2015年湖南省数据总结要领

1、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath

2、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath

3、我们用l代表最长平台的长度,用k指示最长平台在数组b中的起始位置(下标)。用j记住局部平台的起始位置,用i指示扫描b数组的下标,i从0开始,依次和后续元素比较,若局部平台长度(i-j)大于l时,则修改最长平台的长度k(l=i-j)和其在b中的起始位置(k=j),直到b数组结束,l即为所求。
void Platform (int b[ ], int N)
//求具有N个元素的整型数组b中最长平台的长度。
{l=1;k=0;j=0;i=0;
while(i{while(iif(i-j+1>l) {l=i-j+1;k=j;} //局部最长平台
i++; j=i; } //新平台起点
printf(“最长平台长度%d,在b数组中起始下标为%d”,l,k);
}// Platform

4、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指

向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。
#include
typedef char datatype;
typedef struct node{
datatype data;
struct node * next;
} listnode;
typedef listnode* linklist;
/*--------------------------------------------*/
/* 删除单链表中重复的结点 */
/*--------------------------------------------*/
linklist deletelist(linklist head)
{ listnode *p,*s,*q;
p=head->next;
while(p)
{s=p;
q=p->next;
while(q)
if(q->data==p->data)
{s->next=q->next;free(q);
q=s->next;}
else
{ s=q; /*找与P结点值相同的结点*/
q=q->next;
}
p=p->next;
}
return head;
}

5、#define maxsize 栈空间容量

void InOutS(int s[maxsize])
//s是元素为整数的栈,本算法进行入栈和退栈操作。
{int top=0; //top为栈顶指针,定义top=0时为栈空。
for(i=1; i<=n; i++) //n个整数序列作处理。
{scanf(“%d”,&x); //从键盘读入整数序列。
if(x!=-1) // 读入的整数不等于-1时入栈。
if(top==maxsize-1){printf(“栈满\n”);exit(0);}
else s[++top]=x; //x入栈。
else //读入的整数等于-1时退栈。
{if(top==0){printf(“栈空\n”);exit(0);}
else printf(“出栈元素是%d\n”,s[top--]);}
}
}//算法结

6、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。
51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

7、设T是一棵满二叉树,编写一个将T的先序遍历序列转换为后序遍历序列的递归算法。
8、设一组有序的记录关键字序列为(13,18,24,35,47,50,62,83,90),查找方法用二分查找,要求计算出查找关键字62时的比较次数并计算出查找成功时的平均查找长度。
9、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。
int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数
{if(bt==null || k<1) return(0);
BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大
int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数
int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,lev

el 是二叉树的层数
while(front<=rear)
{p=Q[++front];
if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点
if(p->lchild) Q[++rear]=p->lchild; //左子女入队
if(p->rchild) Q[++rear]=p->rchild; //右子女入队
if(front==last) {level++; //二叉树同层最右结点已处理,层数增1
last=rear; } //last移到指向下层最右一元素
if(level>k) return (leaf); //层数大于k 后退出运行
}//while }//结束LeafKLevel

10、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。
void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)
//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。
{if(h1>=l1)
{post[h2]=pre[l1]; //根结点
half=(h1-l1)/2; //左或右子树的结点数
PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列
PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列
} }//PreToPost
32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。
LinkedList head,pre=null; //全局变量
LinkedList InOrder(BiTree bt)
//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head
{if(bt){InOrder(bt->lchild); //中序遍历左子树
if(bt->lchild==null && bt->rchild==null) //叶子结点
if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点
else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表
InOrder(bt->rchild); //中序遍历左子树
pre->rchild=null; //设置链表尾
}
return(head); } //InOrder
时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

11、4、 void LinkList_reverse(Linklist &L)
//链表的就地逆置;为简化算法,假设表长大于2
{
p=L->next;q=p->next;s=q->next;p->next=NULL;
while(s->next)
{
q->next=p;p=q;
q=s;s=s->next; //把L的元素逐个插入新表表头
}
q->next=p;s->next=q;L->next=s;
}//LinkList_reverse

12、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之

相应的行中各元素也必须做相应变动。
void Translation(float *matrix,int n)
//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。
{int i,j,k,l;
float sum,min; //sum暂存各行元素之和
float *p, *pi, *pk;
for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.
for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.
}//for i
for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.
for(j=i+1;jif(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)
{pk=matrix+n*k; //pk指向第k行第1个元素.
pi=matrix+n*i; //pi指向第i行第1个元素.
for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}
sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.
}//if
}//for i
free(p); //释放p数组.
}// Translation
[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

13、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。
#define true 1
#define false 0
typedef struct node
{datatype data; struct node *llink,*rlink;} *BTree;
void JudgeBST(BTree t,int flag)
// 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。
{ if(t!=null && flag)
{ Judgebst(t->llink,flag);// 中序遍历左子树
if(pre==null)pre=t;// 中序遍历的第一个结点不必判断
else if(pre->datadata)pre=t;//前驱指针指向当前结点
else{flag=flase;} //不是完全二叉树
Judgebst (t->rlink,flag);// 中序遍历右子树
}//JudgeBST算法结束


14、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。
void Translation(float *matrix,int n)
//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。
{int i,j,k,l;
float sum,min; //sum暂存各行元素之和
float *p, *pi, *pk;
for(i=0; i

i++)
{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.
for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.
}//for i
for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.
for(j=i+1;jif(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)
{pk=matrix+n*k; //pk指向第k行第1个元素.
pi=matrix+n*i; //pi指向第i行第1个元素.
for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}
sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.
}//if
}//for i
free(p); //释放p数组.
}// Translation
[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

15、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。
#define true 1
#define false 0
typedef struct node
{datatype data; struct node *llink,*rlink;} *BTree;
void JudgeBST(BTree t,int flag)
// 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。
{ if(t!=null && flag)
{ Judgebst(t->llink,flag);// 中序遍历左子树
if(pre==null)pre=t;// 中序遍历的第一个结点不必判断
else if(pre->datadata)pre=t;//前驱指针指向当前结点
else{flag=flase;} //不是完全二叉树
Judgebst (t->rlink,flag);// 中序遍历右子树
}//JudgeBST算法结束


16、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.
typedef struct node
{int data; struct node *lchild,*rchild;}node;
int N2,NL,NR,N0;
void count(node *t)
{if (t->lchild!=NULL) if (1)___ N2++; else NL++;
else if (2)___ NR++; else (3)__ ;
if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;
}
26.树的先序非递归算法。
void example(b)
btree *b;
{ btree *stack[20], *p;
int top;
if (b!=null)
{ top=1; stack[top]=b;
while (top>0)
{ p=stack[top]; top--;
printf(“%d”,p->data);
if (p->rchild!=null)
{(1)___; (2)___;
}
if (p->lchild!=null)
(3)___; (4)__;
}}}}

17、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={,,

4>,,,,,,}
写出G的拓扑排序的结果。
G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7


18、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。
19、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。
int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数
{if(bt==null || k<1) return(0);
BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大
int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数
int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数
while(front<=rear)
{p=Q[++front];
if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点
if(p->lchild) Q[++rear]=p->lchild; //左子女入队
if(p->rchild) Q[++rear]=p->rchild; //右子女入队
if(front==last) {level++; //二叉树同层最右结点已处理,层数增1
last=rear; } //last移到指向下层最右一元素
if(level>k) return (leaf); //层数大于k 后退出运行
}//while }//结束LeafKLevel

20、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。20分
void Hospital(AdjMatrix w,int n)
//在以邻接带权矩阵表示的n个村庄中,求医院建在何处,使离医院最远的村庄到医院的路径最短。
{for (k=1;k<=n;k++) //求任意两顶点间的最短路径
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
if (w[i][k]+w[k][j]m=MAXINT; //设定m为机器内最大整数。
for (i=1;i<=n;i++) //求最长路径中最短的一条。
{s=0;
for (j=1;j<=n;j++) //求从某村庄i(1<=i<=n)到其它村庄的最长路径。
if (w[i][j]>s) s=w[i][j];
if (s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。m记最长路径,k记出发顶点的下标。
Printf(“医院应建在%d村庄,到医院距离为%d\n”,i,m);
}//for
}//算法结束
对以上实例模拟的过程略。各行中最大数依次是9,9,6,7,9,9。这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。

1、对图1所示的连通网G,请用Prim算法构造

其最小生成树(每选取一条边画一个图)。

21、设T是一棵满二叉树,编写一个将T的先序遍历序列转换为后序遍历序列的递归算法。
22、给出折半查找的递归算法,并给出算法时间复杂度性分析。
23、假设K1,…,Kn是n个关键词,试解答:
试用二叉查找树的插入算法建立一棵二叉查找树,即当关键词的插入次序为K1,K2,…,Kn时,用算法建立一棵以LLINK / RLINK 链接表示的二叉查找树。

24、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。
#define MAX 100
typedef struct Node
{char info; struct Node *llink, *rlink; }TNODE;
char pred[MAX],inod[MAX];
main(int argc,int **argv)
{ TNODE *root;
if(argc<3) exit 0;
strcpy(pred,argv[1]); strcpy(inod,argv[2]);
root=restore(pred,inod,strlen(pred));
postorder(root);
}
TNODE *restore(char *ppos,char *ipos,int n)
{ TNODE *ptr; char *rpos; int k;
if(n<=0) return NULL;
ptr->info=(1)_______;
for((2)_______ ; rposk=(3)_______;
ptr->llink=restore(ppos+1, (4)_______,k );
ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k);
return ptr;
}
postorder(TNODE*ptr)
{ if(ptr=NULL) return;
postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info);
}

25、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程交替的冒泡排序算法。
48.有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)

26、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。

相关主题
相关文档
最新文档