号内容页码 1. 立项作业指导书 (2) 2. 设计编写作业指导书 (4) 3. 野外作业指导书 (11) 4. 资料整理作业指导书 (16) 5. 资料野外验收作业指导书 (20) 6. 成果报告编写作业指导书 (23) 7. 成果报告评审作业指导书 (26)

立项作业指导书 1.目的 立项是可控源音频大地电磁测深法(CSAMT)工作质量的起点,其质量将直接影响成果质量和找矿效果。本规范对可控源音频大地电磁测深法立项工作所必须遵循的规则作了具体规定,以提高立项质量。 2.适用范围 本规范适用于申请上级主管部门、社会企事业单位委托承包、招标承包的可控源音频大地电磁测深法的前期立项工作。 3.总则 可控源音频大地电磁测深法立项工作必须严格执行本规定及 DZ/T地球物理勘查名词术语 GB/T14499-93地球物理勘查技术符号 GB/T0069-93地球物理勘查图式图例及用色标准 4.实施步骤 4.1 综合研究 在确定任务时,应结合具体情况系统地收集和细致地研究目标区内前人工作成果资料(含以往地质、物探、化探、遥感等资料),作到充分利用已有资料,不作重复工作,分析在以往工作成果基础上获得新成果的可能性和新成果的价值,研究开展可控源音频大地电磁测深法的地球物理前提及方法的有效性。 4.2 项目规划 4.2.1可控源音频大地电磁测深法(以下简称CSAMT)是利用人工源建立谐变电磁场,在固定发收距r的情况下人为的改变电磁场的频率f,以达到探测地下不同深度地层构造的目的。该方法的主要特点是能穿透高阻容屏蔽层,探测深度大,分辨率高。可用于金属矿勘探、油气田勘探、深部地层构造勘探和解决水文工程地质等问题。 4.2.2 CSAMT应用条件 4.2.2.1勘查对象与周围地质体之间存在较明显的电阻率差异。 4.2.2.2勘查对象产生的电性异常能从干扰背景中分辨出来。

三相交流电路实验报告1

中国石油大学(华东)现代远程教育实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:赵军学 号: 年级专业层次: 14春石油开采技术高起 专 学习中心:江苏油田学习中 心 提交时间: 2014 年 6 月 8 日

图1 星形连接的三相电路 A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I表示线的变量,下标p表示相的变量) 在四线制情况下,中线电流等于三个线电流的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系: 当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: (2)三角形连接的负载如图2所示:

其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足: 2.不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。 如果三相电路其中一相或两相开路也属于不对称情况。

大地电磁一维正反演MATLAB程序

大地电磁一维正反演MATLAB程序 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% % Purpose:MagnetoTelluric one dimensional forward modeling % % Ming-Cai ZHang 17st,OCt,2008 CSU-IPGE % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% % variable declaration % % Input: % % 1、n---->>>The number of layer % % 2、rou-->>>Density for every layer % % 3、h---->>>Thickness for every layer % % 4、T_start---->>>start time % % 5、T_end----->>>end time % % 6、Num_DT-->>the number of sampling time in time interval % % Output: % % 1、rou_T-->>apparent resistivity at time % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% function [T,rou_T]=mt1d(n,rou,h,T_start,T_end,Num_DT) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% % Control subjacent variable to build model % %n=2; % %rou(1:n)=[200,600]; % %h(1:(n-1))=10; % % Control subjacent variable to change continued time % %T_start=-3; % %T_end=4; % %Num_DT=5; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% np=nargin; if (np<=5) error('******正演参数不够******!') end u(1:n)=1; v(1:n)=0; j=0; T=zeros(1,(T_end-T_start+1)*Num_DT); for t=T_start:1:T_end

大地电磁法及其应用

大地电磁法及其应用 狭义电磁法: 前身:磁法、大地电流法(Telluric)(目标:探测地球构造)。 主体:大地电磁法(MT)及有关技术(MT,Magneto-telluric)。 广义电磁法:磁法、电法、电磁法。 大地电磁测深法是以天然电磁场为场源来研究地球内部电性结构的一种重要的地球物理手段。 测深方法:重磁电震。 非地震方法:重磁电(重力+广义的电磁类)。 大地电磁是重要的非地震测深方法 研究对象:地球内部的电性结构(电导率结构)。 物理原理:宏观电磁理论(有耗媒质中的低频电磁波理论)。 大地电磁测深的优缺点 优点 不受高阻层屏蔽、对高导层分辨能力强; 横向分辨能力较强; 资料处理与解释技术成熟; 勘探深度大、勘探费用低、施工方便; 缺点 体积效应,反演的非唯一性较强(跟地震方法相比) 纵向分辨能力随着深度的增加而迅速减弱

大地电磁法(MT)是以天然电磁场为场源来研究地球内部电性结构的一种重要的地球物理手段。 基本原理:依据不同频率的电磁波在导体中具有不同趋肤深度的原理,在地表测量由高频至低频的地球电磁响应序列,经过相关的数据处理和分析来获得大地由浅至深的电性结构。 大地电磁法原理示意图 大地电磁法野外观测装置 2、理论背景 理论基础:麦克斯韦方程 3大地电磁的理论基础:正演问题 需要一个信号激发源 需要地表响应的观测数据 还需要掌握模型在源作用下地表响应产生的物理过程:这就是正演 正演指的是对于一个给定的模型,在一定激发源的作用下,根据一定的物理原理

求其响应的过程。 大地电磁正演过程两大假设: 1)激励场源:垂直入射到地表的均匀平面电磁波 2)地球模型:水平层状导电介质 视电阻率和阻抗相位的定义 横电波横磁波:场的极化模式 横电波(TE ) :垂直于传播方向的场分量只有电场; 横磁波(TM ) :垂直于传播方向的场分量只有磁场; 大地电磁测深中只研究场源为横电磁波的情况 大地电磁测深中常说的极化模式是以场源的极化方式来区分的,并且这种区分一般只在二维情况下才有意义。一维情况虽然可以解耦出TE 和TM 模式,但不能带来更多的信息。三维模型下不能解耦出TE 模式和TM 模式。 反演是指根据实测的数据来反推产生这些数据的系统内在信息的一种数学物理过程。 反演的两个基本条件:实测的数据和一个先验模型系统。 通常的最小二乘多项式拟合就可以看成是一个反演过程。参与拟合的数据就是反演中实测的数据,“多项式”这种函数形式就是“先验模型系统”。 对于大地电磁测深而言,“实测的数据”就是在地表实测的视电阻率、相位等数据;“先验模型系统”是对地球电导率模型的假设(一维、二维还是三维?),以及在此假设基础上的正演实现过程。更明确的说,这里的“先验模型系统”就是指的是“一维正演”过程、“二维正演”过程或“三维正演”过程。 对于大地电磁测深而言,所谓待反演的“系统内在信息”指的就是电导率结构。 大地电磁测深反演就是根据地表实测的视电阻率、相位等数据来求取大地深部电导率结构的过程,该电导率结构的正演响应能极好地拟合视电阻率、相位等实测数据。 手工量板法 反演问题和反演方法的分类 反演问题主要分两类:线性问题和非线性问题。大地电磁测深反演属于非线性反演问题。 反演方法也有线性反演和非线性反演之分。 线性反演方法是针对线性反演问题发展起来的,但也被广泛应用于解决非线性问题,这时称为非线性问题的线化反演。在非线性问题的线化反演中,首先需要将非线性问题线性化,这是这一技术的最为关键之处。 非线性反演方法是直接针对非线性反演问题的。其共同的基础是采用一些启发式搜索技巧来寻找合适的反演模型,如遗传算法、模拟退火、神经网络等。 反演的非唯一性 先验约束条件 正则化反演方法介绍

地球物理仪器之大地电磁测深法

题目:大地电磁勘测法 学号: 201220120109 姓名:李星星 班级: 1221201 专业:测控技术与仪器 课程名称:地球物理仪器 课程老师:徐哈宁 二零一五年十二月

目录 1引言............................................................. 1.1定性近似反演法 ............................................... 1.1.1博斯蒂克反演法.......................................... 1.1.2曲线对比法.............................................. 1.1.3拟地震解释方法.......................................... 1.2马奎特反演法................................................. 1.2.1广义反演法.............................................. 1.2.2奥克姆反演法............................................ 1.2.3快速松弛反演法.......................................... 1.2.4共轭梯度反演法.......................................... 1.2.5拟线性近似反演法......................................... 1.2.6聚焦反演法.............................................. 2.1全局搜索最优反演方法.......................................... 2.1.1二次函数逼近反演法....................................... 2.1.2多尺度反演法............................................ 2.1.3模拟退火反演法.......................................... 2.1.4量子路径积分反演算法..................................... 2.1.5遗传算法反演法.......................................... 2.1.6人工神经网络反演法....................................... 2.1.7贝叶斯统计反演.......................................... 2.1.8粒子群优化反演.......................................... 3大地电磁反演方法存在的问题.......................................... 4大地电磁反演技术发展方向............................................ 4.1复杂地电结构条件下电磁理论研究 ................................. 4.2提高反演方法速度的研究 ........................................ 4.3非线性反演理论研究............................................ 4.1混合反演方法的研究............................................ 4.2与其它资料的联合反演研究....................................... 5 学习总结 ........................................................

相关文档
最新文档